metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m265-m266

(Picolinato-κ2N,O)[tris­(2-iso­propyl-1H-imidazol-4-yl-κN3)phosphane]cobalt(II) nitrate

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, bInstitut für Anorganische Chemie und Struktur­chemie, Lehrstuhl I: Bioanorganische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, and cInstitut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: peter.kunz@uni-duesseldorf.de

(Received 25 January 2012; accepted 2 February 2012; online 10 February 2012)

Single crystals of the title compound, [Co(C6H4NO2)(C18H27N6P)]NO3, were obtained from the reaction of nitrato[tris­(2-isopropyl­imidazol-4-yl)phosphane]cobalt(II) nitrate with picolinic acid in the presence of potassium tert-butoxide as base. The coordination polyhedron around the central CoII ion is about halfway between square-pyramidal and trigonal-bipyramidal geometry. In the structure, the nitrate counter-anion is connected by N—H⋯O hydrogen bonding to the complex cation. Additionally, the complex cations form one-dimensional chains along [010] by hydrogen bonding of the NH group of an imidazole ring to the picolinate group of a neighbouring complex cation.

Related literature

For the synthesis of the title compound, see: Kunz et al. (2011[Kunz, P. C., Börgardts, M. & Mohr, F. (2011). Inorg. Chim. Acta, 380, 392-398.]). For structures of related complexes, see: Tekeste & Vahrenkamp (2006[Tekeste, T. & Vahrenkamp, H. (2006). Eur. J. Inorg. Chem. pp. 5158-5164.]); Kunz et al. (2011[Kunz, P. C., Börgardts, M. & Mohr, F. (2011). Inorg. Chim. Acta, 380, 392-398.]). For background to this class of compound, see: Kunz et al. (2003[Kunz, P. C., Reiss, G. J., Frank, W. & Kläui, W. (2003). Eur. J. Inorg. Chem. pp. 3945-3951.], 2007[Kunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2007). Z. Anorg. Allg. Chem. 633, 955-960.], 2008[Kunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2008). Z. Anorg. Allg. Chem. 634, 724-729.], 2009[Kunz, P. C., Huber, W., Rojas, A., Schatzschneider, U. & Spingler, B. (2009). Eur. J. Inorg. Chem. pp. 5358-5366.], 2011[Kunz, P. C., Börgardts, M. & Mohr, F. (2011). Inorg. Chim. Acta, 380, 392-398.]); Kunz & Kläui (2007[Kunz, P. C. & Kläui, W. (2007). Collect. Czech. Chem. Commun. 72, 492-502.]). For geometric parameters of hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H4NO2)(C18H27N6P)]NO3

  • Mr = 601.47

  • Monoclinic, P 21 /c

  • a = 15.4012 (5) Å

  • b = 10.7035 (3) Å

  • c = 17.8548 (5) Å

  • β = 90.491 (3)°

  • V = 2943.21 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 292 K

  • 0.60 × 0.58 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.67, Tmax = 0.82

  • 12068 measured reflections

  • 5760 independent reflections

  • 4526 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.086

  • S = 1.01

  • 5760 reflections

  • 370 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.9885 (17)
Co1—N5 2.060 (2)
Co1—N3 2.070 (2)
Co1—N1 2.094 (2)
Co1—N7 2.154 (2)
O1—Co1—N5 118.91 (8)
O1—Co1—N3 139.21 (8)
N5—Co1—N3 100.43 (8)
O1—Co1—N1 101.22 (7)
N5—Co1—N1 90.61 (8)
N3—Co1—N1 87.87 (8)
O1—Co1—N7 78.07 (7)
N5—Co1—N7 92.77 (8)
N3—Co1—N7 90.45 (8)
N1—Co1—N7 176.45 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H02⋯O2i 0.78 (3) 2.01 (3) 2.786 (3) 174 (3)
N4—H04⋯O3 0.82 (3) 1.98 (3) 2.791 (3) 169 (3)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Zinc complexes of tripodal N,N,N ligands are interesting model compounds for the active sites found in many zinc enzymes, e.g. carbonic anhydrase. We developed the tris[imidazolyl-4(5)-yl] phosphane ligands as water-stable and, depending on their substituents, water soluble N,N,N ligands (Kunz et al. 2003). Their zinc complexes display some esterase-like activity (Kunz& Kläui, 2007). Recently we investigated the coordination behavior of zinc(II) and cobalt(II) complexes of these ligands in the presence of different biologically relevant N,O ligands related to the Vahrenkamp-type complexes (Tekeste & Vahrenkamp, 2006). Cobalt(II) resembles in many points the structural coordination chemistry of zinc(II) and often is used to probe the coordination environment in corresponding complexes. UV/Vis data of the title compound indicated the presence of five-and six-coordinate Co(II)-species in solution (Kunz et al. 2011).

The molecular structure of the title compound is shown in Figure 1. The coordination polyhedron around the central cobalt(II) atom is about half way from square-pyramidal to trigonal-bipyramidal geometry. The deviation from the tbp geometry is due to the bite of the ligand which allows only for N—M—N angles of up to about 100°. The above mentioned similarity in the structural coordination behavior is shown here, too, as the title compound is isotopic to the corresponding zinc compound (Kunz et al., 2011). In the crystal structure of the title compound the molecules are connected via N–H···O hydrogen bonding between the N–H atoms of the imidazolyl substituents in the complex cation and the O-atom of the picolinato ligand of a neighboring complex cation (N2H02···O2', d = 2.786 (3) Å) as well as the O-atoms of nitrate ions (N4H04···O3, d = 2.791 (3) Å, Figure 2). According to these geometric parameters these hydrogen bonds may be classified as medium strong (Steiner, 2002).

Related literature top

For the synthesis of the title compound, see: Kunz et al. (2011). For structures of related complexes, see: Tekeste & Vahrenkamp (2006); Kunz et al. (2011). For background to this class of compound, see: Kunz et al. (2003, 2008, 2009, 2011); Kunz & Kläui (2007). For geometric parameters of hydrogen bonding, see: Steiner (2002).

Experimental top

The synthesis of the title compound was performed as previously reported (Kunz et al. 2011). The title compound was crystallized from methanol solution by slow vapor diffusion of diethyl ether to yield purple crystals.

Refinement top

All CH H atoms were positioned with idealized geometry and refined isotropic with Uiso(H) = 1.2Ueq(C) for C-H and Uiso(H) = 1.5Ueq(C) for CH3 groups using a riding model. Atomic coordinates of H atoms of NH groups were refined unrestricted with individual isotropic displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit, showing 40% probability displacement ellipsoids. Hydrogen bonding is shown as dashed lines. Hydrogen atoms are shown as spheres of arbitrary radius. Non-acidic hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the hydrogen bonded chain (hydrogen bonding is shown as dashed lines, for clarity the isopropy groups are drawn as wires without hydrogen atoms; ' = 1 - x, 0.5 + y, 0.5 - z).
(Picolinato-κ2N,O)[Tris(2-isopropyl-1H-imidazol- 4-yl-κN3)phosphane]cobalt(II) nitrate top
Crystal data top
[Co(C6H4NO2)(C18H27N6P)]NO3F(000) = 1252
Mr = 601.47Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.4012 (5) ÅCell parameters from 6583 reflections
b = 10.7035 (3) Åθ = 3.3–27.2°
c = 17.8548 (5) ŵ = 0.68 mm1
β = 90.491 (3)°T = 292 K
V = 2943.21 (15) Å3Block, purple
Z = 40.60 × 0.58 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5760 independent reflections
Radiation source: fine-focus sealed tube4526 reflections with I > 2σ(I)
Equatorial mounted graphite monochromatorRint = 0.022
Detector resolution: 16.2711 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1718
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1113
Tmin = 0.67, Tmax = 0.82l = 2210
12068 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.017P)2 + 2.8P]
where P = (Fo2 + 2Fc2)/3
5760 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Co(C6H4NO2)(C18H27N6P)]NO3V = 2943.21 (15) Å3
Mr = 601.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4012 (5) ŵ = 0.68 mm1
b = 10.7035 (3) ÅT = 292 K
c = 17.8548 (5) Å0.60 × 0.58 × 0.30 mm
β = 90.491 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5760 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2009)
4526 reflections with I > 2σ(I)
Tmin = 0.67, Tmax = 0.82Rint = 0.022
12068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.43 e Å3
5760 reflectionsΔρmin = 0.30 e Å3
370 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44. Numerical absorption correction based on gaussian integration over a multifaceted crystal model

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.29459 (2)0.83916 (3)0.173518 (18)0.04257 (10)
P10.20777 (5)0.62495 (7)0.28876 (4)0.05045 (18)
C10.32126 (16)0.6636 (2)0.30250 (13)0.0456 (6)
C20.37830 (18)0.6149 (3)0.35249 (14)0.0522 (6)
H20.36720.55190.38700.063*
C30.44493 (17)0.7603 (2)0.28778 (14)0.0475 (6)
C40.21002 (17)0.5951 (2)0.18877 (14)0.0486 (6)
C50.1718 (2)0.5000 (3)0.15108 (16)0.0614 (8)
H50.13360.44130.17060.074*
C60.25358 (18)0.6041 (2)0.07286 (14)0.0499 (6)
C70.16572 (16)0.7822 (3)0.29169 (14)0.0473 (6)
C80.10861 (17)0.8315 (3)0.34061 (15)0.0586 (7)
H80.08030.78910.37870.070*
C90.15266 (17)0.9811 (3)0.26536 (14)0.0523 (7)
C100.51532 (18)0.8439 (3)0.26060 (17)0.0617 (8)
H100.48840.90600.22750.074*
C110.5792 (3)0.7712 (5)0.2147 (3)0.154 (2)
H11A0.62420.82610.19780.230*
H11B0.54990.73520.17220.230*
H11C0.60420.70590.24480.230*
C120.5591 (3)0.9134 (5)0.3234 (2)0.144 (2)
H12A0.51650.96000.35080.215*
H12B0.60140.96980.30330.215*
H12C0.58730.85510.35640.215*
C130.3025 (2)0.6388 (3)0.00336 (15)0.0616 (8)
H130.27190.70950.01970.074*
C140.3928 (2)0.6827 (4)0.02242 (18)0.0877 (11)
H14A0.38970.75240.05610.131*
H14B0.42180.70780.02250.131*
H14C0.42460.61600.04580.131*
C150.3043 (3)0.5351 (4)0.05373 (19)0.1029 (14)
H15A0.24600.51400.06820.154*
H15B0.33230.46310.03240.154*
H15C0.33590.56220.09690.154*
C160.1601 (2)1.1072 (3)0.23097 (16)0.0653 (8)
H160.20691.10300.19420.078*
C170.1845 (3)1.2070 (4)0.2869 (2)0.1028 (13)
H17A0.20011.28200.26080.154*
H17B0.23291.17900.31670.154*
H17C0.13601.22350.31880.154*
C180.0780 (3)1.1407 (4)0.1889 (3)0.153 (2)
H18A0.08971.20790.15480.230*
H18B0.03441.16640.22380.230*
H18C0.05771.06930.16140.230*
C190.35434 (18)1.0474 (3)0.08976 (14)0.0504 (6)
C200.26933 (16)1.0186 (2)0.05122 (13)0.0442 (6)
C210.23571 (19)1.0905 (3)0.00650 (15)0.0582 (7)
H210.26531.16030.02390.070*
C220.1571 (2)1.0558 (3)0.03758 (16)0.0654 (8)
H220.13271.10250.07630.078*
C230.11511 (19)0.9523 (3)0.01114 (16)0.0616 (8)
H230.06260.92700.03230.074*
C240.15199 (17)0.8861 (3)0.04739 (16)0.0562 (7)
H240.12300.81660.06590.067*
N10.36426 (13)0.75589 (19)0.26150 (11)0.0447 (5)
N20.45508 (17)0.6754 (2)0.34284 (13)0.0542 (6)
H020.498 (2)0.665 (3)0.3653 (17)0.072 (11)*
N30.26053 (13)0.6614 (2)0.13840 (11)0.0471 (5)
N40.19990 (18)0.5066 (2)0.07917 (14)0.0629 (7)
H040.180 (2)0.459 (3)0.0471 (18)0.080 (11)*
N50.19332 (13)0.8781 (2)0.24447 (11)0.0466 (5)
N60.10047 (17)0.9546 (3)0.32355 (14)0.0627 (7)
H060.074 (2)1.005 (3)0.3463 (17)0.069 (10)*
N70.22815 (13)0.91894 (19)0.07825 (11)0.0462 (5)
O10.37455 (11)0.97651 (17)0.14465 (10)0.0547 (5)
O20.39853 (14)1.1354 (2)0.06762 (11)0.0740 (6)
N80.0460 (2)0.3434 (3)0.03062 (17)0.0736 (7)
O30.12255 (18)0.3765 (3)0.03933 (13)0.0974 (8)
O40.0256 (2)0.3016 (3)0.02838 (17)0.1439 (13)
O50.00042 (18)0.3488 (4)0.08683 (19)0.1316 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.04483 (19)0.04102 (19)0.04190 (19)0.00224 (15)0.00195 (13)0.00386 (15)
P10.0584 (4)0.0487 (4)0.0443 (4)0.0100 (3)0.0062 (3)0.0048 (3)
C10.0544 (15)0.0421 (14)0.0404 (13)0.0009 (12)0.0025 (11)0.0017 (11)
C20.0661 (18)0.0455 (15)0.0449 (14)0.0025 (13)0.0016 (12)0.0060 (12)
C30.0497 (15)0.0473 (15)0.0455 (14)0.0059 (12)0.0001 (11)0.0019 (12)
C40.0579 (16)0.0415 (14)0.0466 (14)0.0043 (12)0.0002 (12)0.0012 (12)
C50.077 (2)0.0508 (17)0.0564 (17)0.0144 (15)0.0013 (14)0.0044 (14)
C60.0601 (17)0.0444 (15)0.0453 (14)0.0030 (13)0.0022 (12)0.0005 (12)
C70.0413 (14)0.0550 (16)0.0456 (14)0.0064 (12)0.0029 (11)0.0024 (12)
C80.0525 (16)0.071 (2)0.0529 (16)0.0092 (15)0.0122 (12)0.0059 (15)
C90.0507 (16)0.0590 (18)0.0472 (15)0.0075 (13)0.0010 (12)0.0064 (13)
C100.0478 (16)0.0689 (19)0.0683 (18)0.0029 (15)0.0041 (13)0.0156 (16)
C110.116 (4)0.130 (4)0.217 (6)0.008 (3)0.101 (4)0.014 (4)
C120.167 (5)0.162 (5)0.102 (3)0.110 (4)0.026 (3)0.020 (3)
C130.076 (2)0.067 (2)0.0425 (15)0.0097 (16)0.0039 (13)0.0017 (14)
C140.095 (3)0.106 (3)0.063 (2)0.028 (2)0.0185 (18)0.003 (2)
C150.107 (3)0.132 (4)0.070 (2)0.022 (3)0.023 (2)0.040 (2)
C160.081 (2)0.0563 (18)0.0585 (18)0.0226 (16)0.0032 (15)0.0005 (15)
C170.145 (4)0.075 (3)0.088 (3)0.029 (3)0.002 (2)0.002 (2)
C180.163 (5)0.091 (3)0.204 (6)0.019 (3)0.103 (4)0.029 (3)
C190.0590 (16)0.0451 (15)0.0471 (15)0.0083 (13)0.0044 (12)0.0039 (12)
C200.0513 (15)0.0415 (14)0.0399 (13)0.0001 (12)0.0026 (11)0.0012 (11)
C210.075 (2)0.0512 (17)0.0484 (15)0.0011 (15)0.0081 (14)0.0057 (13)
C220.080 (2)0.064 (2)0.0523 (17)0.0168 (17)0.0187 (15)0.0038 (15)
C230.0559 (17)0.0644 (19)0.0642 (18)0.0105 (15)0.0167 (14)0.0114 (16)
C240.0455 (15)0.0574 (17)0.0656 (18)0.0025 (13)0.0040 (13)0.0028 (14)
N10.0453 (12)0.0437 (12)0.0452 (12)0.0005 (10)0.0020 (9)0.0035 (9)
N20.0565 (15)0.0550 (15)0.0509 (14)0.0094 (12)0.0065 (11)0.0029 (11)
N30.0567 (13)0.0439 (12)0.0407 (11)0.0043 (10)0.0020 (9)0.0015 (10)
N40.0872 (19)0.0533 (15)0.0480 (14)0.0117 (14)0.0090 (13)0.0062 (12)
N50.0450 (12)0.0492 (13)0.0454 (12)0.0043 (10)0.0003 (9)0.0000 (10)
N60.0578 (15)0.0702 (19)0.0603 (16)0.0101 (14)0.0102 (12)0.0150 (14)
N70.0450 (12)0.0448 (12)0.0486 (12)0.0025 (10)0.0024 (9)0.0005 (10)
O10.0531 (11)0.0569 (12)0.0539 (11)0.0116 (9)0.0122 (8)0.0139 (9)
O20.0810 (14)0.0689 (14)0.0719 (13)0.0335 (12)0.0195 (11)0.0266 (11)
N80.083 (2)0.0668 (18)0.0713 (19)0.0104 (16)0.0193 (16)0.0039 (15)
O30.112 (2)0.114 (2)0.0667 (15)0.0531 (17)0.0027 (13)0.0108 (14)
O40.174 (3)0.155 (3)0.104 (2)0.012 (2)0.077 (2)0.032 (2)
O50.0838 (19)0.191 (4)0.120 (2)0.025 (2)0.0192 (18)0.016 (2)
Geometric parameters (Å, º) top
Co1—O11.9885 (17)C13—C141.505 (4)
Co1—N52.060 (2)C13—C151.508 (4)
Co1—N32.070 (2)C13—H130.9800
Co1—N12.094 (2)C14—H14A0.9600
Co1—N72.154 (2)C14—H14B0.9600
P1—C71.805 (3)C14—H14C0.9600
P1—C11.811 (3)C15—H15A0.9600
P1—C41.814 (3)C15—H15B0.9600
C1—C21.352 (3)C15—H15C0.9600
C1—N11.400 (3)C16—C171.508 (4)
C2—N21.360 (4)C16—C181.509 (5)
C2—H20.9300C16—H160.9800
C3—N11.325 (3)C17—H17A0.9600
C3—N21.347 (3)C17—H17B0.9600
C3—C101.490 (4)C17—H17C0.9600
C4—C51.353 (4)C18—H18A0.9600
C4—N31.389 (3)C18—H18B0.9600
C5—N41.361 (4)C18—H18C0.9600
C5—H50.9300C19—O21.229 (3)
C6—N31.324 (3)C19—O11.276 (3)
C6—N41.337 (4)C19—C201.506 (3)
C6—C131.504 (4)C20—N71.334 (3)
C7—C81.352 (3)C20—C211.383 (3)
C7—N51.397 (3)C21—C221.378 (4)
C8—N61.358 (4)C21—H210.9300
C8—H80.9300C22—C231.368 (4)
C9—N51.323 (3)C22—H220.9300
C9—N61.349 (3)C23—C241.381 (4)
C9—C161.487 (4)C23—H230.9300
C10—C121.501 (5)C24—N71.338 (3)
C10—C111.502 (5)C24—H240.9300
C10—H100.9800N2—H020.78 (3)
C11—H11A0.9600N4—H040.82 (3)
C11—H11B0.9600N6—H060.79 (3)
C11—H11C0.9600N8—O41.189 (3)
C12—H12A0.9600N8—O51.229 (4)
C12—H12B0.9600N8—O31.242 (3)
C12—H12C0.9600
O1—Co1—N5118.91 (8)H14B—C14—H14C109.5
O1—Co1—N3139.21 (8)C13—C15—H15A109.5
N5—Co1—N3100.43 (8)C13—C15—H15B109.5
O1—Co1—N1101.22 (7)H15A—C15—H15B109.5
N5—Co1—N190.61 (8)C13—C15—H15C109.5
N3—Co1—N187.87 (8)H15A—C15—H15C109.5
O1—Co1—N778.07 (7)H15B—C15—H15C109.5
N5—Co1—N792.77 (8)C9—C16—C17112.9 (3)
N3—Co1—N790.45 (8)C9—C16—C18110.8 (3)
N1—Co1—N7176.45 (8)C17—C16—C18111.3 (3)
C7—P1—C197.42 (12)C9—C16—H16107.2
C7—P1—C4101.68 (12)C17—C16—H16107.2
C1—P1—C498.45 (12)C18—C16—H16107.2
C2—C1—N1108.1 (2)C16—C17—H17A109.5
C2—C1—P1128.5 (2)C16—C17—H17B109.5
N1—C1—P1123.43 (18)H17A—C17—H17B109.5
C1—C2—N2107.1 (2)C16—C17—H17C109.5
C1—C2—H2126.5H17A—C17—H17C109.5
N2—C2—H2126.5H17B—C17—H17C109.5
N1—C3—N2109.7 (2)C16—C18—H18A109.5
N1—C3—C10126.1 (2)C16—C18—H18B109.5
N2—C3—C10124.2 (2)H18A—C18—H18B109.5
C5—C4—N3107.8 (2)C16—C18—H18C109.5
C5—C4—P1127.6 (2)H18A—C18—H18C109.5
N3—C4—P1124.27 (19)H18B—C18—H18C109.5
C4—C5—N4106.8 (3)O2—C19—O1124.8 (2)
C4—C5—H5126.6O2—C19—C20119.4 (2)
N4—C5—H5126.6O1—C19—C20115.8 (2)
N3—C6—N4109.4 (2)N7—C20—C21122.6 (2)
N3—C6—C13125.3 (2)N7—C20—C19114.4 (2)
N4—C6—C13125.2 (2)C21—C20—C19123.0 (2)
C8—C7—N5107.8 (2)C22—C21—C20118.2 (3)
C8—C7—P1128.2 (2)C22—C21—H21120.9
N5—C7—P1123.83 (18)C20—C21—H21120.9
C7—C8—N6107.0 (3)C23—C22—C21119.7 (3)
C7—C8—H8126.5C23—C22—H22120.2
N6—C8—H8126.5C21—C22—H22120.2
N5—C9—N6109.2 (3)C22—C23—C24118.9 (3)
N5—C9—C16127.0 (2)C22—C23—H23120.5
N6—C9—C16123.8 (3)C24—C23—H23120.5
C3—C10—C12112.2 (3)N7—C24—C23122.0 (3)
C3—C10—C11110.4 (3)N7—C24—H24119.0
C12—C10—C11111.9 (4)C23—C24—H24119.0
C3—C10—H10107.4C3—N1—C1106.6 (2)
C12—C10—H10107.4C3—N1—Co1136.34 (17)
C11—C10—H10107.4C1—N1—Co1116.81 (16)
C10—C11—H11A109.5C3—N2—C2108.5 (2)
C10—C11—H11B109.5C3—N2—H02125 (2)
H11A—C11—H11B109.5C2—N2—H02127 (2)
C10—C11—H11C109.5C6—N3—C4107.1 (2)
H11A—C11—H11C109.5C6—N3—Co1135.34 (18)
H11B—C11—H11C109.5C4—N3—Co1114.51 (16)
C10—C12—H12A109.5C6—N4—C5108.8 (2)
C10—C12—H12B109.5C6—N4—H04131 (2)
H12A—C12—H12B109.5C5—N4—H04120 (2)
C10—C12—H12C109.5C9—N5—C7107.1 (2)
H12A—C12—H12C109.5C9—N5—Co1134.80 (18)
H12B—C12—H12C109.5C7—N5—Co1117.28 (16)
C6—C13—C14111.1 (2)C9—N6—C8108.8 (3)
C6—C13—C15112.9 (3)C9—N6—H06124 (2)
C14—C13—C15111.1 (3)C8—N6—H06127 (2)
C6—C13—H13107.2C20—N7—C24118.6 (2)
C14—C13—H13107.2C20—N7—Co1112.25 (16)
C15—C13—H13107.2C24—N7—Co1129.02 (18)
C13—C14—H14A109.5C19—O1—Co1119.43 (16)
C13—C14—H14B109.5O4—N8—O5125.8 (4)
H14A—C14—H14B109.5O4—N8—O3118.5 (4)
C13—C14—H14C109.5O5—N8—O3115.5 (3)
H14A—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H02···O2i0.78 (3)2.01 (3)2.786 (3)174 (3)
N4—H04···O30.82 (3)1.98 (3)2.791 (3)169 (3)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H4NO2)(C18H27N6P)]NO3
Mr601.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)15.4012 (5), 10.7035 (3), 17.8548 (5)
β (°) 90.491 (3)
V3)2943.21 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.60 × 0.58 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionGaussian
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.67, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
12068, 5760, 4526
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.086, 1.01
No. of reflections5760
No. of parameters370
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Co1—O11.9885 (17)Co1—N12.094 (2)
Co1—N52.060 (2)Co1—N72.154 (2)
Co1—N32.070 (2)
O1—Co1—N5118.91 (8)N3—Co1—N187.87 (8)
O1—Co1—N3139.21 (8)O1—Co1—N778.07 (7)
N5—Co1—N3100.43 (8)N5—Co1—N792.77 (8)
O1—Co1—N1101.22 (7)N3—Co1—N790.45 (8)
N5—Co1—N190.61 (8)N1—Co1—N7176.45 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H02···O2i0.78 (3)2.01 (3)2.786 (3)174 (3)
N4—H04···O30.82 (3)1.98 (3)2.791 (3)169 (3)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKunz, P. C., Börgardts, M. & Mohr, F. (2011). Inorg. Chim. Acta, 380, 392–398.  Web of Science CrossRef Google Scholar
First citationKunz, P. C., Huber, W., Rojas, A., Schatzschneider, U. & Spingler, B. (2009). Eur. J. Inorg. Chem. pp. 5358–5366.  Web of Science CSD CrossRef Google Scholar
First citationKunz, P. C. & Kläui, W. (2007). Collect. Czech. Chem. Commun. 72, 492–502.  Web of Science CrossRef CAS Google Scholar
First citationKunz, P. C., Reiss, G. J., Frank, W. & Kläui, W. (2003). Eur. J. Inorg. Chem. pp. 3945–3951.  Web of Science CSD CrossRef Google Scholar
First citationKunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2007). Z. Anorg. Allg. Chem. 633, 955–960.  Web of Science CSD CrossRef CAS Google Scholar
First citationKunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2008). Z. Anorg. Allg. Chem. 634, 724–729.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationTekeste, T. & Vahrenkamp, H. (2006). Eur. J. Inorg. Chem. pp. 5158–5164.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m265-m266
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds