metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3-nitro­phthalato-κ2O1:O2)bis­­[(thio­urea-κS)zinc] dihydrate

aSchool of Environment and Chemical Engineering, and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: guomlin@yahoo.com

(Received 15 January 2012; accepted 3 February 2012; online 10 February 2012)

In the title complex, [Zn2(C8H3NO6)2(CH4N2S)4]·2H2O, the carboxyl­ate groups of the 3-nitro­phthalate ligands coordinate in a bis-monodentate mode to the ZnII cations. This results in the formation of a centrosymmetric dimer containing two ZnII cations with distorted tetra­hedral geometries provided by the O atoms of two different 3-nitro­phthalate dianions and the S atoms of two non-equivalent coordinated thio­urea mol­ecules. The crystal structure exhibits N—H⋯O and O—H⋯O hydrogen bonds which link the dimers into a three-dimensional network.

Related literature

For the structures of similar bis­[(μ2-homophthalato)bis­(thio­urea)zinc] complexes, see: Burrows et al. (2000[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Price, C. E. (2000). J. Chem. Soc. Dalton Trans. pp. 3845-3854.]). For other metal complexes of dicarboxyl­ate dianions and thio­urea, see: Burrows et al. (2004[Burrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. F. (2004). Eur. J. Inorg. Chem. pp. 4686-4695.]); Ke et al. (2002[Ke, Y., Li, J. & Zhang, Y. (2002). Cryst. Res. Technol. 37, 501-508.]); Zhang et al. (2000[Zhang, Y., Li, J., Chen, J., Su, Q., Deng, W., Nishiura, M., Imamoto, T., Wu, X. & Wang, Q. (2000). Inorg. Chem. 39, 2330-2336.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H3NO6)2(CH4N2S)4]·2H2O

  • Mr = 889.49

  • Monoclinic, P 21 /c

  • a = 7.661 (3) Å

  • b = 18.999 (7) Å

  • c = 11.732 (4) Å

  • β = 104.960 (6)°

  • V = 1649.7 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.803, Tmax = 0.885

  • 13709 measured reflections

  • 3905 independent reflections

  • 3018 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.00

  • 3905 reflections

  • 245 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O4i 0.85 2.03 2.870 (2) 169
O7—H7A⋯O1 0.85 1.92 2.769 (2) 175
N4′—H4′B⋯O2ii 0.90 1.91 2.768 (9) 160
N4′—H4′A⋯O1iii 0.90 2.54 3.182 (15) 129
N3′—H3′B⋯O7iv 0.90 2.48 3.110 (8) 128
N3′—H3′A⋯O3iv 0.90 2.09 2.971 (12) 166
N4—H4B⋯O2ii 0.90 1.93 2.807 (8) 165
N4—H4A⋯O1iii 0.90 2.05 2.830 (8) 144
N3—H3B⋯O7iv 0.90 2.59 3.147 (8) 121
N3—H3A⋯O3iv 0.90 2.44 3.159 (10) 137
N2—H2B⋯O5v 0.90 2.23 3.119 (2) 168
N2—H2A⋯O4iv 0.90 2.04 2.874 (2) 153
N1—H1B⋯O7vi 0.90 2.15 2.968 (2) 151
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea as a ligand has an important role in the formation of metal co-ordination complexes with dicarboxylates because it contain hydrogen bond donors that may serve to link the chains through N–H···O hydrogen bonds (Burrows et al. (2000, 2004); Zhang et al. (2000); Ke et al. (2002)). We have used the 3-nitrophthalate dianion and thiourea as ligands and have obtained the title dimeric, four-coordinate 3-nitrophthalate-zinc complex, (I).

The asymmetric unit in the structure of (I) comprises one Zn atom, one complete 3-nitrophthate dianion and two non-equivalent thiourea molecules. The centrosymmetric dimer and is shown in Fig. 1 which displays the full coordination of the Zn atom.

A rotational disorder about the C10—S2 bond in the C10, N3, N4 unit is observed. Each of the two N atoms bonded to C10 was successfully refined using a split-site model (N3/N3' and N4/N4'), with occupancies of 0.53 (3) for N3 and N4, and 0.47 (3) for N3' and N4'.

The Zn atom shows a distorted tetrahedral coordination comprised of two O atoms from the carboxylate groups of two different 3-nitrophthalates and two S atoms of two non-equivalent coordinated thiourea molecules. The packing is stabilized by weak intra- and intermolecular N—H···O and O—H···O hydrogen bond.(see Table 1). A packing diagram is shown in Fig. 2.

Related literature top

For a similar structure of bis[(µ2-homophthalato)bis(thiourea)zinc] complexes, see: Burrows et al. (2000). For other metal complexes of dicarboxylate dianions and thiourea, see: Burrows et al. (2004); Ke et al. (2002); Zhang et al. (2000).

Experimental top

Zinc oxide (0.21 g, 2.5 mmol) was added to a stirred solution of 3-nitrophthalic acid (0.53 g, 2.5 mmol) in boiling water (20.0 ml) over a period of 40 min following which thiourea (0.30 g, 4 mmol) was added to the solution. After filtration, slow evaporation over a period of a week at room temperature provided colorless needle crystals of (I).

Refinement top

The H atoms of the water molecule were found in difference Fourier maps. However, during refinement, they were fixed at O–H distances of 0.85 Å and their Uiso values were set at 1.5 Ueq(O). The H atoms of C—H and N—H groups were treated as riding, with C–H = 0.93 Å, and Uiso (H) = 1.2 Ueq(C) and N–H = 0.90 Å, and Uiso (H) = 1.2 Ueq(N). The C10, N3, N4 unit shows a rotational disorder about the C10—S2 bond. A simple split-atom model for the two nitrogen atoms is used in refinement of this structure. Each of the N atoms bonded to C10 is disordered over at least two sites. Refined occupancy factors for atoms N3/N3' and N4/N4' were 0.53 (3):0.47 (3).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) showing the atom-numbering scheme and coordination environment for Zn atom; displacement ellipsoids were drawn at the 50% probability level [Symmetry codes: (i) -x + 1, -y + 1, -z + 1]. Only the major component of the disorder is shown.
[Figure 2] Fig. 2. The packing diagram of (I) showing the hydrogen-bonding interactions. For clarity, the minor components have been omitted.
Bis(µ-3-nitrophthalato-κ2O1:O2)bis[(thiourea- κS)zinc] dihydrate top
Crystal data top
[Zn2(C8H3NO6)2(CH4N2S)4]·2H2OF(000) = 904
Mr = 889.49Dx = 1.791 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6473 reflections
a = 7.661 (3) Åθ = 1.8–27.9°
b = 18.999 (7) ŵ = 1.79 mm1
c = 11.732 (4) ÅT = 294 K
β = 104.960 (6)°Needle, colorless
V = 1649.7 (11) Å30.20 × 0.10 × 0.08 mm
Z = 2
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3905 independent reflections
Radiation source: rotating anode3018 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.030
Detector resolution: 28.571 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = 109
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2424
Tmin = 0.803, Tmax = 0.885l = 1515
13709 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
3905 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.35 e Å3
19 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Zn2(C8H3NO6)2(CH4N2S)4]·2H2OV = 1649.7 (11) Å3
Mr = 889.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.661 (3) ŵ = 1.79 mm1
b = 18.999 (7) ÅT = 294 K
c = 11.732 (4) Å0.20 × 0.10 × 0.08 mm
β = 104.960 (6)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3905 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3018 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.885Rint = 0.030
13709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02419 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
3905 reflectionsΔρmin = 0.50 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.26375 (3)0.465538 (10)0.296748 (17)0.01321 (7)
S10.38057 (7)0.46840 (2)0.13467 (4)0.02084 (11)
S20.04728 (6)0.45989 (2)0.25699 (4)0.01749 (11)
O10.55143 (16)0.59210 (7)0.30902 (11)0.0204 (3)
O20.31823 (16)0.55754 (6)0.37813 (10)0.0161 (3)
O30.61945 (17)0.59897 (6)0.57337 (11)0.0174 (3)
O40.69068 (19)0.69389 (7)0.68684 (11)0.0275 (3)
O50.06166 (18)0.73729 (7)0.13145 (11)0.0259 (3)
O60.18545 (19)0.63506 (7)0.17013 (12)0.0265 (3)
N10.2512 (2)0.41575 (8)0.07518 (13)0.0231 (4)
H1A0.30540.45330.09820.028*
H1B0.19050.38490.12920.028*
N20.1825 (2)0.35129 (8)0.07208 (13)0.0197 (3)
H2A0.19030.34500.14930.024*
H2B0.12140.32010.01880.024*
N30.0126 (14)0.3943 (6)0.4644 (9)0.0311 (18)0.53 (3)
H3A0.08350.37100.45270.037*0.53 (3)
H3B0.04990.38630.53000.037*0.53 (3)
N40.2513 (9)0.4699 (6)0.4019 (7)0.0212 (14)0.53 (3)
H4A0.31100.49870.34400.025*0.53 (3)
H4B0.29310.46280.46600.025*0.53 (3)
N3'0.0236 (16)0.4119 (6)0.4809 (8)0.0223 (17)0.47 (3)
H3'A0.13690.40410.47530.027*0.47 (3)
H3'B0.00700.40100.54780.027*0.47 (3)
N4'0.2637 (8)0.4451 (9)0.3977 (8)0.0306 (19)0.47 (3)
H4'A0.34950.46460.33890.037*0.47 (3)
H4'B0.28900.43360.46610.037*0.47 (3)
N50.1667 (2)0.69621 (8)0.19691 (13)0.0187 (3)
C10.4272 (2)0.60353 (9)0.35579 (15)0.0139 (4)
C20.3923 (2)0.67846 (9)0.38999 (15)0.0121 (3)
C30.2711 (2)0.72277 (9)0.31257 (15)0.0149 (4)
C40.2396 (2)0.79171 (9)0.33902 (17)0.0191 (4)
H40.15770.81910.28470.023*
C50.3301 (2)0.81947 (9)0.44617 (16)0.0198 (4)
H50.31250.86610.46460.024*
C60.4482 (2)0.77666 (9)0.52632 (16)0.0164 (4)
H60.50740.79480.59970.020*
C70.4805 (2)0.70735 (9)0.49987 (15)0.0134 (4)
C80.6076 (2)0.66467 (9)0.59491 (15)0.0148 (4)
C90.2607 (2)0.40643 (9)0.03736 (16)0.0173 (4)
C100.1008 (2)0.43850 (10)0.38726 (16)0.0185 (4)
O70.83935 (17)0.67482 (7)0.28846 (11)0.0237 (3)
H7A0.74780.65170.29600.036*
H7B0.80980.71520.25840.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01454 (11)0.01171 (11)0.01271 (12)0.00086 (7)0.00228 (8)0.00136 (8)
S10.0248 (2)0.0223 (3)0.0178 (2)0.00789 (18)0.0096 (2)0.00637 (19)
S20.0157 (2)0.0219 (2)0.0154 (2)0.00093 (17)0.00484 (18)0.00302 (18)
O10.0182 (6)0.0195 (7)0.0255 (7)0.0014 (5)0.0091 (6)0.0084 (5)
O20.0224 (7)0.0112 (6)0.0149 (7)0.0049 (5)0.0050 (6)0.0018 (5)
O30.0208 (6)0.0130 (6)0.0164 (7)0.0030 (5)0.0009 (6)0.0008 (5)
O40.0386 (8)0.0150 (7)0.0194 (7)0.0019 (6)0.0098 (6)0.0017 (5)
O50.0258 (7)0.0248 (8)0.0217 (7)0.0036 (6)0.0035 (6)0.0052 (6)
O60.0362 (8)0.0194 (7)0.0201 (7)0.0019 (6)0.0005 (6)0.0040 (6)
N10.0316 (9)0.0216 (9)0.0154 (8)0.0012 (7)0.0050 (7)0.0003 (6)
N20.0248 (8)0.0211 (8)0.0117 (8)0.0058 (6)0.0019 (7)0.0046 (6)
N30.031 (3)0.030 (3)0.035 (3)0.010 (3)0.014 (2)0.015 (3)
N40.024 (2)0.021 (3)0.024 (2)0.0007 (18)0.0156 (18)0.004 (2)
N3'0.038 (4)0.019 (3)0.015 (3)0.003 (3)0.017 (3)0.004 (2)
N4'0.016 (2)0.054 (5)0.021 (2)0.014 (3)0.0036 (18)0.010 (3)
N50.0186 (8)0.0204 (9)0.0166 (8)0.0025 (6)0.0033 (7)0.0021 (6)
C10.0146 (8)0.0140 (9)0.0108 (9)0.0005 (6)0.0011 (7)0.0004 (6)
C20.0119 (8)0.0105 (8)0.0158 (9)0.0018 (6)0.0072 (7)0.0004 (6)
C30.0153 (8)0.0156 (9)0.0135 (9)0.0025 (7)0.0034 (7)0.0003 (7)
C40.0184 (9)0.0168 (9)0.0212 (10)0.0036 (7)0.0033 (8)0.0050 (7)
C50.0232 (9)0.0113 (9)0.0253 (10)0.0020 (7)0.0070 (8)0.0012 (7)
C60.0169 (8)0.0141 (9)0.0186 (9)0.0013 (7)0.0050 (8)0.0021 (7)
C70.0124 (8)0.0126 (9)0.0157 (9)0.0009 (6)0.0044 (7)0.0010 (7)
C80.0153 (8)0.0131 (9)0.0164 (9)0.0021 (6)0.0047 (8)0.0006 (7)
C90.0166 (9)0.0184 (10)0.0164 (9)0.0040 (7)0.0032 (8)0.0018 (7)
C100.0225 (9)0.0170 (9)0.0163 (10)0.0086 (7)0.0054 (8)0.0047 (7)
O70.0227 (7)0.0188 (7)0.0303 (8)0.0006 (5)0.0083 (6)0.0061 (6)
Geometric parameters (Å, º) top
Zn1—O3i1.9801 (13)N4—H4'A0.9136
Zn1—O21.9839 (13)N4—H4'B1.1135
Zn1—S12.3018 (8)N3'—C101.353 (8)
Zn1—S22.3093 (10)N3'—H3A1.0006
S1—C91.7295 (18)N3'—H3B1.0258
S2—C101.730 (2)N3'—H3'A0.9000
O1—C11.234 (2)N3'—H3'B0.8999
O2—C11.282 (2)N4'—C101.291 (6)
O3—C81.281 (2)N4'—H4A1.2029
O3—Zn1i1.9801 (13)N4'—H4B0.9480
O4—C81.234 (2)N4'—H4'A0.9001
O5—N51.2359 (19)N4'—H4'B0.9000
O6—N51.222 (2)N5—C31.475 (2)
N1—C91.315 (2)C1—C21.521 (2)
N1—H1A0.9000C2—C31.400 (2)
N1—H1B0.9000C2—C71.403 (2)
N2—C91.322 (2)C3—C41.382 (3)
N2—H2A0.9000C4—C51.374 (3)
N2—H2B0.9001C4—H40.9300
N3—C101.290 (7)C5—C61.387 (2)
N3—H3A0.9000C5—H50.9300
N3—H3B0.8999C6—C71.390 (2)
N3—H3'A1.1353C6—H60.9300
N3—H3'B0.9767C7—C81.513 (2)
N4—C101.348 (6)O7—H7A0.8510
N4—H4A0.8999O7—H7B0.8508
N4—H4B0.9000
O3i—Zn1—O2100.25 (5)H4B—N4'—H4'A102.4
O3i—Zn1—S1117.10 (4)C10—N4'—H4'B119.8
O2—Zn1—S1107.36 (4)H4A—N4'—H4'B124.7
O3i—Zn1—S2111.37 (4)H4'A—N4'—H4'B120.0
O2—Zn1—S2102.48 (4)O6—N5—O5122.81 (15)
S1—Zn1—S2115.80 (2)O6—N5—C3119.35 (14)
C9—S1—Zn1106.01 (7)O5—N5—C3117.84 (15)
C10—S2—Zn1107.45 (6)O1—C1—O2126.07 (16)
C1—O2—Zn1124.72 (12)O1—C1—C2119.37 (15)
C8—O3—Zn1i119.48 (11)O2—C1—C2114.56 (15)
C9—N1—H1A119.8C3—C2—C7116.24 (15)
C9—N1—H1B120.2C3—C2—C1121.59 (15)
H1A—N1—H1B120.0C7—C2—C1122.16 (14)
C9—N2—H2A119.8C4—C3—C2123.32 (16)
C9—N2—H2B120.2C4—C3—N5116.51 (15)
H2A—N2—H2B120.0C2—C3—N5120.16 (15)
C10—N3—H3A120.9C5—C4—C3119.54 (16)
C10—N3—H3B119.0C5—C4—H4120.2
H3A—N3—H3B120.0C3—C4—H4120.2
C10—N3—H3'A107.6C4—C5—C6118.80 (17)
H3B—N3—H3'A117.8C4—C5—H5120.6
C10—N3—H3'B119.9C6—C5—H5120.6
H3A—N3—H3'B113.0C5—C6—C7121.77 (17)
H3'A—N3—H3'B94.8C5—C6—H6119.1
C10—N4—H4A117.3C7—C6—H6119.1
C10—N4—H4B122.7C6—C7—C2120.30 (16)
H4A—N4—H4B120.0C6—C7—C8117.45 (16)
C10—N4—H4'A113.7C2—C7—C8122.22 (15)
H4B—N4—H4'A105.2O4—C8—O3124.33 (16)
C10—N4—H4'B101.0O4—C8—C7119.46 (16)
H4A—N4—H4'B135.9O3—C8—C7116.20 (15)
H4'A—N4—H4'B100.1N1—C9—N2120.25 (17)
C10—N3'—H3A108.0N1—C9—S1116.95 (14)
C10—N3'—H3B105.1N2—C9—S1122.79 (14)
H3A—N3'—H3B100.6N3—C10—N4'109.9 (6)
C10—N3'—H3'A119.5N3—C10—N4120.6 (6)
H3B—N3'—H3'A130.1N4'—C10—N3'117.1 (6)
C10—N3'—H3'B120.5N4—C10—N3'120.6 (6)
H3A—N3'—H3'B110.8N3—C10—S2124.9 (5)
H3'A—N3'—H3'B120.0N4'—C10—S2121.1 (4)
C10—N4'—H4A101.6N4—C10—S2114.5 (4)
C10—N4'—H4B124.1N3'—C10—S2121.8 (5)
H4A—N4'—H4B92.1H7A—O7—H7B111.7
C10—N4'—H4'A120.0
O3i—Zn1—S1—C991.23 (8)C2—C3—C4—C50.0 (3)
O2—Zn1—S1—C9157.10 (7)N5—C3—C4—C5178.91 (16)
S2—Zn1—S1—C943.36 (7)C3—C4—C5—C61.5 (3)
O3i—Zn1—S2—C1029.72 (8)C4—C5—C6—C71.7 (3)
O2—Zn1—S2—C1076.68 (8)C5—C6—C7—C20.3 (3)
S1—Zn1—S2—C10166.81 (7)C5—C6—C7—C8178.29 (16)
O3i—Zn1—O2—C1110.95 (13)C3—C2—C7—C61.1 (2)
S1—Zn1—O2—C111.84 (13)C1—C2—C7—C6178.24 (16)
S2—Zn1—O2—C1134.26 (12)C3—C2—C7—C8176.76 (15)
Zn1—O2—C1—O122.5 (2)C1—C2—C7—C83.9 (2)
Zn1—O2—C1—C2156.42 (11)Zn1i—O3—C8—O413.0 (2)
O1—C1—C2—C391.4 (2)Zn1i—O3—C8—C7166.24 (11)
O2—C1—C2—C387.6 (2)C6—C7—C8—O46.8 (2)
O1—C1—C2—C787.9 (2)C2—C7—C8—O4175.24 (17)
O2—C1—C2—C793.14 (19)C6—C7—C8—O3172.46 (16)
C7—C2—C3—C41.3 (3)C2—C7—C8—O35.5 (2)
C1—C2—C3—C4178.07 (16)Zn1—S1—C9—N1154.73 (13)
C7—C2—C3—N5177.58 (15)Zn1—S1—C9—N225.98 (16)
C1—C2—C3—N53.1 (2)Zn1—S2—C10—N338.9 (8)
O6—N5—C3—C4178.06 (17)Zn1—S2—C10—N4'166.3 (9)
O5—N5—C3—C41.2 (2)Zn1—S2—C10—N4143.9 (5)
O6—N5—C3—C20.9 (2)Zn1—S2—C10—N3'16.2 (6)
O5—N5—C3—C2179.85 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O4ii0.852.032.870 (2)169
O7—H7A···O10.851.922.769 (2)175
N4—H4B···O2iii0.901.912.768 (9)160
N4—H4A···O1iv0.902.543.182 (15)129
N3—H3B···O7i0.902.483.110 (8)128
N3—H3A···O3i0.902.092.971 (12)166
N4—H4B···O2iii0.901.932.807 (8)165
N4—H4A···O1iv0.902.052.830 (8)144
N3—H3B···O7i0.902.593.147 (8)121
N3—H3A···O3i0.902.443.159 (10)137
N2—H2B···O5v0.902.233.119 (2)168
N2—H2A···O4i0.902.042.874 (2)153
N1—H1B···O7vi0.902.152.968 (2)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C8H3NO6)2(CH4N2S)4]·2H2O
Mr889.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.661 (3), 18.999 (7), 11.732 (4)
β (°) 104.960 (6)
V3)1649.7 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.803, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
13709, 3905, 3018
Rint0.030
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.00
No. of reflections3905
No. of parameters245
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.50

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O4i0.852.032.870 (2)169.1
O7—H7A···O10.851.922.769 (2)174.8
N4'—H4'B···O2ii0.901.912.768 (9)159.9
N4'—H4'A···O1iii0.902.543.182 (15)129.2
N3'—H3'B···O7iv0.902.483.110 (8)127.6
N3'—H3'A···O3iv0.902.092.971 (12)166.4
N4—H4B···O2ii0.901.932.807 (8)165.2
N4—H4A···O1iii0.902.052.830 (8)144.3
N3—H3B···O7iv0.902.593.147 (8)120.7
N3—H3A···O3iv0.902.443.159 (10)136.9
N2—H2B···O5v0.902.233.119 (2)168.0
N2—H2A···O4iv0.902.042.874 (2)153.2
N1—H1B···O7vi0.902.152.968 (2)151.2
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1, y+1, z.
 

Acknowledgements

The authors thank Tianjin Polytechnic University for financial support.

References

First citationBurrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. F. (2004). Eur. J. Inorg. Chem. pp. 4686–4695.  CSD CrossRef Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Price, C. E. (2000). J. Chem. Soc. Dalton Trans. pp. 3845–3854.  Web of Science CSD CrossRef Google Scholar
First citationKe, Y., Li, J. & Zhang, Y. (2002). Cryst. Res. Technol. 37, 501–508.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Li, J., Chen, J., Su, Q., Deng, W., Nishiura, M., Imamoto, T., Wu, X. & Wang, Q. (2000). Inorg. Chem. 39, 2330–2336.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds