metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-2-[4-(1,3-Benzo­thia­zol-2-yl)phen­yl]-2-aza­propane-1,3-di­thiol­ato-κ4S,S′:S,S′}bis­­[tri­carbonyl­iron(I)]

aSchool of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989 Weixing Road, Changchun 130022, People's Republic of China
*Correspondence e-mail: cust_gaoshang@yahoo.cn

(Received 12 January 2012; accepted 28 January 2012; online 4 February 2012)

The title compound, [Fe2(C15H12N2S3)(CO)6], was prepared as an aza­dithiol­atodiiron model for the active site of [FeFe]-hydrogenase. The Fe2S2 core adopts a butterfly shape, with each metal having a pseudo square-pyramidal geometry. The N-substituted aza­dithiol­ate is μ2-κ4S,S′:S,S′-coordinated to the Fe(CO)3 moieties to form two fused six-membered rings with different conformations. The sum of the C—N—C angles around the N atom [356.85 (15)°] indicates a flattening of the trigonal–pyramidal geometry about the N atom and an increase in the degree of sp2-hybridization.

Related literature

For reviews of hydrogenases, see: Cammack (1999[Cammack, R. (1999). Nature (London), 397, 214-215.]); Evans & Pickett (2003[Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.]). For the synthesis and structures of models for the active site of Fe-only hydrogenases, see: Lawrence et al. (2001[Lawrence, J. D., Li, H. & Rauchfuss, T. B. (2001). Chem. Commun. pp. 1482-1483.]); Song et al. (2005[Song, L. C., Yang, Z. Y., Bian, H. Z., Liu, Y., Wang, H. T., Liu, X. F. & Hu, Q. M. (2005). Organometallics, 24, 6126-6135.]); Liu & Xiao (2011[Liu, X. F. & Xiao, X. W. (2011). J. Organomet. Chem. 696, 2767-2771.]); Yin et al. (2011[Yin, B. S., Li, T. B. & Yang, M. S. (2011). J. Coord. Chem. 64, 2066-2074.]); For structures of Fe-only hydrogenases, see: Nicolet et al. (1999[Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13-23.]); Peters et al. (1998[Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853-1858.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C15H12N2S3)(CO)6]

  • Mr = 596.21

  • Monoclinic, P 21 /c

  • a = 13.8606 (12) Å

  • b = 7.6900 (7) Å

  • c = 21.5052 (19) Å

  • β = 92.447 (1)°

  • V = 2290.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 273 K

  • 0.45 × 0.22 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.536, Tmax = 0.858

  • 12350 measured reflections

  • 4509 independent reflections

  • 4124 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.04

  • 4509 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently [FeFe]-hydrogenases ([FeFe]Hases) have received more attention than other types of hydrogenases due to their much higher efficiency in hydrogen production (Cammack, 1999; Evans & Pickett, 2003). Crystallographic and IR spectroscopy studies revealed the active site of [FeFe]Hases (so-called H-cluster) to contain a butterfly Fe2S2 subunit (Peters et al., 1998) and a variety of transition metal sulfides have been prepared as models of the diiron subunit of the H-cluster (Song et al., 2005; Yin et al., 2011; Liu & Xiao, 2011). We have synthesized the title compound as a structural model for the active site of [FeFe]Hases and report its crystal structure.

In the title compound, the Fe2S2 core adopts a butterfly framework with each metal having a pseudo square-pyramidal geometry. The length of the Fe—Fe bond [2.5036 (4) Å] is slightly shorter than those in the structures of natural enzymes (ca 2.6 Å) (Peters et al., 1998; Nicolet et al., 1999). The structure features two fused six-membered rings: Fe1—S1—C7—N1—C8—S2 which adopts a chair conformation and Fe2—S1—C7—N1—C8—S2 which adopts a boat conformation. The sum of the C—N—C angles around N1 atom is 356.85 (15)° implying a noticeable flattening of the trigonal pyramidal geometry about N1 and an increase in the degree of p-π conjugation between the substituted phenyl ring and the p-orbital of the bridging N atom. The distance of N1 from the plane defined by C7, C8 and C9 is 0.146 (2) Å and the dihedral angle between this plane and the mean plane of the adjacent phenyl ring is 2.5 (1)°. The substituted phenyl ring attached to N1 lies in an axial position relative to the metalloheterocycle and slants towards the Fe2(CO)3 unit. As a result, the C1—Fe1—Fe2 angle is enlarged by ca 7° compared with the C6—Fe2—Fe1 angle.

The molecular structure of the title compound is shown in Fig.1.

Related literature top

For reviews of hydrogenases, see: Cammack (1999); Evans & Pickett (2003). For the synthesis and structures of models for the active site of Fe-only hydrogenases, see: Lawrence et al. (2001); Song et al. (2005); Liu & Xiao (2011); Yin et al. (2011); For structures of Fe-only hydrogenases, see: Nicolet et al. (1999); Peters et al. (1998).

Experimental top

All reactions and operations related to the title compound were carried out under a dry, prepurified nitrogen atmosphere with standard Schlenk techniques. All solvents were dried and distilled prior to use according to standard methods. The starting material N,N'-bis(chloromethyl)-(4-benzothiazole)-phenylamine was prepared in 50% yield from 4-benzothiazole-phenylamine (Lawrence et al., 2001). A degassed solution of (µ-S2)Fe2(CO)6 (1.38 g, 4.0 mmol) in 30 ml dry THF was cooled to 195 K. LiEt3BH (1 M solution in THF, 8.0 ml, 8.0 mmol) was dropped into the above solution by syringe over 30 min. N,N'-bis(chloromethyl)-(4-benzothiazole)-phenylamine (2.6 g, 8.0 mmol) was added to the resulting dark green solution causing an immediate change in color to dark red. The mixture was stirred for 2 h at 195 K and another 1 h at room temperature. The solvent was removed on a rotary evaporator and the crude product was purified by column chromatography (silica, 20% dichloromethane in hexane as eluent) to give a red solid (1.37 g, 57%). Recrystallization from a CH2Cl2/hexane solution afforded crystals of the title compound suitable for X-ray study.

Refinement top

The H atoms attached to C were placed in geometrically calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level and H-atoms omitted.
{µ-2-[4-(1,3-Benzothiazol-2-yl)phenyl]-2-azapropane-1,3-dithiolato- κ4S,S':S,S'}bis[tricarbonyliron(I)] top
Crystal data top
[Fe2(C15H12N2S3)(CO)6]F(000) = 1200
Mr = 596.21Dx = 1.729 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8061 reflections
a = 13.8606 (12) Åθ = 2.4–28.9°
b = 7.6900 (7) ŵ = 1.58 mm1
c = 21.5052 (19) ÅT = 273 K
β = 92.447 (1)°Parallelepiped, red
V = 2290.1 (4) Å30.45 × 0.22 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4509 independent reflections
Radiation source: fine-focus sealed tube4124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.536, Tmax = 0.858k = 97
12350 measured reflectionsl = 2326
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.6533P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.28 e Å3
4509 reflectionsΔρmin = 0.23 e Å3
307 parameters
Crystal data top
[Fe2(C15H12N2S3)(CO)6]V = 2290.1 (4) Å3
Mr = 596.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8606 (12) ŵ = 1.58 mm1
b = 7.6900 (7) ÅT = 273 K
c = 21.5052 (19) Å0.45 × 0.22 × 0.10 mm
β = 92.447 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4124 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.858Rint = 0.020
12350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
4509 reflectionsΔρmin = 0.23 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe20.110403 (16)0.28234 (3)0.149643 (10)0.03265 (8)
Fe10.139110 (16)0.58723 (3)0.114026 (11)0.03417 (8)
S10.25452 (3)0.37829 (6)0.116610 (19)0.03648 (10)
S20.11928 (3)0.51324 (5)0.214607 (19)0.03527 (10)
S30.30972 (4)0.29556 (7)0.43894 (2)0.04817 (13)
C150.37264 (11)0.2378 (2)0.37251 (8)0.0354 (4)
N10.30863 (11)0.3996 (2)0.24269 (7)0.0407 (3)
C90.31954 (11)0.2394 (2)0.27348 (8)0.0347 (4)
N20.43589 (10)0.3512 (2)0.35595 (7)0.0392 (3)
C160.37529 (13)0.4878 (2)0.44399 (8)0.0410 (4)
C70.34275 (12)0.4258 (3)0.18192 (9)0.0432 (4)
H7A0.39920.35320.17720.052*
H7B0.36330.54590.17850.052*
C10.21836 (13)0.7719 (2)0.11426 (9)0.0434 (4)
C120.35215 (11)0.0756 (2)0.33922 (7)0.0345 (3)
C200.49798 (14)0.6393 (3)0.38954 (9)0.0463 (4)
H20A0.53980.64660.35700.056*
C110.28990 (12)0.0515 (2)0.36067 (8)0.0402 (4)
H11A0.25860.03210.39740.048*
C80.23726 (14)0.5242 (2)0.25908 (9)0.0432 (4)
H8A0.26400.63960.25380.052*
H8B0.22540.51010.30290.052*
C60.13012 (13)0.0967 (2)0.20065 (8)0.0415 (4)
C170.37132 (16)0.6217 (3)0.48743 (9)0.0529 (5)
H17A0.32930.61590.52000.063*
C30.02675 (14)0.7039 (3)0.11762 (9)0.0476 (4)
C190.49426 (15)0.7706 (3)0.43218 (10)0.0524 (5)
H19A0.53430.86680.42880.063*
C100.27360 (12)0.2049 (2)0.32888 (9)0.0412 (4)
H10A0.23150.28670.34440.049*
C180.43067 (16)0.7617 (3)0.48100 (10)0.0555 (5)
H18A0.42880.85260.50950.067*
C140.38064 (13)0.1106 (2)0.25110 (8)0.0401 (4)
H14A0.41100.12840.21390.048*
C20.12325 (13)0.5549 (3)0.03178 (9)0.0475 (4)
O60.13791 (12)0.0230 (2)0.23068 (7)0.0631 (4)
C210.43879 (12)0.4948 (2)0.39519 (8)0.0370 (4)
O40.09231 (14)0.0933 (2)0.03168 (8)0.0794 (5)
C130.39634 (12)0.0421 (2)0.28349 (8)0.0383 (4)
H13A0.43760.12510.26770.046*
C40.09890 (15)0.1660 (3)0.07745 (9)0.0479 (4)
O20.11222 (12)0.5315 (3)0.02042 (7)0.0755 (5)
O30.04242 (12)0.7811 (2)0.12089 (9)0.0775 (5)
O50.10051 (10)0.2857 (2)0.15324 (7)0.0628 (4)
C50.01899 (13)0.2869 (2)0.15329 (8)0.0417 (4)
O10.27005 (11)0.8864 (2)0.11324 (9)0.0698 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe20.03394 (13)0.03136 (14)0.03265 (13)0.00374 (9)0.00159 (9)0.00151 (9)
Fe10.03240 (13)0.03442 (14)0.03560 (14)0.00048 (9)0.00050 (9)0.00395 (10)
S10.0352 (2)0.0389 (2)0.0358 (2)0.00191 (17)0.00669 (16)0.00009 (17)
S20.0368 (2)0.0348 (2)0.0344 (2)0.00106 (17)0.00365 (16)0.00375 (16)
S30.0525 (3)0.0520 (3)0.0413 (2)0.0123 (2)0.0164 (2)0.0083 (2)
C150.0308 (8)0.0442 (10)0.0313 (8)0.0017 (7)0.0010 (6)0.0003 (7)
N10.0400 (8)0.0405 (8)0.0412 (8)0.0023 (6)0.0049 (6)0.0018 (6)
C90.0299 (8)0.0394 (9)0.0343 (8)0.0017 (7)0.0050 (6)0.0006 (7)
N20.0357 (7)0.0432 (8)0.0392 (8)0.0021 (6)0.0062 (6)0.0036 (6)
C160.0427 (9)0.0442 (10)0.0362 (9)0.0011 (8)0.0029 (7)0.0023 (8)
C70.0328 (9)0.0457 (10)0.0507 (11)0.0039 (7)0.0031 (7)0.0118 (8)
C10.0371 (9)0.0390 (10)0.0544 (11)0.0054 (8)0.0040 (8)0.0045 (8)
C120.0309 (8)0.0393 (9)0.0332 (8)0.0012 (7)0.0008 (6)0.0012 (7)
C200.0431 (10)0.0481 (11)0.0482 (11)0.0048 (8)0.0056 (8)0.0013 (9)
C110.0360 (9)0.0483 (10)0.0367 (9)0.0004 (8)0.0079 (7)0.0013 (8)
C80.0514 (10)0.0359 (9)0.0413 (9)0.0009 (8)0.0120 (8)0.0048 (8)
C60.0448 (10)0.0385 (10)0.0408 (9)0.0051 (8)0.0030 (7)0.0046 (8)
C170.0657 (13)0.0521 (12)0.0416 (10)0.0038 (10)0.0120 (9)0.0083 (9)
C30.0434 (10)0.0473 (11)0.0520 (11)0.0016 (9)0.0009 (8)0.0083 (9)
C190.0548 (12)0.0462 (11)0.0559 (12)0.0107 (9)0.0002 (9)0.0026 (9)
C100.0344 (9)0.0442 (10)0.0454 (10)0.0055 (7)0.0057 (7)0.0019 (8)
C180.0711 (14)0.0467 (12)0.0484 (12)0.0032 (10)0.0003 (10)0.0122 (9)
C140.0429 (9)0.0455 (10)0.0323 (8)0.0001 (8)0.0061 (7)0.0010 (7)
C20.0416 (10)0.0589 (12)0.0418 (11)0.0057 (9)0.0003 (8)0.0099 (9)
O60.0816 (11)0.0460 (8)0.0606 (9)0.0110 (8)0.0084 (8)0.0136 (7)
C210.0344 (8)0.0397 (9)0.0367 (9)0.0017 (7)0.0002 (7)0.0016 (7)
O40.1012 (14)0.0845 (13)0.0520 (9)0.0165 (10)0.0026 (9)0.0272 (9)
C130.0372 (9)0.0414 (9)0.0366 (9)0.0056 (7)0.0049 (7)0.0019 (7)
C40.0543 (11)0.0443 (11)0.0449 (11)0.0076 (9)0.0002 (8)0.0045 (9)
O20.0719 (11)0.1161 (15)0.0383 (9)0.0164 (10)0.0014 (7)0.0050 (9)
O30.0480 (9)0.0859 (13)0.0990 (14)0.0244 (9)0.0068 (8)0.0107 (10)
O50.0376 (8)0.0841 (11)0.0664 (10)0.0050 (7)0.0000 (6)0.0041 (8)
C50.0431 (10)0.0420 (10)0.0398 (9)0.0055 (8)0.0008 (7)0.0014 (8)
O10.0516 (9)0.0480 (9)0.1105 (14)0.0123 (7)0.0129 (9)0.0029 (9)
Geometric parameters (Å, º) top
Fe2—C41.793 (2)C7—H7B0.9700
Fe2—C51.7989 (19)C1—O11.136 (2)
Fe2—C61.8140 (19)C12—C131.393 (2)
Fe2—S22.2594 (5)C12—C111.395 (2)
Fe2—S12.2717 (5)C20—C191.366 (3)
Fe2—Fe12.5036 (4)C20—C211.389 (3)
Fe1—C21.790 (2)C20—H20A0.9300
Fe1—C11.7954 (19)C11—C101.377 (3)
Fe1—C31.802 (2)C11—H11A0.9300
Fe1—S22.2647 (5)C8—H8A0.9700
Fe1—S12.2663 (5)C8—H8B0.9700
S1—C71.8589 (18)C6—O61.127 (2)
S2—C81.8607 (18)C17—C181.366 (3)
S3—C161.7360 (19)C17—H17A0.9300
S3—C151.7622 (17)C3—O31.133 (2)
C15—N21.298 (2)C19—C181.401 (3)
C15—C121.460 (2)C19—H19A0.9300
N1—C91.404 (2)C10—H10A0.9300
N1—C71.423 (2)C18—H18A0.9300
N1—C81.432 (2)C14—C131.378 (2)
C9—C101.400 (2)C14—H14A0.9300
C9—C141.402 (2)C2—O21.141 (2)
N2—C211.389 (2)O4—C41.133 (2)
C16—C171.393 (3)C13—H13A0.9300
C16—C211.399 (2)O5—C51.130 (2)
C7—H7A0.9700
C4—Fe2—C589.75 (9)C21—C16—S3109.31 (13)
C4—Fe2—C697.84 (9)N1—C7—S1115.61 (12)
C5—Fe2—C696.54 (8)N1—C7—H7A108.4
C4—Fe2—S2158.12 (7)S1—C7—H7A108.4
C5—Fe2—S289.18 (6)N1—C7—H7B108.4
C6—Fe2—S2103.99 (6)S1—C7—H7B108.4
C4—Fe2—S186.46 (6)H7A—C7—H7B107.4
C5—Fe2—S1154.01 (6)O1—C1—Fe1178.08 (19)
C6—Fe2—S1109.45 (6)C13—C12—C11117.11 (16)
S2—Fe2—S184.991 (17)C13—C12—C15119.76 (15)
C4—Fe2—Fe1102.22 (7)C11—C12—C15123.13 (15)
C5—Fe2—Fe199.59 (6)C19—C20—C21119.52 (18)
C6—Fe2—Fe1154.19 (6)C19—C20—H20A120.2
S2—Fe2—Fe156.499 (14)C21—C20—H20A120.2
S1—Fe2—Fe156.412 (13)C10—C11—C12121.78 (16)
C2—Fe1—C199.31 (9)C10—C11—H11A119.1
C2—Fe1—C392.38 (9)C12—C11—H11A119.1
C1—Fe1—C397.81 (9)N1—C8—S2116.38 (12)
C2—Fe1—S2153.38 (7)N1—C8—H8A108.2
C1—Fe1—S2107.17 (7)S2—C8—H8A108.2
C3—Fe1—S286.77 (6)N1—C8—H8B108.2
C2—Fe1—S189.01 (7)S2—C8—H8B108.2
C1—Fe1—S197.45 (6)H8A—C8—H8B107.3
C3—Fe1—S1164.24 (7)O6—C6—Fe2176.05 (17)
S2—Fe1—S184.996 (17)C18—C17—C16118.27 (19)
C2—Fe1—Fe299.09 (7)C18—C17—H17A120.9
C1—Fe1—Fe2147.69 (6)C16—C17—H17A120.9
C3—Fe1—Fe2107.70 (6)O3—C3—Fe1177.9 (2)
S2—Fe1—Fe256.300 (13)C20—C19—C18120.66 (19)
S1—Fe1—Fe256.619 (14)C20—C19—H19A119.7
C7—S1—Fe1108.66 (6)C18—C19—H19A119.7
C7—S1—Fe2112.74 (6)C11—C10—C9120.92 (16)
Fe1—S1—Fe266.969 (15)C11—C10—H10A119.5
C8—S2—Fe2112.15 (6)C9—C10—H10A119.5
C8—S2—Fe1109.86 (7)C17—C18—C19121.02 (19)
Fe2—S2—Fe167.201 (15)C17—C18—H18A119.5
C16—S3—C1589.40 (8)C19—C18—H18A119.5
N2—C15—C12124.02 (15)C13—C14—C9120.90 (16)
N2—C15—S3114.61 (13)C13—C14—H14A119.6
C12—C15—S3121.36 (12)C9—C14—H14A119.6
C9—N1—C7121.62 (15)O2—C2—Fe1178.7 (2)
C9—N1—C8122.20 (15)N2—C21—C20125.75 (16)
C7—N1—C8113.03 (15)N2—C21—C16114.95 (16)
C10—C9—C14117.48 (16)C20—C21—C16119.31 (17)
C10—C9—N1121.61 (16)C14—C13—C12121.78 (16)
C14—C9—N1120.86 (16)C14—C13—H13A119.1
C15—N2—C21111.73 (15)C12—C13—H13A119.1
C17—C16—C21121.22 (18)O4—C4—Fe2179.4 (2)
C17—C16—S3129.47 (15)O5—C5—Fe2176.98 (18)
C4—Fe2—Fe1—C25.43 (9)C3—Fe1—S2—C8139.75 (9)
C5—Fe2—Fe1—C286.40 (9)S1—Fe1—S2—C853.70 (6)
C6—Fe2—Fe1—C2145.66 (15)Fe2—Fe1—S2—C8106.44 (6)
S2—Fe2—Fe1—C2168.97 (6)C2—Fe1—S2—Fe224.94 (15)
S1—Fe2—Fe1—C282.74 (6)C1—Fe1—S2—Fe2149.00 (6)
C4—Fe2—Fe1—C1118.59 (14)C3—Fe1—S2—Fe2113.81 (7)
C5—Fe2—Fe1—C1149.58 (13)S1—Fe1—S2—Fe252.736 (15)
C6—Fe2—Fe1—C121.64 (19)C16—S3—C15—N20.16 (14)
S2—Fe2—Fe1—C167.01 (12)C16—S3—C15—C12179.08 (14)
S1—Fe2—Fe1—C141.28 (12)C7—N1—C9—C10170.21 (16)
C4—Fe2—Fe1—C3100.90 (10)C8—N1—C9—C1011.7 (2)
C5—Fe2—Fe1—C39.07 (9)C7—N1—C9—C1412.7 (2)
C6—Fe2—Fe1—C3118.87 (16)C8—N1—C9—C14171.20 (16)
S2—Fe2—Fe1—C373.50 (7)C12—C15—N2—C21178.63 (15)
S1—Fe2—Fe1—C3178.20 (7)S3—C15—N2—C210.26 (19)
C4—Fe2—Fe1—S2174.40 (7)C15—S3—C16—C17179.4 (2)
C5—Fe2—Fe1—S282.57 (6)C15—S3—C16—C210.52 (14)
C6—Fe2—Fe1—S245.37 (14)C9—N1—C7—S190.84 (17)
S1—Fe2—Fe1—S2108.29 (2)C8—N1—C7—S169.50 (18)
C4—Fe2—Fe1—S177.30 (7)Fe1—S1—C7—N171.07 (14)
C5—Fe2—Fe1—S1169.14 (6)Fe2—S1—C7—N11.10 (16)
C6—Fe2—Fe1—S162.93 (14)N2—C15—C12—C135.1 (2)
S2—Fe2—Fe1—S1108.29 (2)S3—C15—C12—C13173.67 (13)
C2—Fe1—S1—C7150.98 (9)N2—C15—C12—C11174.37 (17)
C1—Fe1—S1—C751.72 (9)S3—C15—C12—C116.8 (2)
C3—Fe1—S1—C7113.8 (3)C13—C12—C11—C100.9 (3)
S2—Fe1—S1—C754.99 (6)C15—C12—C11—C10178.58 (16)
Fe2—Fe1—S1—C7107.45 (6)C9—N1—C8—S293.06 (18)
C2—Fe1—S1—Fe2101.57 (6)C7—N1—C8—S267.16 (18)
C1—Fe1—S1—Fe2159.17 (7)Fe2—S2—C8—N15.80 (16)
C3—Fe1—S1—Fe26.3 (2)Fe1—S2—C8—N166.87 (15)
S2—Fe1—S1—Fe252.460 (15)C21—C16—C17—C180.5 (3)
C4—Fe2—S1—C7151.33 (10)S3—C16—C17—C18179.55 (17)
C5—Fe2—S1—C7126.56 (15)C21—C20—C19—C180.7 (3)
C6—Fe2—S1—C754.26 (9)C12—C11—C10—C90.2 (3)
S2—Fe2—S1—C748.83 (7)C14—C9—C10—C111.4 (3)
Fe1—Fe2—S1—C7101.47 (7)N1—C9—C10—C11175.78 (16)
C4—Fe2—S1—Fe1107.20 (7)C16—C17—C18—C190.2 (3)
C5—Fe2—S1—Fe125.09 (14)C20—C19—C18—C170.4 (3)
C6—Fe2—S1—Fe1155.72 (6)C10—C9—C14—C131.6 (3)
S2—Fe2—S1—Fe152.634 (16)N1—C9—C14—C13175.70 (16)
C4—Fe2—S2—C8117.92 (19)C15—N2—C21—C20179.26 (17)
C5—Fe2—S2—C8154.81 (9)C15—N2—C21—C160.7 (2)
C6—Fe2—S2—C858.28 (9)C19—C20—C21—N2179.07 (18)
S1—Fe2—S2—C850.54 (7)C19—C20—C21—C161.0 (3)
Fe1—Fe2—S2—C8103.10 (7)C17—C16—C21—N2179.15 (18)
C4—Fe2—S2—Fe114.81 (18)S3—C16—C21—N20.79 (19)
C5—Fe2—S2—Fe1102.08 (6)C17—C16—C21—C200.9 (3)
C6—Fe2—S2—Fe1161.38 (6)S3—C16—C21—C20179.16 (14)
S1—Fe2—S2—Fe152.558 (15)C9—C14—C13—C120.4 (3)
C2—Fe1—S2—C8131.37 (16)C11—C12—C13—C140.8 (3)
C1—Fe1—S2—C842.57 (9)C15—C12—C13—C14178.70 (16)

Experimental details

Crystal data
Chemical formula[Fe2(C15H12N2S3)(CO)6]
Mr596.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)13.8606 (12), 7.6900 (7), 21.5052 (19)
β (°) 92.447 (1)
V3)2290.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.45 × 0.22 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.536, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
12350, 4509, 4124
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.04
No. of reflections4509
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Scientific and Technological Development Project of Jilin Province (grant No. 201101103) and the National Natural Science Foundation of China (grant No. 61106050) for financial support.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCammack, R. (1999). Nature (London), 397, 214–215.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEvans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268–275.  Web of Science CrossRef PubMed Google Scholar
First citationLawrence, J. D., Li, H. & Rauchfuss, T. B. (2001). Chem. Commun. pp. 1482–1483.  Web of Science CSD CrossRef Google Scholar
First citationLiu, X. F. & Xiao, X. W. (2011). J. Organomet. Chem. 696, 2767–2771.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853–1858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L. C., Yang, Z. Y., Bian, H. Z., Liu, Y., Wang, H. T., Liu, X. F. & Hu, Q. M. (2005). Organometallics, 24, 6126–6135.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, B. S., Li, T. B. & Yang, M. S. (2011). J. Coord. Chem. 64, 2066–2074.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds