organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­chloro­benz­yl)selane

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tzhoumy@jnu.edu.cn

(Received 11 February 2012; accepted 24 February 2012; online 29 February 2012)

The title mol­ecule, C14H10Cl4Se, features a selenide bridge between two dichloro­benzyl units. The dihedral angle between the two benzene rings is 107.9 (16)°. In the crystal, weak ππ face-to-face aromatic inter­actions are observed [centroid–centroid distance between two adjacent (but crystallographically different) phenyl rings = 3.885 (5) Å], providing some packing stability. Short Cl⋯Cl contacts of 3.41 (2) Å are observed.

Related literature

For applications of organoselenium compounds, see: Dinesh et al. (2007[Dinesh, R. G., Mamoru, K. & Hideharu, I. (2007). Molecules, 12, 504-535.]). For related structures, see: Fabiano et al. (2005[Fabiano, M. A., Werner, M., Clovis, P. & Werner, U. (2005). J. Organomet. Chem. 690, 1294-1299.]); Fuller et al. (2010[Fuller, A. L., Scott-Hayward, L. A. S., Li, Y., Buhl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). J. Am. Chem. Soc. 132, 5799-5802.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl4Se

  • Mr = 398.98

  • Monoclinic, P 21 /n

  • a = 8.1144 (5) Å

  • b = 12.2250 (5) Å

  • c = 15.3505 (9) Å

  • β = 102.479 (6)°

  • V = 1486.78 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.04 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.659, Tmax = 1.000

  • 5405 measured reflections

  • 2628 independent reflections

  • 1902 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.04

  • 2628 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The interest in the chemistry of organoselenium compounds has increased remarkably in the last few decades due to their synthetic applications and biological activities(Dinesh et al.,2007). The title molecule, features a selenide bridge between two Dichlorobenzyl units. The dihedral angle between the two benzene rings is 107.9 (16)°. In the crystal, weak ππ intermolecular face-to-face aromatic interactions are observed [centroid-centroid distance between 6-Membered ring (C2, C3, C4, C5, C6, C7) and 6-Membered ring (C9, C10, C11, C12, C13, C14) = 3.885 (5) Å], providing some packing stability. Short Cl···Cl contacts of 3.41 (2) Å between Cl2 and Cl3 of adjacent molecules are also observed.

Related literature top

For applications of organoselenium compounds, see: Dinesh et al. (2007). For related structures, see: Fabiano et al. (2005); Fuller et al. (2010).

Experimental top

A solid mixture of sodium borohydride (0.38 g, 10 mmol) and elemental selenium (0.40 g, 5 mmol) is stirred in a two naked flask under argon and maintained at 20 °C using a water bath. Dropwise addition of anhydrous EtOH (1.40 g, 30 mmol) to this mixture favours the rapid evolvement of hydrogenand produces a white-grey solid. Addition of anhydrous DMF (10 mL) produces a red-brown solution, which slowly leads to a colourless one. 2,6-Dichlorobenzylchloride (10 mmol) is added dropwise to the solution of solution reported above. The resulting milky medium was stirred before hydrolysis and extraction with Et2O. The obtained organic layer was dried over MgSO4 overnight. The organic residue was further purified by silica gel column using dichloromethane as eluent, The solvent was evaporated and the solid residue was recrystallized from CH3Cl to give the product as yellow crystals (yield: 1.62 g, 80.5%).

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å(aromatic) and 0.97 Å(CH2) and were refined with Uiso(H)=1.2Ueq(C). The height of the largest residual peak is 1.19, and the distance to the nearest non-H atom (se) is 1.07.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability.
Bis(2,6-dichlorobenzyl)selane top
Crystal data top
C14H10Cl4SeF(000) = 784
Mr = 398.98Dx = 1.782 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 8.1144 (5) ÅCell parameters from 1490 reflections
b = 12.2250 (5) Åθ = 3.1–29.2°
c = 15.3505 (9) ŵ = 3.23 mm1
β = 102.479 (6)°T = 293 K
V = 1486.78 (14) Å3Plate, metallic pale yellow
Z = 40.1 × 0.1 × 0.04 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2628 independent reflections
Radiation source: Enhance (Mo) X-ray Source1902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0288 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1114
Tmin = 0.659, Tmax = 1.000l = 1018
5405 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
2628 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C14H10Cl4SeV = 1486.78 (14) Å3
Mr = 398.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1144 (5) ŵ = 3.23 mm1
b = 12.2250 (5) ÅT = 293 K
c = 15.3505 (9) Å0.1 × 0.1 × 0.04 mm
β = 102.479 (6)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2628 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1902 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 1.000Rint = 0.031
5405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 1.19 e Å3
2628 reflectionsΔρmin = 0.50 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.89325 (7)0.75838 (4)0.18239 (3)0.0556 (2)
Cl30.52156 (18)0.76390 (11)0.06014 (11)0.0679 (4)
Cl40.8752 (2)1.05598 (11)0.17334 (10)0.0772 (5)
Cl20.66481 (17)0.48664 (13)0.09733 (12)0.0758 (5)
Cl11.29563 (18)0.64440 (12)0.12621 (12)0.0768 (5)
C90.7067 (6)0.9115 (3)0.0528 (3)0.0394 (11)
C31.1568 (6)0.5365 (4)0.1322 (3)0.0440 (11)
C20.9848 (6)0.5574 (3)0.1111 (3)0.0379 (10)
C10.9110 (6)0.6662 (3)0.0799 (3)0.0445 (12)
H1A0.79990.65610.04190.053*
H1B0.98180.70210.04520.053*
C140.7921 (7)1.0097 (4)0.0657 (3)0.0487 (12)
C80.6873 (6)0.8404 (4)0.1287 (3)0.0494 (12)
H8A0.59640.78880.10790.059*
H8B0.65520.88550.17430.059*
C70.8824 (6)0.4681 (4)0.1202 (3)0.0433 (11)
C60.9468 (7)0.3671 (4)0.1470 (3)0.0539 (14)
H60.87450.30940.15190.065*
C100.6395 (6)0.8837 (4)0.0359 (3)0.0432 (11)
C51.1186 (8)0.3511 (4)0.1669 (4)0.0593 (15)
H51.16270.28240.18460.071*
C110.6591 (7)0.9485 (5)0.1069 (4)0.0605 (14)
H110.61200.92760.16520.073*
C130.8124 (8)1.0760 (4)0.0042 (4)0.0653 (16)
H130.86931.14220.00710.078*
C120.7480 (8)1.0431 (5)0.0901 (4)0.0700 (17)
H120.76541.08600.13730.084*
C41.2247 (7)0.4366 (4)0.1604 (3)0.0543 (14)
H41.34110.42690.17500.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0778 (5)0.0396 (3)0.0418 (3)0.0097 (2)0.0041 (3)0.0019 (2)
Cl30.0577 (9)0.0589 (8)0.0758 (10)0.0002 (6)0.0104 (7)0.0111 (7)
Cl40.1139 (14)0.0446 (8)0.0628 (10)0.0014 (8)0.0035 (9)0.0108 (7)
Cl20.0427 (8)0.0789 (10)0.1042 (13)0.0092 (7)0.0122 (8)0.0189 (9)
Cl10.0533 (9)0.0711 (10)0.1094 (13)0.0159 (7)0.0250 (9)0.0003 (9)
C90.044 (3)0.031 (2)0.044 (3)0.015 (2)0.014 (2)0.006 (2)
C30.045 (3)0.046 (3)0.042 (3)0.003 (2)0.011 (2)0.004 (2)
C20.039 (3)0.042 (2)0.030 (2)0.000 (2)0.004 (2)0.004 (2)
C10.049 (3)0.043 (3)0.039 (3)0.002 (2)0.006 (2)0.010 (2)
C140.062 (3)0.035 (3)0.048 (3)0.006 (2)0.011 (3)0.001 (2)
C80.056 (3)0.054 (3)0.042 (3)0.002 (2)0.020 (2)0.004 (2)
C70.038 (3)0.046 (3)0.045 (3)0.004 (2)0.006 (2)0.010 (2)
C60.077 (4)0.032 (3)0.056 (3)0.008 (3)0.021 (3)0.005 (2)
C100.041 (3)0.042 (3)0.045 (3)0.007 (2)0.005 (2)0.000 (2)
C50.081 (4)0.041 (3)0.054 (3)0.018 (3)0.010 (3)0.004 (2)
C110.067 (4)0.068 (4)0.044 (3)0.023 (3)0.007 (3)0.003 (3)
C130.089 (5)0.039 (3)0.071 (4)0.003 (3)0.023 (3)0.015 (3)
C120.090 (5)0.065 (4)0.062 (4)0.013 (3)0.032 (3)0.027 (3)
C40.053 (3)0.055 (3)0.051 (3)0.018 (3)0.003 (3)0.006 (3)
Geometric parameters (Å, º) top
Se1—C11.965 (4)C14—C131.382 (7)
Se1—C81.970 (5)C8—H8A0.9700
Cl3—C101.745 (5)C8—H8B0.9700
Cl4—C141.738 (5)C7—C61.369 (7)
Cl2—C71.739 (5)C6—H60.9300
Cl1—C31.749 (5)C6—C51.375 (7)
C9—C141.379 (6)C10—C111.385 (7)
C9—C81.490 (6)C5—H50.9300
C9—C101.395 (6)C5—C41.372 (7)
C3—C21.387 (6)C11—H110.9300
C3—C41.371 (6)C11—C121.359 (8)
C2—C11.494 (6)C13—H130.9300
C2—C71.397 (6)C13—C121.370 (8)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C4—H40.9300
C1—Se1—C899.2 (2)C2—C7—Cl2118.5 (4)
C14—C9—C8122.0 (4)C6—C7—Cl2118.9 (4)
C14—C9—C10115.5 (4)C6—C7—C2122.6 (5)
C10—C9—C8122.4 (4)C7—C6—H6120.1
C2—C3—Cl1118.4 (4)C7—C6—C5119.8 (5)
C4—C3—Cl1118.0 (4)C5—C6—H6120.1
C4—C3—C2123.6 (5)C9—C10—Cl3119.6 (4)
C3—C2—C1123.5 (4)C11—C10—Cl3117.6 (4)
C3—C2—C7115.0 (4)C11—C10—C9122.8 (5)
C7—C2—C1121.5 (4)C6—C5—H5120.1
Se1—C1—H1A109.6C4—C5—C6119.9 (5)
Se1—C1—H1B109.6C4—C5—H5120.1
C2—C1—Se1110.3 (3)C10—C11—H11120.5
C2—C1—H1A109.6C12—C11—C10119.0 (5)
C2—C1—H1B109.6C12—C11—H11120.5
H1A—C1—H1B108.1C14—C13—H13120.3
C9—C14—Cl4120.0 (4)C12—C13—C14119.4 (5)
C9—C14—C13122.6 (5)C12—C13—H13120.3
C13—C14—Cl4117.4 (4)C11—C12—C13120.6 (5)
Se1—C8—H8A108.8C11—C12—H12119.7
Se1—C8—H8B108.8C13—C12—H12119.7
C9—C8—Se1113.6 (3)C3—C4—C5119.1 (5)
C9—C8—H8A108.8C3—C4—H4120.5
C9—C8—H8B108.8C5—C4—H4120.5
H8A—C8—H8B107.7

Experimental details

Crystal data
Chemical formulaC14H10Cl4Se
Mr398.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.1144 (5), 12.2250 (5), 15.3505 (9)
β (°) 102.479 (6)
V3)1486.78 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.1 × 0.1 × 0.04
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.659, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5405, 2628, 1902
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.04
No. of reflections2628
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.50

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by grants from the National Natural Science Fund (grant Nos. 31000816, 21071062).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDinesh, R. G., Mamoru, K. & Hideharu, I. (2007). Molecules, 12, 504–535.  Web of Science PubMed Google Scholar
First citationFabiano, M. A., Werner, M., Clovis, P. & Werner, U. (2005). J. Organomet. Chem. 690, 1294–1299.  Google Scholar
First citationFuller, A. L., Scott-Hayward, L. A. S., Li, Y., Buhl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). J. Am. Chem. Soc. 132, 5799–5802.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds