organic compounds
6,6′-Dimethyl-2,2′-[1,3-diazinane-1,3-diylbis(methylene)]diphenol
aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co
In the molecule of the title compound, C20H26N2O2, the 1,3-diazinane ring adopts a slightly distorted chair conformation and the hydroxybenzyl substituents occupy equatorial positions on the N atoms of the heterocyclic ring. There are two intramolecular O—H⋯N hydrogen bonds between the N atoms of the 1,3-diazinane ring and the hydroxy groups of the aromatic rings, with an S(6) set-graph motif. However, the two observed intramolecular hydrogen-bond distances were different. Considering that both N atoms experience the same chemical environment, it is surprising to see the difference in O⋯N distances [2.6771 (14) and 2.8123 (12) Å]. The is further stabilized by a C—H⋯π interaction.
Related literature
For a previous determination of a related structure, see: Rivera et al. (2012). For a related di-Mannich base, see: Rivera et al. (2009). For the synthesis of the precursor, see: Rivera et al. (2010). For bond-length data, see: Allen et al. (1987). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995). For the background to hydrogen-bond energy in Mannich bases, see: Koll et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
10.1107/S1600536812005284/nk2137sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812005284/nk2137Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812005284/nk2137Isup3.cml
A solution of 1,3,7,9,13,15,19,21-octaazapentacyclo[19.3.1.13,7.19,13.115,19] octacosane prepared according to a previous report (Rivera et al., 2010) (200 mg, 0.54 mmol) in 96% ethanol (5 ml) was added slowly to a stirred solution of 2-methylphenol (240 mg, 2.2 mmol) in 96% ethanol (5 ml) that was heated under reflux. Upon completion of the addition, the reaction mixture was stirred under reflux for 20 h. Next, the reflux was stopped, the solvent was removed on a rotary evaporator under vacuum, and the residue obtained was chromatographed on silica gel eluting with benzene/AcOEt (gradient elution with 5% to 20% AcOEt) to produce a solid which was recrystallized in 96% ethanol to provide high quality crystals of the title compound (I), (Yield 24.4%, m.p. 389–392 K)
All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C–H distance 0.96 Å during the
The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with thermal displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH2– groups.Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).C20H26N2O2 | F(000) = 1408 |
Mr = 326.4 | Dx = 1.204 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -C 2yc | Cell parameters from 10886 reflections |
a = 31.2788 (5) Å | θ = 3.0–67.0° |
b = 9.7215 (1) Å | µ = 0.62 mm−1 |
c = 12.4508 (2) Å | T = 120 K |
β = 107.936 (2)° | Prism, colourless |
V = 3602.00 (10) Å3 | 0.3 × 0.14 × 0.07 mm |
Z = 8 |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 3210 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2750 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.031 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.1°, θmin = 3.0° |
Rotation method data acquisition using ω scans | h = −36→37 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −11→11 |
Tmin = 0.615, Tmax = 1 | l = −14→13 |
20724 measured reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.034 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
wR(F2) = 0.100 | (Δ/σ)max = 0.003 |
S = 1.61 | Δρmax = 0.15 e Å−3 |
3210 reflections | Δρmin = −0.14 e Å−3 |
224 parameters | Extinction correction: B–C type 1 Lorentzian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 900 (300) |
98 constraints |
C20H26N2O2 | V = 3602.00 (10) Å3 |
Mr = 326.4 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 31.2788 (5) Å | µ = 0.62 mm−1 |
b = 9.7215 (1) Å | T = 120 K |
c = 12.4508 (2) Å | 0.3 × 0.14 × 0.07 mm |
β = 107.936 (2)° |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 3210 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 2750 reflections with I > 3σ(I) |
Tmin = 0.615, Tmax = 1 | Rint = 0.031 |
20724 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.61 | Δρmax = 0.15 e Å−3 |
3210 reflections | Δρmin = −0.14 e Å−3 |
224 parameters |
Experimental. CrysAlis PRO (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.06464 (3) | 0.07051 (9) | 0.66310 (8) | 0.0302 (3) | |
O2 | 0.22184 (3) | −0.05521 (9) | 0.85547 (8) | 0.0307 (3) | |
N1 | 0.09336 (3) | −0.12594 (9) | 0.55120 (8) | 0.0253 (3) | |
N2 | 0.17352 (3) | −0.14744 (9) | 0.63781 (8) | 0.0243 (3) | |
C1 | 0.13773 (4) | −0.09468 (12) | 0.54144 (10) | 0.0246 (4) | |
C2 | 0.08708 (4) | −0.27558 (12) | 0.55476 (12) | 0.0312 (4) | |
C3 | 0.12437 (4) | −0.33754 (12) | 0.65145 (12) | 0.0325 (4) | |
C4 | 0.17000 (4) | −0.29827 (12) | 0.64228 (11) | 0.0287 (4) | |
C5 | 0.05832 (4) | −0.06437 (12) | 0.45500 (11) | 0.0277 (4) | |
C6 | 0.05613 (4) | 0.08973 (12) | 0.46498 (10) | 0.0251 (4) | |
C7 | 0.05753 (4) | 0.14970 (12) | 0.56815 (10) | 0.0247 (4) | |
C8 | 0.05113 (4) | 0.29077 (12) | 0.57775 (11) | 0.0285 (4) | |
C9 | 0.04476 (4) | 0.37139 (13) | 0.48171 (12) | 0.0329 (4) | |
C10 | 0.04482 (4) | 0.31518 (13) | 0.37985 (12) | 0.0347 (4) | |
C11 | 0.05025 (4) | 0.17415 (13) | 0.37139 (11) | 0.0307 (4) | |
C12 | 0.05171 (5) | 0.35190 (14) | 0.68853 (13) | 0.0404 (5) | |
C13 | 0.21697 (4) | −0.10533 (12) | 0.62478 (10) | 0.0274 (4) | |
C14 | 0.25656 (4) | −0.14837 (11) | 0.72318 (10) | 0.0244 (4) | |
C15 | 0.25775 (4) | −0.11617 (11) | 0.83352 (10) | 0.0239 (4) | |
C16 | 0.29572 (4) | −0.14483 (11) | 0.92540 (10) | 0.0254 (4) | |
C17 | 0.33194 (4) | −0.20947 (11) | 0.90430 (11) | 0.0272 (4) | |
C18 | 0.33074 (4) | −0.24696 (13) | 0.79600 (11) | 0.0291 (4) | |
C19 | 0.29302 (4) | −0.21597 (12) | 0.70615 (11) | 0.0278 (4) | |
C20 | 0.29665 (5) | −0.10650 (14) | 1.04259 (11) | 0.0353 (5) | |
H1a | 0.140383 | −0.134347 | 0.473167 | 0.0295* | |
H1b | 0.14095 | 0.003083 | 0.536267 | 0.0295* | |
H2a | 0.087705 | −0.315591 | 0.484768 | 0.0374* | |
H2b | 0.058548 | −0.294608 | 0.565453 | 0.0374* | |
H3a | 0.121489 | −0.435894 | 0.64972 | 0.039* | |
H3b | 0.121758 | −0.30502 | 0.72196 | 0.039* | |
H4a | 0.193116 | −0.33274 | 0.70673 | 0.0345* | |
H4b | 0.173643 | −0.337606 | 0.574906 | 0.0345* | |
H5a | 0.029635 | −0.103489 | 0.45048 | 0.0332* | |
H5b | 0.064148 | −0.087548 | 0.385863 | 0.0332* | |
H9 | 0.040193 | 0.468584 | 0.48637 | 0.0395* | |
H10 | 0.04114 | 0.37325 | 0.315261 | 0.0416* | |
H11 | 0.049941 | 0.134735 | 0.30046 | 0.0368* | |
H12a | 0.033234 | 0.297621 | 0.721132 | 0.0605* | |
H12b | 0.081968 | 0.353116 | 0.73863 | 0.0605* | |
H12c | 0.040286 | 0.44419 | 0.676862 | 0.0605* | |
H13a | 0.217355 | −0.007301 | 0.6158 | 0.0329* | |
H13b | 0.219925 | −0.143722 | 0.556384 | 0.0329* | |
H17 | 0.358424 | −0.228617 | 0.966195 | 0.0327* | |
H18 | 0.355763 | −0.293886 | 0.783351 | 0.0349* | |
H19 | 0.292099 | −0.241654 | 0.631023 | 0.0334* | |
H20a | 0.272699 | −0.152761 | 1.060976 | 0.053* | |
H20b | 0.324928 | −0.133316 | 1.095101 | 0.053* | |
H20c | 0.29292 | −0.008831 | 1.046816 | 0.053* | |
H1 | 0.0756 (5) | −0.0090 (18) | 0.6433 (14) | 0.0454* | |
H2 | 0.1987 (6) | −0.0618 (17) | 0.7916 (16) | 0.0461* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0322 (5) | 0.0307 (5) | 0.0310 (5) | −0.0004 (3) | 0.0144 (4) | 0.0017 (3) |
O2 | 0.0253 (4) | 0.0363 (5) | 0.0309 (5) | 0.0075 (3) | 0.0093 (4) | −0.0010 (4) |
N1 | 0.0202 (5) | 0.0235 (5) | 0.0300 (6) | −0.0009 (4) | 0.0046 (4) | 0.0006 (4) |
N2 | 0.0197 (5) | 0.0255 (5) | 0.0262 (5) | 0.0013 (3) | 0.0051 (4) | 0.0026 (4) |
C1 | 0.0215 (6) | 0.0258 (6) | 0.0251 (6) | 0.0006 (4) | 0.0051 (5) | 0.0010 (4) |
C2 | 0.0264 (6) | 0.0243 (6) | 0.0404 (7) | −0.0037 (4) | 0.0068 (5) | −0.0013 (5) |
C3 | 0.0314 (7) | 0.0241 (6) | 0.0399 (8) | −0.0020 (5) | 0.0080 (5) | 0.0042 (5) |
C4 | 0.0288 (6) | 0.0253 (6) | 0.0298 (7) | 0.0035 (4) | 0.0057 (5) | 0.0017 (5) |
C5 | 0.0206 (6) | 0.0274 (6) | 0.0314 (7) | −0.0003 (4) | 0.0025 (5) | −0.0023 (5) |
C6 | 0.0145 (5) | 0.0290 (6) | 0.0287 (6) | −0.0006 (4) | 0.0022 (4) | −0.0007 (5) |
C7 | 0.0157 (5) | 0.0287 (6) | 0.0295 (7) | −0.0018 (4) | 0.0066 (5) | 0.0017 (5) |
C8 | 0.0178 (6) | 0.0294 (6) | 0.0386 (7) | −0.0017 (4) | 0.0089 (5) | −0.0040 (5) |
C9 | 0.0226 (6) | 0.0255 (6) | 0.0467 (8) | 0.0003 (4) | 0.0048 (5) | 0.0013 (5) |
C10 | 0.0296 (7) | 0.0341 (7) | 0.0348 (7) | 0.0005 (5) | 0.0017 (5) | 0.0087 (5) |
C11 | 0.0252 (6) | 0.0355 (7) | 0.0268 (7) | 0.0007 (5) | 0.0016 (5) | 0.0012 (5) |
C12 | 0.0392 (8) | 0.0369 (7) | 0.0498 (9) | 0.0007 (5) | 0.0210 (6) | −0.0090 (6) |
C13 | 0.0225 (6) | 0.0332 (6) | 0.0265 (6) | 0.0010 (5) | 0.0075 (5) | 0.0032 (5) |
C14 | 0.0204 (6) | 0.0258 (6) | 0.0267 (6) | −0.0002 (4) | 0.0068 (5) | 0.0021 (4) |
C15 | 0.0221 (6) | 0.0217 (5) | 0.0291 (6) | 0.0008 (4) | 0.0097 (5) | 0.0010 (4) |
C16 | 0.0251 (6) | 0.0226 (6) | 0.0278 (6) | −0.0018 (4) | 0.0070 (5) | 0.0010 (4) |
C17 | 0.0222 (6) | 0.0265 (6) | 0.0300 (7) | 0.0002 (4) | 0.0037 (5) | 0.0030 (5) |
C18 | 0.0222 (6) | 0.0304 (6) | 0.0350 (7) | 0.0038 (5) | 0.0093 (5) | 0.0003 (5) |
C19 | 0.0257 (6) | 0.0306 (6) | 0.0285 (7) | 0.0009 (4) | 0.0101 (5) | −0.0006 (5) |
C20 | 0.0334 (7) | 0.0427 (7) | 0.0278 (7) | 0.0019 (5) | 0.0061 (5) | −0.0009 (5) |
O1—C7 | 1.3704 (15) | C8—C9 | 1.3918 (19) |
O1—H1 | 0.910 (18) | C8—C12 | 1.497 (2) |
O2—C15 | 1.3701 (16) | C9—C10 | 1.382 (2) |
O2—H2 | 0.898 (16) | C9—H9 | 0.96 |
N1—C1 | 1.4619 (16) | C10—C11 | 1.3895 (18) |
N1—C2 | 1.4703 (15) | C10—H10 | 0.96 |
N1—C5 | 1.4784 (14) | C11—H11 | 0.96 |
N2—C1 | 1.4591 (13) | C12—H12a | 0.96 |
N2—C4 | 1.4727 (15) | C12—H12b | 0.96 |
N2—C13 | 1.4753 (16) | C12—H12c | 0.96 |
C1—H1a | 0.96 | C13—C14 | 1.5084 (14) |
C1—H1b | 0.96 | C13—H13a | 0.96 |
C2—C3 | 1.5191 (16) | C13—H13b | 0.96 |
C2—H2a | 0.96 | C14—C15 | 1.3983 (18) |
C2—H2b | 0.96 | C14—C19 | 1.3879 (18) |
C3—C4 | 1.515 (2) | C15—C16 | 1.4000 (14) |
C3—H3a | 0.96 | C16—C17 | 1.3894 (18) |
C3—H3b | 0.96 | C16—C20 | 1.4976 (19) |
C4—H4a | 0.96 | C17—C18 | 1.3861 (19) |
C4—H4b | 0.96 | C17—H17 | 0.96 |
C5—C6 | 1.5066 (16) | C18—C19 | 1.3861 (15) |
C5—H5a | 0.96 | C18—H18 | 0.96 |
C5—H5b | 0.96 | C19—H19 | 0.96 |
C6—C7 | 1.3990 (18) | C20—H20a | 0.96 |
C6—C11 | 1.3903 (18) | C20—H20b | 0.96 |
C7—C8 | 1.3964 (16) | C20—H20c | 0.96 |
C7—O1—H1 | 102.6 (11) | C9—C8—C12 | 121.73 (11) |
C15—O2—H2 | 106.3 (13) | C8—C9—C10 | 121.71 (12) |
C1—N1—C2 | 110.32 (9) | C8—C9—H9 | 119.1442 |
C1—N1—C5 | 109.53 (10) | C10—C9—H9 | 119.1447 |
C2—N1—C5 | 110.63 (8) | C9—C10—C11 | 119.64 (13) |
C1—N2—C4 | 109.49 (8) | C9—C10—H10 | 120.1785 |
C1—N2—C13 | 108.15 (9) | C11—C10—H10 | 120.1783 |
C4—N2—C13 | 111.25 (9) | C6—C11—C10 | 120.44 (13) |
N1—C1—N2 | 111.48 (10) | C6—C11—H11 | 119.78 |
N1—C1—H1a | 109.4714 | C10—C11—H11 | 119.7804 |
N1—C1—H1b | 109.4721 | C8—C12—H12a | 109.4711 |
N2—C1—H1a | 109.4702 | C8—C12—H12b | 109.4722 |
N2—C1—H1b | 109.4711 | C8—C12—H12c | 109.4711 |
H1a—C1—H1b | 107.3846 | H12a—C12—H12b | 109.4712 |
N1—C2—C3 | 109.82 (9) | H12a—C12—H12c | 109.471 |
N1—C2—H2a | 109.471 | H12b—C12—H12c | 109.4707 |
N1—C2—H2b | 109.4726 | N2—C13—C14 | 112.79 (10) |
C3—C2—H2a | 109.4711 | N2—C13—H13a | 109.4717 |
C3—C2—H2b | 109.4718 | N2—C13—H13b | 109.4711 |
H2a—C2—H2b | 109.1181 | C14—C13—H13a | 109.4713 |
C2—C3—C4 | 110.58 (11) | C14—C13—H13b | 109.4711 |
C2—C3—H3a | 109.4709 | H13a—C13—H13b | 105.9345 |
C2—C3—H3b | 109.4706 | C13—C14—C15 | 120.18 (11) |
C4—C3—H3a | 109.4712 | C13—C14—C19 | 121.00 (11) |
C4—C3—H3b | 109.4715 | C15—C14—C19 | 118.79 (10) |
H3a—C3—H3b | 108.3382 | O2—C15—C14 | 121.16 (9) |
N2—C4—C3 | 109.68 (10) | O2—C15—C16 | 117.68 (11) |
N2—C4—H4a | 109.4709 | C14—C15—C16 | 121.16 (11) |
N2—C4—H4b | 109.4709 | C15—C16—C17 | 118.13 (12) |
C3—C4—H4a | 109.4718 | C15—C16—C20 | 120.24 (11) |
C3—C4—H4b | 109.4711 | C17—C16—C20 | 121.63 (10) |
H4a—C4—H4b | 109.2658 | C16—C17—C18 | 121.56 (10) |
N1—C5—C6 | 112.15 (9) | C16—C17—H17 | 119.2196 |
N1—C5—H5a | 109.4713 | C18—C17—H17 | 119.2211 |
N1—C5—H5b | 109.4705 | C17—C18—C19 | 119.30 (12) |
C6—C5—H5a | 109.4715 | C17—C18—H18 | 120.3511 |
C6—C5—H5b | 109.4715 | C19—C18—H18 | 120.3499 |
H5a—C5—H5b | 106.6581 | C14—C19—C18 | 120.99 (12) |
C5—C6—C7 | 120.05 (11) | C14—C19—H19 | 119.5056 |
C5—C6—C11 | 121.03 (11) | C18—C19—H19 | 119.5079 |
C7—C6—C11 | 118.83 (11) | C16—C20—H20a | 109.4711 |
O1—C7—C6 | 120.60 (10) | C16—C20—H20b | 109.4716 |
O1—C7—C8 | 117.86 (11) | C16—C20—H20c | 109.4707 |
C6—C7—C8 | 121.54 (11) | H20a—C20—H20b | 109.4715 |
C7—C8—C9 | 117.77 (12) | H20a—C20—H20c | 109.4703 |
C7—C8—C12 | 120.50 (12) | H20b—C20—H20c | 109.4722 |
Cg2 is the centroid of the C6–C11 aromatic ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.910 (18) | 1.818 (19) | 2.6771 (14) | 156.3 (16) |
O2—H2···N2 | 0.898 (16) | 2.013 (18) | 2.8123 (12) | 147.6 (17) |
C17—H17···Cg2i | 0.96 | 2.73 | 3.5577 (14) | 144 |
Symmetry code: (i) −x+1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C20H26N2O2 |
Mr | 326.4 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 31.2788 (5), 9.7215 (1), 12.4508 (2) |
β (°) | 107.936 (2) |
V (Å3) | 3602.00 (10) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.62 |
Crystal size (mm) | 0.3 × 0.14 × 0.07 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.615, 1 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 20724, 3210, 2750 |
Rint | 0.031 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.100, 1.61 |
No. of reflections | 3210 |
No. of parameters | 224 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.15, −0.14 |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
Cg2 is the centroid of the C6–C11 aromatic ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.910 (18) | 1.818 (19) | 2.6771 (14) | 156.3 (16) |
O2—H2···N2 | 0.898 (16) | 2.013 (18) | 2.8123 (12) | 147.6 (17) |
C17—H17···Cg2i | 0.96 | 2.73 | 3.5577 (14) | 144 |
Symmetry code: (i) −x+1/2, y−1/2, −z+3/2. |
Acknowledgements
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DMG acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64. Web of Science CrossRef CAS Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic. Google Scholar
Rivera, A., González, D. M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o191–o192. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rivera, A., Quiroga, D., Ríos-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827–830. Web of Science CSD CrossRef CAS Google Scholar
Rivera, A., Ríos-Motta, J., Dušek, M. & Jarošová, M. (2010). Acta Cryst. C66, o222–o224. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Di-Mannich bases offer convenient models for studying the nature of hydrogen bonding and other weak noncovalent interactions, which play a key role in biological systems. If the OH groups are in appropriate positions relative to the nitrogen lone pairs, both intramolecular and intermolecular hydrogen bonds may be possible. As a rule, non-bonded forms are not observed in systems with phenolic acids that are able to form intramolecular hydrogen bonds, both in solution and in the gas phase (Koll et al. 2006).
The molecular structure and atom-numbering scheme are shown in Fig. 1. The C7—O1 and C15—O2 bond lengths [1.3704 (15) and 1.3701 (16) Å, respectively] were comparable with other previously reported C—O bond lengths for di-Mannich bases [C—O = 1.365 (2) Å] (Rivera et al., 2009) and [C—O = 1.3762 (11) Å] (Rivera et al., 2012). The C—C bond distances and angles of both aromatic rings were found to be normal (Allen et al., 1987). The CH2—N bond lengths, [1.4619 (16) Å and 1.4591 (13) Å] are comparable to the related structure [CH2—N = 1.478 (2) Å] (Rivera, et al. 2012) but were shorter than the observed lengths in related structure where the heterocyclic ring is the five members: [CH2—N = 1.485 (2) Å] (Rivera et al., 2009). In the title compound (I), the 1,3-diazinane ring adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ, and ϕ of 0.5815 (13) Å, 2.32 (13)°, and 91 (3)°, respectively. The molecular structure showed two intramolecular O—H···N hydrogen bonding interactions between the two N atoms and the hydroxyl groups with S(6) set graph motif. However, the two observed intramolecular hydrogen bond distances were different (Table 1). Considering that both nitrogen atoms experiencing the same chemical environment, it is then surprising to see the difference in O···N bond distances ([O1···N1 = 2.6771 (14) Å] and [O2···N2 = 2.8123 (12) Å]).
The hydroxybenzyl substituents occupy equatorial positions. However, the dihedral angles between the mean planes of the benzene rings and the mean plane of the heterocyclic ring were 77.80 (15)° and 80.03 (10)°. This observation indicates there was different spatial positioning, which is more evident with the dihedral angle between both phenyl rings. The angle between the two aromatic rings is 58.431 (38)°.