organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 3,4,5-trihy­dr­oxy­benzoate

aCollege of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China, and bResource Biology and Biotechnology in Western China, Ministry of Education Key Laboratory of Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: zhengxh@nwu.edu.cn

(Received 24 January 2012; accepted 1 February 2012; online 10 February 2012)

In the title compound, C10H12O5, the dihedral angle between the benzene ring is almost coplanar with the attached C(O)—O—C group [dihedral angle = 0.32 (15)°]. In the crystal, two intermolecular O—H⋯O hydrogen bonds make R44(26) ring mofits.

Related literature

For the properties of isopropyl gallate, see: Calheiros et al. (2008[Calheiros, R., Machado, N. F. L., Fiuza, S. M., Gaspar, A., Garrido, J., Milhazes, N., Borges, F. & Marques, M. P. M. (2008). J. Raman Spectrosc. 39, 95-107.]); Morais et al. (2010[Morais, M. C. C., Luqman, S., Kondratyuk, T. P., Petronio, M. S., Regasini, L. O., Silva, D. H. S., Bolzani, V. S., Soares, C. P. & Pezzuto, J. M. (2010). Nat. Prod. Res. 24, 1758-1765.]). For the synthesis method, see: Christiansen (1926[Christiansen, W. G. (1926). J. Am. Chem. Soc. 48, 1358-1365.]); Li et al. (2001[Li, M., Chen, L. & Wu, K. (2001). Huaxue Shijie, 42, 313-315.]). For the hydrogen-bonding pattern, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O5

  • Mr = 212.20

  • Monoclinic, P 21 /c

  • a = 19.148 (6) Å

  • b = 4.7030 (15) Å

  • c = 11.571 (4) Å

  • β = 90.159 (5)°

  • V = 1042.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.31 × 0.29 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.977

  • 5181 measured reflections

  • 2055 independent reflections

  • 1589 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.132

  • S = 1.05

  • 2055 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 2.00 2.772 (2) 158
O3—H3⋯O4ii 0.82 1.93 2.742 (2) 173
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pharmacological studies indicate the title compound, (I), has antioxidant, anti-apoptotic and anti-platelet activities suggesting it could be a new drug with therapeutic effects on cardiovascular or cerebrovascular diseases. (Calheiros et al., 2008; Morais et al., 2010).

The structure of the title compound, (I), is shown in Fig. 1. In the crystal, two intermolecular O—H···O hydrogen bonds make R44(26) ring mofits (Bernstein et al., 1995) which links the molecules into one-dimensional chains along [001] (Fig. 2).

Related literature top

For the properties of isopropyl gallate, see: Calheiros et al. (2008); Morais et al. (2010). For the synthesis method, see: Christiansen (1926); Li et al. (2001). For the hydrogen-bonding pattern, see: Bernstein et al. (1995).

Experimental top

0.01M p-toluenesulfonic acid in 2-propanol was added to a solution of 0.1M gallic acid in 500 ml of 2-propanol at room temperature. After being stirred and refluxed for 16 h, the solvent was removed under reduced pressure and the residue was extracted three times with ethyl acetate and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO3 solution, saturated aqueous NaCl solution, dried over MgSO4 and was evaporated to dryness. The crude product was purified by chromatography (SiO2; elution with petroleum ether and ethyl acetate, 5:1 v/v). Yield 36%. (Christiansen, 1926; Li et al., 2001).

X-ray quality crystals were obtained from a solution of the title compound in acetone and toluene at room temperature. Spectroscopic analysis: IR (KBr, cm-1): 3499, 2971, 2922, 2957, 1677, 1609, 1671, 1613, 1541, 1449, 1327, 1252, 1165, 1111, 1026, 979; 1H NMR (DMSO, δ, p.p.m.): 9.126(s, 3 H), 6.946(s, 2 H), 5.014—5.055(m, 1 H), 1.274 (s, 3H), 1.264 (s, 3 H).

Refinement top

H atoms bonded to O atoms were located in a difference map and their positions adjusted to give O—H = 0.82 Å. Other H atoms were positioned geometrically with C—H = 0.93–0.96 Å. All were included as riding contributions (including free rotation about the ethanol C—C bond) with Uiso(H) = 1.2Ueq(O or C) or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I) viewed down the a axis with O—H···O hydrogen bonds shown as dashed lines.
Isopropyl 3,4,5-trihydroxybenzoate top
Crystal data top
C10H12O5F(000) = 448
Mr = 212.20Dx = 1.353 Mg m3
Monoclinic, P21/cMelting point: 396(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 19.148 (6) ÅCell parameters from 1697 reflections
b = 4.7030 (15) Åθ = 3.5–25.7°
c = 11.571 (4) ŵ = 0.11 mm1
β = 90.159 (5)°T = 296 K
V = 1042.0 (6) Å3Block, colourless
Z = 40.31 × 0.29 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2055 independent reflections
Radiation source: fine-focus sealed tube1589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2123
Tmin = 0.967, Tmax = 0.977k = 55
5181 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.0222P]
where P = (Fo2 + 2Fc2)/3
2055 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H12O5V = 1042.0 (6) Å3
Mr = 212.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.148 (6) ŵ = 0.11 mm1
b = 4.7030 (15) ÅT = 296 K
c = 11.571 (4) Å0.31 × 0.29 × 0.21 mm
β = 90.159 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2055 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1589 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.033
5181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
2055 reflectionsΔρmin = 0.18 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46197 (5)0.0043 (2)0.24204 (10)0.0447 (3)
H10.48230.15350.22750.067*
O20.45282 (6)0.3102 (3)0.04068 (10)0.0478 (3)
H20.44490.38140.02270.072*
O30.34242 (6)0.2621 (3)0.09898 (9)0.0485 (4)
H30.30940.21870.14070.073*
O40.23999 (6)0.5891 (3)0.25056 (9)0.0462 (4)
O50.18797 (6)0.4562 (3)0.08655 (10)0.0476 (4)
C10.35320 (8)0.2096 (3)0.20035 (12)0.0349 (4)
H1A0.35640.31090.26920.042*
C20.40505 (7)0.0233 (3)0.17032 (13)0.0337 (4)
C30.40050 (7)0.1299 (3)0.06846 (12)0.0341 (4)
C40.34216 (8)0.0952 (3)0.00283 (12)0.0339 (4)
C50.29047 (8)0.0934 (3)0.02583 (12)0.0354 (4)
H50.25220.11810.02270.042*
C60.29573 (7)0.2479 (3)0.12825 (12)0.0329 (4)
C70.24087 (8)0.4472 (3)0.16310 (13)0.0356 (4)
C80.13112 (9)0.6509 (4)0.10811 (16)0.0549 (5)
H80.14880.82120.14730.066*
C90.10338 (12)0.7293 (5)0.0096 (2)0.0821 (8)
H9A0.13940.82230.05300.123*
H9B0.06430.85520.00120.123*
H9C0.08880.56030.04950.123*
C100.07847 (11)0.5047 (6)0.1831 (2)0.0847 (8)
H10A0.06180.33670.14480.127*
H10B0.04000.63080.19740.127*
H10C0.09990.45290.25520.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0373 (6)0.0438 (7)0.0530 (7)0.0058 (5)0.0220 (5)0.0060 (5)
O20.0415 (7)0.0523 (8)0.0495 (7)0.0136 (6)0.0065 (5)0.0082 (6)
O30.0558 (7)0.0553 (8)0.0344 (6)0.0150 (6)0.0117 (5)0.0108 (5)
O40.0429 (7)0.0565 (8)0.0391 (7)0.0089 (5)0.0089 (5)0.0104 (5)
O50.0350 (6)0.0611 (8)0.0467 (7)0.0134 (5)0.0145 (5)0.0123 (5)
C10.0370 (8)0.0361 (9)0.0315 (8)0.0020 (7)0.0077 (6)0.0006 (6)
C20.0293 (7)0.0349 (9)0.0369 (8)0.0032 (6)0.0097 (6)0.0038 (6)
C30.0322 (8)0.0332 (8)0.0370 (8)0.0027 (6)0.0023 (6)0.0043 (6)
C40.0367 (8)0.0376 (9)0.0274 (7)0.0000 (6)0.0028 (6)0.0007 (6)
C50.0333 (8)0.0428 (9)0.0300 (8)0.0003 (6)0.0087 (6)0.0030 (6)
C60.0308 (7)0.0370 (9)0.0310 (8)0.0003 (6)0.0044 (6)0.0033 (6)
C70.0331 (8)0.0429 (9)0.0308 (8)0.0013 (7)0.0069 (6)0.0018 (7)
C80.0375 (9)0.0619 (13)0.0653 (12)0.0159 (9)0.0152 (8)0.0146 (10)
C90.0632 (13)0.0969 (19)0.0860 (16)0.0249 (13)0.0316 (11)0.0047 (13)
C100.0523 (13)0.120 (2)0.0817 (16)0.0100 (13)0.0083 (11)0.0198 (14)
Geometric parameters (Å, º) top
O1—C21.3741 (16)C4—C51.371 (2)
O1—H10.8200C5—C61.394 (2)
O2—C31.3519 (18)C5—H50.9300
O2—H20.8200C6—C71.465 (2)
O3—C41.3616 (19)C8—C101.499 (3)
O3—H30.8200C8—C91.506 (3)
O4—C71.2122 (19)C8—H80.9800
O5—C71.3443 (17)C9—H9A0.9600
O5—C81.445 (2)C9—H9B0.9600
C1—C21.370 (2)C9—H9C0.9600
C1—C61.3909 (19)C10—H10A0.9600
C1—H1A0.9300C10—H10B0.9600
C2—C31.384 (2)C10—H10C0.9600
C3—C41.397 (2)
C2—O1—H1109.5O4—C7—O5121.38 (14)
C3—O2—H2109.5O4—C7—C6126.39 (13)
C4—O3—H3109.5O5—C7—C6112.22 (13)
C7—O5—C8118.22 (13)O5—C8—C10108.52 (18)
C2—C1—C6120.23 (14)O5—C8—C9105.25 (16)
C2—C1—H1A119.9C10—C8—C9113.57 (18)
C6—C1—H1A119.9O5—C8—H8109.8
C1—C2—O1118.78 (13)C10—C8—H8109.8
C1—C2—C3120.34 (13)C9—C8—H8109.8
O1—C2—C3120.86 (14)C8—C9—H9A109.5
O2—C3—C2118.96 (12)C8—C9—H9B109.5
O2—C3—C4121.67 (13)H9A—C9—H9B109.5
C2—C3—C4119.37 (14)C8—C9—H9C109.5
O3—C4—C5125.10 (13)H9A—C9—H9C109.5
O3—C4—C3114.24 (14)H9B—C9—H9C109.5
C5—C4—C3120.66 (13)C8—C10—H10A109.5
C4—C5—C6119.51 (13)C8—C10—H10B109.5
C4—C5—H5120.2H10A—C10—H10B109.5
C6—C5—H5120.2C8—C10—H10C109.5
C1—C6—C5119.86 (14)H10A—C10—H10C109.5
C1—C6—C7118.98 (13)H10B—C10—H10C109.5
C5—C6—C7121.15 (13)
C6—C1—C2—O1178.39 (14)C2—C1—C6—C50.8 (2)
C6—C1—C2—C30.5 (2)C2—C1—C6—C7179.57 (13)
C1—C2—C3—O2179.39 (13)C4—C5—C6—C10.0 (2)
O1—C2—C3—O20.6 (2)C4—C5—C6—C7178.73 (13)
C1—C2—C3—C40.7 (2)C8—O5—C7—O43.0 (2)
O1—C2—C3—C4179.53 (13)C8—O5—C7—C6178.08 (14)
O2—C3—C4—O31.6 (2)C1—C6—C7—O40.5 (2)
C2—C3—C4—O3178.31 (14)C5—C6—C7—O4179.19 (16)
O2—C3—C4—C5178.57 (14)C1—C6—C7—O5178.35 (13)
C2—C3—C4—C51.5 (2)C5—C6—C7—O50.4 (2)
O3—C4—C5—C6178.66 (14)C7—O5—C8—C1087.29 (19)
C3—C4—C5—C61.2 (2)C7—O5—C8—C9150.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.822.002.772 (2)158
O3—H3···O4ii0.821.932.742 (2)173
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12O5
Mr212.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.148 (6), 4.7030 (15), 11.571 (4)
β (°) 90.159 (5)
V3)1042.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.29 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
5181, 2055, 1589
Rint0.033
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.132, 1.05
No. of reflections2055
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.8201.9962.772 (2)158
O3—H3···O4ii0.8201.9272.742 (2)173
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful for financial support from the Higher Specialized Research Fund for the Doctoral Program (grant Nos. 20106101120024 and 20106101110001) and the Important Science and Technology Specific Innovative Projects Program of Shannxi Province (grant No. 2010ZDKG-46).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalheiros, R., Machado, N. F. L., Fiuza, S. M., Gaspar, A., Garrido, J., Milhazes, N., Borges, F. & Marques, M. P. M. (2008). J. Raman Spectrosc. 39, 95–107.  Web of Science CrossRef CAS Google Scholar
First citationChristiansen, W. G. (1926). J. Am. Chem. Soc. 48, 1358–1365.  CrossRef CAS Google Scholar
First citationLi, M., Chen, L. & Wu, K. (2001). Huaxue Shijie, 42, 313–315.  Google Scholar
First citationMorais, M. C. C., Luqman, S., Kondratyuk, T. P., Petronio, M. S., Regasini, L. O., Silva, D. H. S., Bolzani, V. S., Soares, C. P. & Pezzuto, J. M. (2010). Nat. Prod. Res. 24, 1758–1765.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds