organic compounds
N-(3-Chlorobenzoyl)-2-nitrobenzenesulfonamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 102, India
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C13H9ClN2O5S, the N—C bond in the C—SO2—NH—C segment has a gauche torsion with respect to the S=O bonds. The conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring is syn, and that between the C=O and the meta-Cl atom in the benzoyl ring is anti. The molecule is twisted at the S—N bond, with a torsion angle of 65.41 (38)°. The dihedral angle between the sulfonyl benzene ring and the –SO2—NH—C—O segment is 75.0 (1)°, and that between the sulfonyl and the benzoyl benzene ring is 89.1 (1)°. The features inversion-related dimers linked by pairs of N—H⋯O(S) hydrogen bonds.
Related literature
For our studies of the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (1999, 2006); N-(aryl)-methanesulfonamides, see: Gowda et al. (2007); N-(substitutedbenzoyl)-arylsulfonamides, see: Suchetan et al. (2012); N-chloroarylamides, see: Jyothi & Gowda (2004) and N-bromoarylsulfonamides, see: Usha & Gowda (2006)..
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681200640X/nc2268sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200640X/nc2268Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681200640X/nc2268Isup3.cml
The title compound was prepared by refluxing a mixture of 3-chlorobenzoic acid (0.02 mole), 2-nitrobenzenesulfonamide (0.02 mole) and excess phosphorous oxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(3-chlorobenzoyl)-2-nitrobenzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.
Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of the solvent from its toluene solution at room temperature.
The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C13H9ClN2O5S | F(000) = 1392 |
Mr = 340.73 | Dx = 1.595 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1818 reflections |
a = 12.2046 (8) Å | θ = 2.6–27.9° |
b = 12.6121 (9) Å | µ = 0.44 mm−1 |
c = 18.433 (1) Å | T = 293 K |
V = 2837.3 (3) Å3 | Rod, colourless |
Z = 8 | 0.28 × 0.28 × 0.08 mm |
Oxford Xcalibur diffractometer with Sapphire CCD detector | 2889 independent reflections |
Radiation source: fine-focus sealed tube | 1911 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Rotation method data acquisition using ω and ϕ scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −13→15 |
Tmin = 0.886, Tmax = 0.966 | k = −15→11 |
11298 measured reflections | l = −22→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0362P)2 + 4.7309P] where P = (Fo2 + 2Fc2)/3 |
2889 reflections | (Δ/σ)max < 0.001 |
202 parameters | Δρmax = 0.34 e Å−3 |
1 restraint | Δρmin = −0.29 e Å−3 |
C13H9ClN2O5S | V = 2837.3 (3) Å3 |
Mr = 340.73 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.2046 (8) Å | µ = 0.44 mm−1 |
b = 12.6121 (9) Å | T = 293 K |
c = 18.433 (1) Å | 0.28 × 0.28 × 0.08 mm |
Oxford Xcalibur diffractometer with Sapphire CCD detector | 2889 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1911 reflections with I > 2σ(I) |
Tmin = 0.886, Tmax = 0.966 | Rint = 0.051 |
11298 measured reflections |
R[F2 > 2σ(F2)] = 0.074 | 1 restraint |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | Δρmax = 0.34 e Å−3 |
2889 reflections | Δρmin = −0.29 e Å−3 |
202 parameters |
Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0112 (3) | 0.7252 (3) | 0.0676 (2) | 0.0347 (9) | |
C2 | −0.0862 (3) | 0.7030 (3) | 0.0131 (2) | 0.0402 (10) | |
C3 | −0.1369 (4) | 0.6063 (4) | 0.0079 (3) | 0.0503 (12) | |
H3 | −0.1854 | 0.5924 | −0.0298 | 0.060* | |
C4 | −0.1152 (4) | 0.5307 (4) | 0.0590 (3) | 0.0552 (13) | |
H4 | −0.1498 | 0.4652 | 0.0563 | 0.066* | |
C5 | −0.0427 (4) | 0.5506 (4) | 0.1143 (3) | 0.0537 (13) | |
H5 | −0.0286 | 0.4986 | 0.1488 | 0.064* | |
C6 | 0.0092 (4) | 0.6469 (3) | 0.1188 (2) | 0.0450 (11) | |
H6 | 0.0582 | 0.6598 | 0.1564 | 0.054* | |
C7 | −0.0490 (3) | 0.9234 (3) | 0.1845 (2) | 0.0389 (10) | |
C8 | −0.1239 (3) | 1.0094 (3) | 0.2089 (2) | 0.0354 (9) | |
C9 | −0.1284 (3) | 1.1061 (3) | 0.1738 (2) | 0.0390 (10) | |
H9 | −0.0812 | 1.1205 | 0.1354 | 0.047* | |
C10 | −0.2036 (4) | 1.1812 (3) | 0.1960 (2) | 0.0400 (10) | |
C11 | −0.2730 (4) | 1.1613 (4) | 0.2528 (2) | 0.0456 (11) | |
H11 | −0.3240 | 1.2119 | 0.2672 | 0.055* | |
C12 | −0.2663 (4) | 1.0654 (4) | 0.2884 (2) | 0.0499 (12) | |
H12 | −0.3127 | 1.0518 | 0.3273 | 0.060* | |
C13 | −0.1921 (4) | 0.9897 (3) | 0.2670 (2) | 0.0452 (11) | |
H13 | −0.1879 | 0.9254 | 0.2915 | 0.054* | |
N1 | −0.0153 (3) | 0.9315 (3) | 0.11212 (18) | 0.0400 (9) | |
H1N | −0.050 (3) | 0.966 (3) | 0.0794 (18) | 0.048* | |
N2 | −0.1148 (3) | 0.7825 (3) | −0.0428 (2) | 0.0528 (10) | |
O1 | 0.0765 (2) | 0.8844 (2) | −0.00038 (15) | 0.0478 (8) | |
O2 | 0.1576 (2) | 0.8265 (2) | 0.11536 (16) | 0.0514 (8) | |
O3 | −0.0201 (3) | 0.8509 (2) | 0.22210 (16) | 0.0538 (8) | |
O4 | −0.1559 (3) | 0.8640 (3) | −0.0218 (2) | 0.0730 (11) | |
O5 | −0.0955 (3) | 0.7592 (3) | −0.10577 (18) | 0.0747 (11) | |
Cl1 | −0.20968 (12) | 1.29932 (10) | 0.14917 (7) | 0.0697 (4) | |
S1 | 0.06425 (8) | 0.84464 (8) | 0.07160 (6) | 0.0381 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.036 (2) | 0.030 (2) | 0.038 (2) | 0.0025 (18) | 0.0033 (19) | 0.0001 (18) |
C2 | 0.037 (2) | 0.044 (3) | 0.040 (2) | 0.007 (2) | 0.0002 (19) | 0.011 (2) |
C3 | 0.042 (3) | 0.054 (3) | 0.055 (3) | −0.004 (2) | −0.008 (2) | 0.004 (2) |
C4 | 0.063 (3) | 0.037 (3) | 0.066 (3) | −0.011 (2) | −0.001 (3) | 0.007 (2) |
C5 | 0.068 (3) | 0.041 (3) | 0.052 (3) | 0.005 (2) | −0.005 (3) | 0.013 (2) |
C6 | 0.052 (3) | 0.043 (3) | 0.040 (2) | 0.007 (2) | −0.010 (2) | 0.003 (2) |
C7 | 0.044 (3) | 0.037 (2) | 0.035 (2) | −0.004 (2) | 0.0004 (19) | 0.0011 (19) |
C8 | 0.039 (2) | 0.036 (2) | 0.031 (2) | −0.003 (2) | 0.0033 (18) | −0.0040 (17) |
C9 | 0.043 (3) | 0.041 (2) | 0.033 (2) | −0.004 (2) | 0.0097 (19) | −0.0018 (18) |
C10 | 0.049 (3) | 0.033 (2) | 0.037 (2) | −0.004 (2) | 0.001 (2) | −0.0022 (18) |
C11 | 0.047 (3) | 0.048 (3) | 0.042 (2) | 0.002 (2) | 0.009 (2) | −0.013 (2) |
C12 | 0.060 (3) | 0.050 (3) | 0.040 (2) | −0.008 (3) | 0.018 (2) | −0.005 (2) |
C13 | 0.061 (3) | 0.037 (2) | 0.037 (2) | −0.006 (2) | 0.009 (2) | −0.0048 (19) |
N1 | 0.048 (2) | 0.040 (2) | 0.0329 (19) | 0.0065 (18) | 0.0043 (16) | 0.0036 (16) |
N2 | 0.049 (2) | 0.057 (3) | 0.053 (3) | −0.004 (2) | −0.012 (2) | 0.016 (2) |
O1 | 0.0518 (19) | 0.0507 (18) | 0.0411 (16) | −0.0011 (15) | 0.0137 (14) | 0.0022 (14) |
O2 | 0.0366 (17) | 0.060 (2) | 0.0577 (19) | 0.0028 (16) | −0.0076 (15) | −0.0045 (16) |
O3 | 0.068 (2) | 0.0485 (19) | 0.0450 (17) | 0.0083 (18) | 0.0041 (16) | 0.0094 (16) |
O4 | 0.090 (3) | 0.052 (2) | 0.077 (3) | 0.018 (2) | −0.007 (2) | 0.0162 (19) |
O5 | 0.087 (3) | 0.098 (3) | 0.0394 (19) | −0.011 (2) | −0.0108 (19) | 0.0131 (19) |
Cl1 | 0.0894 (11) | 0.0479 (7) | 0.0718 (9) | 0.0188 (7) | 0.0221 (7) | 0.0146 (6) |
S1 | 0.0379 (6) | 0.0399 (6) | 0.0365 (5) | 0.0018 (5) | 0.0035 (5) | −0.0007 (5) |
C1—C6 | 1.388 (5) | C8—C9 | 1.382 (5) |
C1—C2 | 1.389 (6) | C9—C10 | 1.381 (6) |
C1—S1 | 1.767 (4) | C9—H9 | 0.9300 |
C2—C3 | 1.371 (6) | C10—C11 | 1.369 (6) |
C2—N2 | 1.479 (5) | C10—Cl1 | 1.723 (4) |
C3—C4 | 1.366 (6) | C11—C12 | 1.378 (6) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.373 (6) | C12—C13 | 1.374 (6) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.372 (6) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | N1—S1 | 1.643 (4) |
C6—H6 | 0.9300 | N1—H1N | 0.857 (19) |
C7—O3 | 1.201 (5) | N2—O4 | 1.207 (5) |
C7—N1 | 1.399 (5) | N2—O5 | 1.221 (5) |
C7—C8 | 1.489 (6) | O1—S1 | 1.426 (3) |
C8—C13 | 1.379 (5) | O2—S1 | 1.414 (3) |
C6—C1—C2 | 117.8 (4) | C8—C9—H9 | 120.2 |
C6—C1—S1 | 119.0 (3) | C11—C10—C9 | 120.8 (4) |
C2—C1—S1 | 123.1 (3) | C11—C10—Cl1 | 121.0 (3) |
C3—C2—C1 | 121.9 (4) | C9—C10—Cl1 | 118.2 (3) |
C3—C2—N2 | 116.7 (4) | C10—C11—C12 | 119.2 (4) |
C1—C2—N2 | 121.5 (4) | C10—C11—H11 | 120.4 |
C4—C3—C2 | 119.0 (4) | C12—C11—H11 | 120.4 |
C4—C3—H3 | 120.5 | C13—C12—C11 | 120.8 (4) |
C2—C3—H3 | 120.5 | C13—C12—H12 | 119.6 |
C3—C4—C5 | 120.7 (4) | C11—C12—H12 | 119.6 |
C3—C4—H4 | 119.7 | C12—C13—C8 | 119.7 (4) |
C5—C4—H4 | 119.7 | C12—C13—H13 | 120.2 |
C6—C5—C4 | 120.2 (4) | C8—C13—H13 | 120.2 |
C6—C5—H5 | 119.9 | C7—N1—S1 | 123.9 (3) |
C4—C5—H5 | 119.9 | C7—N1—H1N | 124 (3) |
C5—C6—C1 | 120.4 (4) | S1—N1—H1N | 108 (3) |
C5—C6—H6 | 119.8 | O4—N2—O5 | 126.1 (4) |
C1—C6—H6 | 119.8 | O4—N2—C2 | 116.9 (4) |
O3—C7—N1 | 121.3 (4) | O5—N2—C2 | 117.0 (4) |
O3—C7—C8 | 124.1 (4) | O2—S1—O1 | 120.19 (19) |
N1—C7—C8 | 114.5 (4) | O2—S1—N1 | 108.94 (18) |
C13—C8—C9 | 119.9 (4) | O1—S1—N1 | 104.51 (18) |
C13—C8—C7 | 118.3 (4) | O2—S1—C1 | 107.76 (19) |
C9—C8—C7 | 121.7 (4) | O1—S1—C1 | 108.41 (19) |
C10—C9—C8 | 119.5 (4) | N1—S1—C1 | 106.23 (18) |
C10—C9—H9 | 120.2 | ||
C6—C1—C2—C3 | −1.8 (6) | Cl1—C10—C11—C12 | 179.3 (3) |
S1—C1—C2—C3 | 174.5 (3) | C10—C11—C12—C13 | −0.7 (7) |
C6—C1—C2—N2 | 178.6 (4) | C11—C12—C13—C8 | −0.4 (7) |
S1—C1—C2—N2 | −5.0 (6) | C9—C8—C13—C12 | 1.7 (6) |
C1—C2—C3—C4 | 1.8 (7) | C7—C8—C13—C12 | −176.5 (4) |
N2—C2—C3—C4 | −178.7 (4) | O3—C7—N1—S1 | 0.6 (6) |
C2—C3—C4—C5 | −0.7 (7) | C8—C7—N1—S1 | −178.1 (3) |
C3—C4—C5—C6 | −0.2 (7) | C3—C2—N2—O4 | 119.2 (5) |
C4—C5—C6—C1 | 0.1 (7) | C1—C2—N2—O4 | −61.2 (6) |
C2—C1—C6—C5 | 0.9 (6) | C3—C2—N2—O5 | −60.2 (6) |
S1—C1—C6—C5 | −175.6 (3) | C1—C2—N2—O5 | 119.4 (5) |
O3—C7—C8—C13 | −22.3 (6) | C7—N1—S1—O2 | −50.4 (4) |
N1—C7—C8—C13 | 156.3 (4) | C7—N1—S1—O1 | 179.9 (3) |
O3—C7—C8—C9 | 159.5 (4) | C7—N1—S1—C1 | 65.4 (4) |
N1—C7—C8—C9 | −21.9 (6) | C6—C1—S1—O2 | 17.3 (4) |
C13—C8—C9—C10 | −1.7 (6) | C2—C1—S1—O2 | −159.0 (3) |
C7—C8—C9—C10 | 176.4 (4) | C6—C1—S1—O1 | 148.9 (3) |
C8—C9—C10—C11 | 0.5 (6) | C2—C1—S1—O1 | −27.4 (4) |
C8—C9—C10—Cl1 | −178.1 (3) | C6—C1—S1—N1 | −99.3 (3) |
C9—C10—C11—C12 | 0.7 (7) | C2—C1—S1—N1 | 84.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 (2) | 2.41 (3) | 3.193 (4) | 153 (4) |
Symmetry code: (i) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C13H9ClN2O5S |
Mr | 340.73 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 12.2046 (8), 12.6121 (9), 18.433 (1) |
V (Å3) | 2837.3 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.28 × 0.28 × 0.08 |
Data collection | |
Diffractometer | Oxford Xcalibur diffractometer with Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.886, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11298, 2889, 1911 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.074, 0.147, 1.20 |
No. of reflections | 2889 |
No. of parameters | 202 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.34, −0.29 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.857 (19) | 2.41 (3) | 3.193 (4) | 153 (4) |
Symmetry code: (i) −x, −y+2, −z. |
Acknowledgements
BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC-BSR one-time grant to faculty.
References
Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267. CAS Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594. CAS Google Scholar
Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68. CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o274. Web of Science CSD CrossRef IUCr Journals Google Scholar
Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 1999, 2006), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(substitutedbenzoyl)-arylsulfonamides (Suchetan et al., 2012), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-chlorobenzoyl)-2-nitrobenzenesulfonamide has been determined (Fig.1).
The conformation between the N—H and C═O bonds in the C—SO2—NH—C(O) segment is anti and the N—C bond in the segment has gauche torsion with respect to the S═O bonds (Fig. 1), similar to that observed in N-(2-chlorobenzoyl)-2-nitrobenzenesulfonamide (I) (Suchetan et al., 2012). In the title compound, the conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring is syn, similar to that observed in (I). Further, the conformation of the C═O is anti to the meta-Cl atom in the benzoyl ring, similar to that observed between the C═O and the ortho-Cl atom in (I).
The molecule is twisted at the S—N bond with the torsional angle of 65.41 (38)°, compared to the value of -59.68 (17)° in (I).
The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 75.0 (1)°, compared to the value of 77.5 (1)° in (I). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 89.1 (1)°, compared to the value of 71.2 (1)° in (I).
In the crystal structure two molecules each are linked by pairs of intermolecular N—H···O (S) hydrogen bonds into dimers that are located around centers of inversion (Fig. 2 and Table 1).