organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-4-Carbamoylpiperidinium cis-2-car­b­oxy­cyclo­hexane-1-carboxyl­ate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 14 January 2012; accepted 3 February 2012; online 10 February 2012)

In the title racemic salt, C6H13N2O+·C8H11O4, formed from the reaction of cis-cyclo­hexane-1,2-dicarb­oxy­lic anhydride with isonipecotamide, the cations are linked into duplex chain substructures through both centrosymmetric cyclic head-to-head `amide motif' hydrogen-bonding associations [graph set R22(8)] and `side-by-side' R22(14) associations. The anions are incorporated into the chains through cyclic R43(10) inter­actions involving amide and piperidinium N—H⋯Ocarbox­yl hydrogen bonds which, together with inter-anion carb­oxy­lic acid O—H⋯Ocarbox­yl hydrogen bonds, give a two-dimensional layered structure extending along (011).

Related literature

For examples of structures of 1:1 Lewis base salts of cis-cyclo­hexane-1,2-dicarb­oxy­lic acid, see: Smith & Wermuth (2011a[Smith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o1900.],b[Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o2794.]). For examples of isonipecotamide proton-transfer salts, see: Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o614-o618.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For hydrogen-bonding motifs, see: Allen et al. (1998[Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N2O+·C8H11O4

  • Mr = 300.35

  • Monoclinic, P 21 /c

  • a = 19.0097 (14) Å

  • b = 9.0667 (7) Å

  • c = 9.1999 (8) Å

  • β = 92.022 (7)°

  • V = 1584.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.40 × 0.35 × 0.10 mm

Data collection
  • Oxford Gemini-S CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.86, Tmax = 0.98

  • 10518 measured reflections

  • 3100 independent reflections

  • 2146 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.182

  • S = 1.06

  • 3100 reflections

  • 210 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O41Ai 0.97 (3) 1.95 (3) 2.861 (3) 155 (2)
N1A—H12A⋯O11 0.99 (4) 1.64 (4) 2.588 (4) 158 (3)
N41A—H41A⋯O41Aii 0.86 (3) 2.14 (4) 2.996 (3) 174 (2)
N41A—H42A⋯O12iii 0.77 (3) 2.11 (3) 2.882 (4) 177 (3)
O22—H22⋯O12iv 0.93 (5) 1.64 (5) 2.571 (3) 173 (4)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z; (iii) x, y-1, z; (iv) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

cis-Cyclohexane-1,2-dicarboxylic anhydride (cis-CHDC anhydride) forms racemic 1:1 salts with some Lewis bases and the structures of a few of these have been reported, e.g. with 2-aminopyridine (Smith & Wermuth, 2011a) and 4-aminopyridine (Smith & Wermuth, 2011b). The 1:1 stoichiometric reaction of cis-CHDC anhydride with piperidine-4-carboxamide (isonipecotamide) also gave a racemic salt, the title compound, C6H12N2O+.C8H11O4- and the structure is reported here.

In this compound (Fig. 1) the cis-configuration of the anion is found as expected, with the cations linked into duplex ribbon substructures through both centrosymmetric cyclic head-to-head hydrogen-bonding associations [the `amide' motif (Allen et al., 1998)] [graph set R22(8) (Etter et al., 1990)] and `side-by-side' R22(14) associations (Table 1, Fig. 2). Both of these associations have been found in the structures of Lewis base salts of isonipecotamide (Smith & Wermuth, 2010). In the present structure, the monoanions are incorporated into the ribbons through cyclic R34(10) amide and piperidinium N—H···Ocarboxyl associations and together with inter-anion carboxylic acid O—H···Ocarboxyl hydrogen bonds down c (Fig. 3), give a two-dimensional layered structure extending along (011).

Related literature top

For examples of structures of 1:1 Lewis base salts of cis-cyclohexane-1,2-dicarboxylic acid, see: Smith & Wermuth (2011a,b). For examples of isonipecotamide proton-transfer salts, see: Smith & Wermuth (2010). For graph-set analysis, see: Etter et al. (1990). For hydrogen-bonding motifs, see: Allen et al. (1998).

Experimental top

The title compound was synthesized by heating together under reflux for 15 min, 1 mmol quantities of cyclohexane-1,2-dicarboxylic anhydride and piperidine-4-carboxamide (isonipecotamide) in 50 ml of methanol. After volume reduction to 30 ml, the hot-filtered solution was allowed evaporate to dryness at room temperature, giving a white amorphous powder. Minor colourless crystal plates were obtained in the residual viscous residue after evaporation of a solution of the compound in 80% propane-2-ol–water.

Refinement top

H atoms potentially involved in hydrogen-bonding associations were located in a difference Fourier analysis and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C—H = 0.97–0.98 Å] with Uiso(H) = 1.2Ueq(C), using a riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation of the cation and anion in the title compound, with the inter-ion hydrogen bond shown as a dashed line. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded ribbon substructure in the title salt showing the isonipicotamide cation R22(8) and R22(14) cyclic associations and the R34(10) incorporation of the monoanion. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. A view of the two-dimensional hydrogen-bonded layered structure looking down the b axial direction, showing the inter-ribbon carboxylic acid···carboxyl hydrogen-bonding extensions down c.
rac-4-Carbamoylpiperidinium cis-2-carboxycyclohexane-1-carboxylate top
Crystal data top
C6H13N2O+·C8H11O4F(000) = 644
Mr = 300.35Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3793 reflections
a = 19.0097 (14) Åθ = 3.2–28.9°
b = 9.0667 (7) ŵ = 0.10 mm1
c = 9.1999 (8) ÅT = 200 K
β = 92.022 (7)°Plate, colourless
V = 1584.7 (2) Å30.40 × 0.35 × 0.10 mm
Z = 4
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
3100 independent reflections
Radiation source: Enhance (Mo) X-ray source2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 2322
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.86, Tmax = 0.98l = 1111
10518 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.9949P]
where P = (Fo2 + 2Fc2)/3
3100 reflections(Δ/σ)max = 0.002
210 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H13N2O+·C8H11O4V = 1584.7 (2) Å3
Mr = 300.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.0097 (14) ŵ = 0.10 mm1
b = 9.0667 (7) ÅT = 200 K
c = 9.1999 (8) Å0.40 × 0.35 × 0.10 mm
β = 92.022 (7)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
3100 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2146 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.98Rint = 0.057
10518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
3100 reflectionsΔρmin = 0.20 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.21833 (13)0.8455 (3)0.0243 (3)0.0522 (9)
O120.23582 (11)1.0432 (3)0.1098 (2)0.0415 (8)
O210.25201 (12)1.1290 (3)0.2369 (3)0.0487 (9)
O220.31747 (13)1.3299 (3)0.2117 (3)0.0485 (9)
C10.33119 (16)0.9592 (3)0.0442 (4)0.0362 (10)
C20.35236 (15)1.1183 (4)0.0836 (4)0.0337 (10)
C30.42799 (19)1.1251 (5)0.1462 (5)0.0634 (16)
C40.4392 (2)1.0232 (6)0.2741 (6)0.086 (2)
C50.4211 (2)0.8668 (6)0.2325 (6)0.085 (2)
C60.3456 (2)0.8519 (4)0.1711 (5)0.0586 (14)
C110.25621 (15)0.9481 (3)0.0177 (3)0.0306 (9)
C210.30223 (16)1.1903 (4)0.1864 (3)0.0337 (10)
O41A0.00706 (10)0.2052 (2)0.0339 (2)0.0298 (7)
N1A0.13089 (14)0.6330 (3)0.0339 (3)0.0293 (8)
N41A0.08655 (16)0.0589 (3)0.0669 (3)0.0286 (8)
C2A0.11125 (16)0.5811 (3)0.1821 (3)0.0290 (9)
C3A0.06735 (15)0.4418 (3)0.1727 (3)0.0257 (9)
C4A0.10386 (14)0.3218 (3)0.0845 (3)0.0251 (8)
C5A0.12773 (16)0.3800 (3)0.0645 (3)0.0292 (9)
C6A0.17115 (17)0.5201 (3)0.0524 (3)0.0325 (10)
C41A0.05649 (14)0.1901 (3)0.0612 (3)0.0236 (8)
H10.361800.928500.033700.0430*
H20.350701.175700.006700.0400*
H220.288 (3)1.369 (5)0.281 (5)0.082 (15)*
H310.460201.098500.071000.0760*
H320.438601.225400.176400.0760*
H410.410001.054600.352700.1030*
H420.488001.028100.308500.1030*
H510.427100.804100.317500.1020*
H520.453400.832900.160400.1020*
H610.313000.871700.247400.0700*
H620.337800.751600.137600.0700*
H4A0.145300.289000.136000.0300*
H11A0.0869 (17)0.663 (3)0.007 (3)0.027 (8)*
H12A0.161 (2)0.722 (4)0.035 (4)0.061 (11)*
H21A0.153400.561000.235200.0350*
H22A0.084500.656900.233900.0350*
H31A0.023000.465500.129100.0310*
H32A0.056900.405300.270200.0310*
H41A0.0623 (18)0.017 (4)0.045 (3)0.037 (10)*
H42A0.1263 (17)0.054 (3)0.082 (3)0.017 (8)*
H51A0.086800.400100.121300.0350*
H52A0.155600.305100.115100.0350*
H61A0.182600.558300.148800.0390*
H62A0.214800.498100.005500.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0398 (14)0.0352 (14)0.0811 (19)0.0182 (11)0.0039 (13)0.0027 (13)
O120.0305 (12)0.0545 (16)0.0393 (13)0.0007 (11)0.0015 (10)0.0068 (11)
O210.0385 (14)0.0496 (15)0.0590 (16)0.0112 (11)0.0170 (12)0.0067 (12)
O220.0473 (15)0.0479 (16)0.0512 (15)0.0127 (12)0.0156 (12)0.0159 (12)
C10.0240 (16)0.0363 (19)0.0483 (19)0.0031 (14)0.0016 (14)0.0011 (15)
C20.0211 (15)0.0402 (19)0.0398 (18)0.0042 (13)0.0006 (13)0.0027 (14)
C30.028 (2)0.074 (3)0.088 (3)0.0069 (19)0.001 (2)0.025 (2)
C40.043 (3)0.111 (5)0.102 (4)0.009 (3)0.035 (3)0.007 (3)
C50.053 (3)0.097 (4)0.103 (4)0.028 (3)0.022 (3)0.026 (3)
C60.046 (2)0.047 (2)0.082 (3)0.0090 (18)0.008 (2)0.020 (2)
C110.0273 (16)0.0242 (16)0.0403 (17)0.0002 (13)0.0005 (13)0.0073 (14)
C210.0277 (17)0.0436 (19)0.0294 (16)0.0014 (15)0.0036 (13)0.0003 (14)
O41A0.0228 (11)0.0265 (11)0.0401 (12)0.0011 (9)0.0010 (9)0.0013 (9)
N1A0.0274 (15)0.0253 (14)0.0351 (14)0.0002 (12)0.0004 (11)0.0009 (11)
N41A0.0188 (14)0.0291 (15)0.0381 (15)0.0049 (12)0.0026 (11)0.0020 (11)
C2A0.0288 (16)0.0317 (16)0.0264 (15)0.0014 (13)0.0010 (12)0.0075 (13)
C3A0.0257 (15)0.0310 (16)0.0200 (14)0.0011 (13)0.0046 (11)0.0013 (12)
C4A0.0217 (14)0.0258 (15)0.0278 (15)0.0000 (12)0.0006 (12)0.0001 (12)
C5A0.0326 (17)0.0284 (16)0.0259 (15)0.0002 (13)0.0092 (12)0.0037 (12)
C6A0.0378 (18)0.0270 (16)0.0318 (16)0.0027 (14)0.0123 (13)0.0051 (13)
C41A0.0240 (15)0.0253 (15)0.0211 (14)0.0014 (12)0.0063 (11)0.0014 (12)
Geometric parameters (Å, º) top
O11—C111.246 (4)C3—H310.9700
O12—C111.260 (4)C3—H320.9700
O21—C211.211 (4)C4—H420.9700
O22—C211.317 (4)C4—H410.9700
O22—H220.93 (5)C5—H520.9700
O41A—C41A1.250 (3)C5—H510.9700
N1A—C6A1.490 (4)C6—H620.9700
N1A—C2A1.478 (4)C6—H610.9700
N41A—C41A1.322 (4)C2A—C3A1.518 (4)
N1A—H12A0.99 (4)C3A—C4A1.511 (4)
N1A—H11A0.97 (3)C4A—C41A1.515 (4)
N41A—H41A0.86 (3)C4A—C5A1.523 (4)
N41A—H42A0.77 (3)C5A—C6A1.521 (4)
C1—C21.538 (5)C2A—H21A0.9700
C1—C61.537 (5)C2A—H22A0.9700
C1—C111.520 (4)C3A—H31A0.9700
C2—C31.531 (5)C3A—H32A0.9700
C2—C211.514 (5)C4A—H4A0.9800
C3—C41.505 (7)C5A—H51A0.9700
C4—C51.506 (8)C5A—H52A0.9700
C5—C61.530 (6)C6A—H61A0.9700
C1—H10.9800C6A—H62A0.9700
C2—H20.9800
C21—O22—H22111 (3)C4—C5—H51109.00
C2A—N1A—C6A112.4 (2)C4—C5—H52109.00
C6A—N1A—H11A114.9 (16)H51—C5—H52108.00
H11A—N1A—H12A106 (3)C6—C5—H52109.00
C6A—N1A—H12A106 (2)C1—C6—H62109.00
C2A—N1A—H12A112 (2)C1—C6—H61109.00
C2A—N1A—H11A104.7 (17)C5—C6—H62109.00
H41A—N41A—H42A122 (3)H61—C6—H62108.00
C41A—N41A—H42A119 (2)C5—C6—H61109.00
C41A—N41A—H41A119 (2)N1A—C2A—C3A109.5 (2)
C6—C1—C11112.5 (3)C2A—C3A—C4A112.7 (2)
C2—C1—C6112.1 (3)C3A—C4A—C41A112.3 (2)
C2—C1—C11112.6 (2)C5A—C4A—C41A107.8 (2)
C1—C2—C21112.7 (3)C3A—C4A—C5A110.5 (2)
C3—C2—C21110.6 (3)C4A—C5A—C6A111.6 (2)
C1—C2—C3111.2 (3)N1A—C6A—C5A110.1 (2)
C2—C3—C4112.0 (3)O41A—C41A—C4A121.7 (2)
C3—C4—C5110.8 (4)N41A—C41A—C4A116.3 (2)
C4—C5—C6112.3 (4)O41A—C41A—N41A121.9 (3)
C1—C6—C5111.4 (3)N1A—C2A—H21A110.00
O11—C11—O12123.5 (3)N1A—C2A—H22A110.00
O11—C11—C1118.6 (3)C3A—C2A—H21A110.00
O12—C11—C1118.0 (3)C3A—C2A—H22A110.00
O21—C21—C2124.3 (3)H21A—C2A—H22A108.00
O22—C21—C2112.7 (3)C2A—C3A—H31A109.00
O21—C21—O22123.0 (3)C2A—C3A—H32A109.00
C6—C1—H1106.00C4A—C3A—H31A109.00
C2—C1—H1106.00C4A—C3A—H32A109.00
C11—C1—H1106.00H31A—C3A—H32A108.00
C3—C2—H2107.00C3A—C4A—H4A109.00
C1—C2—H2107.00C5A—C4A—H4A109.00
C21—C2—H2107.00C41A—C4A—H4A109.00
C4—C3—H31109.00C4A—C5A—H51A109.00
C2—C3—H31109.00C4A—C5A—H52A109.00
H31—C3—H32108.00C6A—C5A—H51A109.00
C4—C3—H32109.00C6A—C5A—H52A109.00
C2—C3—H32109.00H51A—C5A—H52A108.00
C5—C4—H42109.00N1A—C6A—H61A110.00
C3—C4—H42110.00N1A—C6A—H62A110.00
H41—C4—H42108.00C5A—C6A—H61A110.00
C5—C4—H41110.00C5A—C6A—H62A110.00
C3—C4—H41109.00H61A—C6A—H62A108.00
C6—C5—H51109.00
C2A—N1A—C6A—C5A58.9 (3)C3—C2—C21—O2259.5 (4)
C6A—N1A—C2A—C3A58.5 (3)C1—C2—C21—O212.3 (5)
C11—C1—C2—C3179.7 (3)C2—C3—C4—C557.2 (5)
C11—C1—C2—C2155.0 (4)C3—C4—C5—C656.7 (5)
C6—C1—C2—C2173.1 (3)C4—C5—C6—C153.8 (5)
C11—C1—C6—C5179.3 (3)N1A—C2A—C3A—C4A55.6 (3)
C2—C1—C11—O11137.0 (3)C2A—C3A—C4A—C5A53.0 (3)
C2—C1—C11—O1243.4 (4)C2A—C3A—C4A—C41A173.4 (2)
C6—C1—C11—O119.1 (4)C41A—C4A—C5A—C6A175.6 (2)
C6—C1—C11—O12171.3 (3)C3A—C4A—C41A—O41A40.5 (4)
C2—C1—C6—C551.1 (4)C3A—C4A—C41A—N41A141.6 (3)
C6—C1—C2—C351.7 (4)C5A—C4A—C41A—O41A81.5 (3)
C1—C2—C3—C454.8 (5)C5A—C4A—C41A—N41A96.5 (3)
C21—C2—C3—C471.2 (4)C3A—C4A—C5A—C6A52.5 (3)
C1—C2—C21—O22175.4 (3)C4A—C5A—C6A—N1A55.2 (3)
C3—C2—C21—O21122.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O41Ai0.97 (3)1.95 (3)2.861 (3)155 (2)
N1A—H12A···O110.99 (4)1.64 (4)2.588 (4)158 (3)
N41A—H41A···O41Aii0.86 (3)2.14 (4)2.996 (3)174 (2)
N41A—H42A···O12iii0.77 (3)2.11 (3)2.882 (4)177 (3)
O22—H22···O12iv0.93 (5)1.64 (5)2.571 (3)173 (4)
C4A—H4A···O21v0.982.493.340 (4)145
C2A—H21A···O21v0.972.573.389 (4)143
C2A—H22A···O41Avi0.972.593.413 (3)143
C3—H32···O220.972.522.884 (5)102
C6A—H61A···O12vii0.972.583.351 (3)137
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y1, z; (iv) x, y+5/2, z+1/2; (v) x, y+3/2, z1/2; (vi) x, y+1/2, z1/2; (vii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H13N2O+·C8H11O4
Mr300.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)19.0097 (14), 9.0667 (7), 9.1999 (8)
β (°) 92.022 (7)
V3)1584.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.35 × 0.10
Data collection
DiffractometerOxford Gemini-S CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.86, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
10518, 3100, 2146
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.182, 1.06
No. of reflections3100
No. of parameters210
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O41Ai0.97 (3)1.95 (3)2.861 (3)155 (2)
N1A—H12A···O110.99 (4)1.64 (4)2.588 (4)158 (3)
N41A—H41A···O41Aii0.86 (3)2.14 (4)2.996 (3)174 (2)
N41A—H42A···O12iii0.77 (3)2.11 (3)2.882 (4)177 (3)
O22—H22···O12iv0.93 (5)1.64 (5)2.571 (3)173 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y1, z; (iv) x, y+5/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAllen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o614–o618.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o1900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o2794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds