organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o809-o810

Bis[(2,2-di­methyl­propano­yl­oxy)meth­yl] {[2-(6-amino-9H-purin-9-yl)eth­­oxy]meth­yl}phospho­nate–succinic acid (2/1)

aDepartment of Chemical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 156-743, Republic of Korea, and bKorea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
*Correspondence e-mail: iwkim@ssu.ac.kr

(Received 21 January 2012; accepted 15 February 2012; online 24 February 2012)

The title compound, C20H32N5O8P·0.5C4H6O4, is composed of two 9-{2-[bis­(pivaloyloxymeth­oxy)phosphinylmeth­oxy]eth­yl}adenine, commonly known as adefovir dipivoxil (AD), mol­ecules linked to the carb­oxy­lic acid groups of succinic acid (SA). The asymmetric unit contains one mol­ecule of AD and half a mol­ecule of SA, which sits on an inversion center. Both adenine units in the two AD mol­ecules make AD–SA N—H⋯O and SA–AD O—H⋯N hydrogen bonds to SA. In addition, the inter­molecular AD–AD N—H⋯O—P hydrogen bond serves to stabilize the cocrystal. There is also a ππ stacking inter­action [inter­planar spacing 3.34 (19) Å] between adjacent inversion-related adenine groups.

Related literature

For the synthesis and process optimization of 9-{2-[bis(pivaloyloxymeth­oxy)phosphinylmeth­oxy]eth­yl}adenine, see: Starrett et al. (1992[Starrett, J. E., Tortolani, D. R., Hitchcock, M. J. M., Martin, J. C. & Mansuri, M. M. (1992). Antiviral Res. 19, 267-273.]); Yu et al. (1999[Yu, R. H., Schultze, J. C., Rohloff, J. C., Dudzinski, P. W. & Kelly, D. E. (1999). Org. Process Res. Dev. 3, 53-55.]). For the biological and pharmacological relevance of 9-{2-[bis­(pivaloyloxymeth­oxy)phosphinylmeth­oxy]eth­yl}adenine, see: Qaqish et al. (2003[Qaqish, R. B., Mattes, K. A. & Ritchie, D. J. (2003). Clin. Ther. 25, 3084-3099.]); Julander et al. (2002[Julander, J. G., Sidwell, R. W. & Morrey, J. D. (2002). Antiviral Res. 55, 27-40.]). For the structure of a hydrate of the title compound, see: Chang et al. (2007[Chang, Y., Zheng, Q.-T. & Lu, Y. (2007). Acta Cryst. E63, o1014-o1015.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32N5O8P·0.5C4H6O4

  • Mr = 560.52

  • Triclinic, [P \overline 1]

  • a = 7.7122 (12) Å

  • b = 10.1577 (15) Å

  • c = 19.185 (3) Å

  • α = 80.409 (8)°

  • β = 79.718 (9)°

  • γ = 80.407 (8)°

  • V = 1443.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 K

  • 0.11 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.987

  • 49737 measured reflections

  • 7222 independent reflections

  • 4593 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.01

  • 7222 reflections

  • 417 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.812 (19) 2.14 (2) 2.941 (2) 170.16 (18)
N1—H1B⋯O9 0.79 (2) 2.05 (2) 2.842 (2) 175 (2)
O10—H10⋯N4 0.84 (2) 1.91 (2) 2.734 (2) 166 (2)
Symmetry code: (i) x+1, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

9-{2-[Bis(pivaloyloxymethoxy)phosphinylmethoxy]ethyl}adenine, also known as adefovir dipivoxil (AD), is a broad-spectrum antiviral from the class of acyclic nucleoside phosphonates. It is an orally bioavailable prodrug of 9-[2-(phosphonylmethoxy)ethyl] adenine, which acts as a chain terminator nucleotide analogue and is effective against the human immunodeficiency virus, herpes viruses, Epstein–Barr virus, retroviruses, cytomegalovirus, and other DNA viruses (Yu et al., 1999; Julander et al., 2002; Qaqish et al., 2003). In the present study, we report a new cocrystal of AD with succinic acid to later study the physical characteristics, such as thermal stability and in vitro release behavior.

Related literature top

For the synthesis and process optimization of 9-{2-[bis(pivaloyloxymethoxy)phosphinylmethoxy]ethyl}adenine, see: Starrett et al. (1992); Yu et al. (1999). For the biological and pharmacological relevance of 9-{2-[bis(pivaloyloxymethoxy)phosphinylmethoxy]ethyl}adenine, see: Qaqish et al. (2003); Julander et al. (2002). For the structure of a hydrate of the title compound, see: Chang et al. (2007).

Experimental top

The title compound was formed during cocrystallization in a 2:1 molar ratio of 9-{2-[bis(pivaloyloxymethoxy)phosphinylmethoxy]ethyl}adenine, commonly known as adefovir dipivoxil, (0.4 mmol, AMoRe Pacific Co., purity > 99%) and succinic acid (0.2 mmol, Sigma–Aldrich, purity > 99%). The two components were dissolved in ethanol (3 ml, Samchun Chemical, Korea, HPLC grade) and heated at 45–50°C for 1 h. The prepared solution was stored in a 25°C incubator, and the crystals were started to be visible after about 1 d. After 2 more weeks, the crystals were filtered, washed with deionized water (Resistivity > 18.2 MΩ-cm; Direct-Q, Millipore), and dried for 24 h in a 40°C vacuum oven.

Refinement top

All H atoms were located in a difference map. Methyl hydrogens on the tert-butyl carbons were positioned with idealized geometry using a riding model with C—H = 0.96 Å and Uiso = 1.5Ueq (CMe). All other hydrogens were freely refined.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius. Intermolecular interactions are shown as dashed lines. [Symmetry code: (i) -x + 2, -y - 1, -z].
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. For clarity, H atoms are shown only for those involved in hydrogen bonding (dashed lines).
Bis[(2,2-dimethylpropanoyloxy)methyl] {[2-(6-amino-9H-purin-9-yl)ethoxy]methyl}phosphonate–succinic acid (2/1) top
Crystal data top
C20H32N5O8P·0.5C4H6O4Z = 2
Mr = 560.52F(000) = 594
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Melting point: 410 K
a = 7.7122 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1577 (15) ÅCell parameters from 9846 reflections
c = 19.185 (3) Åθ = 2.2–25.7°
α = 80.409 (8)°µ = 0.15 mm1
β = 79.718 (9)°T = 296 K
γ = 80.407 (8)°Block, colourless
V = 1443.5 (4) Å30.11 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD
diffractometer
7222 independent reflections
Radiation source: fine-focus sealed tube4593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 28.4°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.982, Tmax = 0.987k = 1313
49737 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0783P)2]
where P = (Fo2 + 2Fc2)/3
7222 reflections(Δ/σ)max < 0.001
417 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H32N5O8P·0.5C4H6O4γ = 80.407 (8)°
Mr = 560.52V = 1443.5 (4) Å3
Triclinic, P1Z = 2
a = 7.7122 (12) ÅMo Kα radiation
b = 10.1577 (15) ŵ = 0.15 mm1
c = 19.185 (3) ÅT = 296 K
α = 80.409 (8)°0.11 × 0.10 × 0.08 mm
β = 79.718 (9)°
Data collection top
Bruker SMART CCD
diffractometer
7222 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4593 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.053
49737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.38 e Å3
7222 reflectionsΔρmin = 0.29 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.85354 (6)0.35488 (4)0.23364 (3)0.04127 (14)
O21.16908 (15)0.27477 (11)0.16611 (7)0.0465 (3)
H22A0.869 (3)0.400 (2)0.0252 (13)0.083 (8)*
O10.75924 (17)0.37739 (12)0.17242 (7)0.0520 (3)
H7A1.410 (3)0.2107 (19)0.1924 (10)0.052 (5)*
N41.30471 (18)0.10694 (13)0.07213 (8)0.0408 (3)
H6A1.364 (3)0.2683 (19)0.0495 (10)0.050 (5)*
N51.40907 (18)0.07897 (12)0.08442 (7)0.0376 (3)
H8A1.137 (3)0.353 (2)0.2554 (13)0.077 (7)*
O101.08166 (19)0.23084 (12)0.01701 (8)0.0561 (4)
H1C1.590 (3)0.454 (2)0.1269 (10)0.047 (5)*
N11.5210 (2)0.38651 (15)0.11658 (10)0.0497 (4)
H51.177 (3)0.0849 (19)0.0460 (10)0.054 (5)*
O60.79832 (17)0.45855 (12)0.28933 (7)0.0545 (3)
H7B1.377 (3)0.371 (2)0.1459 (10)0.057 (5)*
O30.83198 (18)0.21639 (11)0.28310 (7)0.0526 (3)
H6B1.549 (3)0.2239 (18)0.0706 (10)0.054 (6)*
C31.4627 (2)0.14293 (15)0.09965 (9)0.0350 (4)
H1A1.870 (3)0.1491 (19)0.1681 (11)0.059 (6)*
N21.7135 (2)0.26489 (14)0.14725 (9)0.0508 (4)
H15B0.551 (3)0.523 (2)0.2714 (12)0.071 (7)*
N31.6779 (2)0.02193 (14)0.13207 (9)0.0513 (4)
H15A0.633 (3)0.619 (2)0.3206 (12)0.078 (7)*
C41.5280 (2)0.02841 (15)0.10754 (9)0.0372 (4)
H22B0.974 (3)0.383 (2)0.0530 (12)0.065 (6)*
O40.9500 (2)0.00392 (13)0.25970 (8)0.0628 (4)
H8B1.104 (3)0.456 (2)0.1946 (12)0.073 (7)*
O70.5407 (2)0.45750 (14)0.37225 (8)0.0645 (4)
C51.2792 (2)0.02556 (16)0.06432 (10)0.0415 (4)
C21.5646 (2)0.26729 (15)0.12075 (9)0.0383 (4)
H9B0.689 (4)0.071 (3)0.2924 (16)0.112 (10)*
C61.4277 (3)0.22069 (16)0.08249 (11)0.0438 (4)
H1B1.438 (3)0.3928 (19)0.0988 (10)0.044 (6)*
C71.3572 (2)0.27262 (18)0.15218 (11)0.0450 (4)
H9A0.792 (3)0.126 (2)0.2055 (14)0.088 (8)*
C220.9785 (3)0.42444 (17)0.00200 (12)0.0436 (4)
H101.161 (3)0.206 (2)0.0348 (13)0.081 (8)*
C211.1118 (2)0.36274 (17)0.02458 (10)0.0445 (4)
C81.0864 (3)0.3663 (2)0.21406 (13)0.0505 (5)
C11.7603 (3)0.14515 (19)0.15018 (13)0.0577 (5)
O91.2352 (2)0.42677 (14)0.05093 (11)0.0873 (6)
O50.8495 (3)0.0752 (3)0.37084 (13)0.1501 (12)
C90.7978 (3)0.10227 (19)0.25713 (16)0.0618 (6)
C111.1398 (3)0.1700 (2)0.31830 (12)0.0678 (6)
C150.6237 (3)0.5252 (2)0.30718 (14)0.0625 (6)
O80.4230 (3)0.3366 (2)0.31153 (9)0.0959 (6)
C160.4436 (3)0.3614 (2)0.36752 (12)0.0608 (5)
C100.9642 (3)0.0782 (2)0.32119 (13)0.0696 (6)
C180.2912 (6)0.3830 (4)0.4914 (2)0.1566 (19)
H18A0.18430.43370.47640.235*
H18B0.37260.44360.49360.235*
H18C0.26270.33240.53790.235*
C141.2937 (4)0.0882 (3)0.28699 (18)0.1026 (10)
H14A1.28500.05230.23800.154*
H14B1.40520.14580.28940.154*
H14C1.28700.01550.31400.154*
C121.1638 (5)0.2356 (4)0.39287 (18)0.1525 (18)
H12A1.14800.16750.42350.229*
H12B1.28130.28520.39220.229*
H12C1.07740.29600.41050.229*
C170.3749 (4)0.2886 (3)0.43929 (13)0.0794 (7)
C200.5398 (7)0.2122 (6)0.4705 (3)0.213 (3)
H20A0.50300.16450.51700.320*
H20B0.61620.27520.47460.320*
H20C0.60300.14910.43950.320*
C190.2625 (9)0.1901 (6)0.4313 (2)0.227 (3)
H19A0.24330.13000.47540.341*
H19B0.32070.13920.39370.341*
H19C0.15010.23670.41980.341*
C131.1420 (4)0.2716 (3)0.2684 (2)0.1238 (13)
H13A1.25430.32940.26510.186*
H13B1.12540.22490.22170.186*
H13C1.04770.32490.28660.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0401 (3)0.0328 (2)0.0502 (3)0.00576 (17)0.0116 (2)0.01014 (19)
O20.0360 (7)0.0422 (6)0.0663 (8)0.0040 (5)0.0069 (6)0.0242 (6)
O10.0506 (8)0.0463 (7)0.0587 (8)0.0086 (6)0.0214 (6)0.0078 (6)
N40.0401 (8)0.0326 (7)0.0523 (9)0.0019 (6)0.0169 (7)0.0061 (6)
N50.0391 (8)0.0280 (6)0.0449 (8)0.0019 (5)0.0073 (6)0.0046 (6)
O100.0544 (9)0.0388 (7)0.0831 (10)0.0083 (6)0.0301 (8)0.0090 (6)
N10.0500 (10)0.0280 (7)0.0766 (12)0.0011 (7)0.0322 (9)0.0034 (7)
O60.0524 (8)0.0457 (7)0.0661 (9)0.0058 (6)0.0065 (7)0.0249 (6)
O30.0654 (9)0.0379 (6)0.0564 (8)0.0030 (6)0.0194 (7)0.0062 (6)
C30.0367 (9)0.0315 (8)0.0377 (9)0.0033 (6)0.0095 (7)0.0054 (6)
N20.0493 (9)0.0369 (8)0.0724 (11)0.0008 (6)0.0288 (8)0.0117 (7)
N30.0483 (9)0.0385 (8)0.0751 (11)0.0039 (7)0.0245 (8)0.0172 (7)
C40.0382 (9)0.0317 (8)0.0426 (9)0.0018 (6)0.0082 (7)0.0087 (7)
O40.0758 (10)0.0428 (7)0.0635 (9)0.0123 (6)0.0158 (8)0.0050 (6)
O70.0757 (10)0.0612 (9)0.0554 (9)0.0103 (7)0.0005 (8)0.0159 (7)
C50.0416 (10)0.0335 (8)0.0498 (10)0.0018 (7)0.0131 (8)0.0042 (7)
C20.0400 (9)0.0340 (8)0.0420 (9)0.0027 (7)0.0111 (8)0.0058 (7)
C60.0421 (11)0.0283 (8)0.0588 (12)0.0039 (7)0.0047 (9)0.0038 (8)
C70.0353 (10)0.0356 (9)0.0676 (13)0.0042 (7)0.0089 (9)0.0167 (9)
C220.0392 (10)0.0415 (9)0.0544 (12)0.0054 (8)0.0170 (9)0.0090 (8)
C210.0420 (10)0.0397 (9)0.0553 (11)0.0078 (7)0.0155 (9)0.0066 (8)
C80.0455 (11)0.0486 (11)0.0624 (13)0.0021 (9)0.0105 (10)0.0245 (10)
C10.0504 (12)0.0462 (10)0.0869 (16)0.0009 (9)0.0357 (11)0.0201 (10)
O90.0812 (11)0.0438 (8)0.1585 (17)0.0067 (7)0.0839 (12)0.0076 (9)
O50.1080 (17)0.147 (2)0.1177 (18)0.0577 (15)0.0455 (14)0.0593 (15)
C90.0713 (15)0.0328 (9)0.0861 (17)0.0026 (9)0.0317 (14)0.0108 (10)
C110.0641 (14)0.0598 (13)0.0673 (14)0.0139 (11)0.0086 (11)0.0018 (11)
C150.0613 (14)0.0448 (11)0.0703 (15)0.0110 (10)0.0058 (12)0.0123 (10)
O80.0926 (14)0.1482 (18)0.0600 (11)0.0470 (12)0.0158 (10)0.0182 (11)
C160.0598 (13)0.0672 (13)0.0557 (13)0.0030 (10)0.0095 (11)0.0147 (11)
C100.0685 (15)0.0583 (13)0.0648 (15)0.0093 (11)0.0023 (12)0.0085 (11)
C180.227 (5)0.119 (3)0.102 (3)0.060 (3)0.081 (3)0.034 (2)
C140.0750 (19)0.108 (2)0.119 (2)0.0001 (16)0.0038 (17)0.0247 (19)
C120.117 (3)0.192 (4)0.094 (2)0.056 (3)0.010 (2)0.051 (2)
C170.107 (2)0.0736 (15)0.0561 (14)0.0243 (15)0.0029 (14)0.0100 (12)
C200.201 (5)0.230 (5)0.145 (4)0.024 (4)0.028 (4)0.104 (4)
C190.361 (8)0.261 (6)0.110 (3)0.248 (6)0.027 (4)0.034 (3)
C130.095 (2)0.0793 (19)0.201 (4)0.0341 (16)0.047 (2)0.053 (2)
Geometric parameters (Å, º) top
P1—O11.4562 (13)C22—H22B1.00 (2)
P1—O31.5760 (13)C21—O91.200 (2)
P1—O61.5794 (13)C8—H8A0.93 (2)
P1—C81.787 (2)C8—H8B0.95 (2)
O2—C81.413 (2)C1—H1A0.96 (2)
O2—C71.424 (2)O5—C101.179 (3)
N4—C51.314 (2)C9—H9B1.04 (3)
N4—C31.383 (2)C9—H9A0.99 (3)
N5—C51.354 (2)C11—C121.504 (4)
N5—C41.3707 (19)C11—C101.508 (3)
N5—C61.464 (2)C11—C131.518 (4)
O10—C211.309 (2)C11—C141.538 (4)
O10—H100.84 (3)C15—H15B0.96 (2)
N1—C21.328 (2)C15—H15A1.05 (2)
N1—H1C0.81 (2)O8—C161.186 (3)
N1—H1B0.79 (2)C16—C171.501 (3)
O6—C151.413 (2)C18—C171.490 (4)
O3—C91.415 (2)C18—H18A0.9600
C3—C41.383 (2)C18—H18B0.9600
C3—C21.411 (2)C18—H18C0.9600
N2—C11.337 (2)C14—H14A0.9600
N2—C21.341 (2)C14—H14B0.9600
N3—C11.327 (2)C14—H14C0.9600
N3—C41.338 (2)C12—H12A0.9600
O4—C101.337 (2)C12—H12B0.9600
O4—C91.411 (2)C12—H12C0.9600
O7—C161.349 (3)C17—C191.471 (5)
O7—C151.420 (3)C17—C201.539 (5)
C5—H50.990 (19)C20—H20A0.9600
C6—C71.497 (3)C20—H20B0.9600
C6—H6A0.90 (2)C20—H20C0.9600
C6—H6B0.93 (2)C19—H19A0.9600
C7—H7A1.012 (19)C19—H19B0.9600
C7—H7B1.02 (2)C19—H19C0.9600
C22—C211.490 (2)C13—H13A0.9600
C22—C22i1.507 (3)C13—H13B0.9600
C22—H22A0.93 (3)C13—H13C0.9600
O1—P1—O3113.85 (8)O3—C9—H9B104.5 (16)
O1—P1—O6117.52 (7)O4—C9—H9A103.8 (15)
O3—P1—O6101.92 (8)O3—C9—H9A108.4 (14)
O1—P1—C8116.19 (10)H9B—C9—H9A120 (2)
O3—P1—C8106.95 (9)C12—C11—C10109.1 (2)
O6—P1—C898.37 (8)C12—C11—C13112.7 (3)
C8—O2—C7111.57 (13)C10—C11—C13108.6 (2)
C5—N4—C3104.30 (13)C12—C11—C14109.0 (3)
C5—N5—C4105.98 (13)C10—C11—C14110.11 (19)
C5—N5—C6129.31 (15)C13—C11—C14107.4 (2)
C4—N5—C6124.70 (15)O6—C15—O7109.46 (17)
C21—O10—H10106.4 (17)O6—C15—H15B111.4 (14)
C2—N1—H1C118.2 (13)O7—C15—H15B106.6 (14)
C2—N1—H1B121.6 (14)O6—C15—H15A108.1 (13)
H1C—N1—H1B119.5 (19)O7—C15—H15A103.0 (13)
C15—O6—P1124.52 (15)H15B—C15—H15A117.8 (18)
C9—O3—P1122.53 (14)O8—C16—O7121.8 (2)
C4—C3—N4109.79 (13)O8—C16—C17125.3 (2)
C4—C3—C2116.20 (15)O7—C16—C17112.77 (19)
N4—C3—C2134.00 (15)O5—C10—O4121.8 (2)
C1—N2—C2118.43 (15)O5—C10—C11125.9 (2)
C1—N3—C4110.16 (15)O4—C10—C11112.3 (2)
N3—C4—N5126.26 (14)C17—C18—H18A109.5
N3—C4—C3127.50 (14)C17—C18—H18B109.5
N5—C4—C3106.24 (14)H18A—C18—H18B109.5
C10—O4—C9117.94 (19)C17—C18—H18C109.5
C16—O7—C15117.27 (18)H18A—C18—H18C109.5
N4—C5—N5113.69 (15)H18B—C18—H18C109.5
N4—C5—H5125.8 (11)C11—C14—H14A109.5
N5—C5—H5120.5 (11)C11—C14—H14B109.5
N1—C2—N2118.11 (15)H14A—C14—H14B109.5
N1—C2—C3123.89 (16)C11—C14—H14C109.5
N2—C2—C3118.00 (14)H14A—C14—H14C109.5
N5—C6—C7113.36 (15)H14B—C14—H14C109.5
N5—C6—H6A106.7 (12)C11—C12—H12A109.5
C7—C6—H6A108.1 (12)C11—C12—H12B109.5
N5—C6—H6B104.9 (12)H12A—C12—H12B109.5
C7—C6—H6B110.5 (12)C11—C12—H12C109.5
H6A—C6—H6B113.5 (17)H12A—C12—H12C109.5
O2—C7—C6108.72 (15)H12B—C12—H12C109.5
O2—C7—H7A108.3 (11)C19—C17—C18114.6 (3)
C6—C7—H7A110.1 (10)C19—C17—C16110.5 (3)
O2—C7—H7B105.4 (11)C18—C17—C16112.3 (2)
C6—C7—H7B107.8 (11)C19—C17—C20108.7 (4)
H7A—C7—H7B116.2 (15)C18—C17—C20104.0 (4)
C21—C22—C22i113.30 (19)C16—C17—C20106.1 (3)
C21—C22—H22A106.6 (15)C17—C20—H20A109.5
C22i—C22—H22A111.2 (15)C17—C20—H20B109.5
C21—C22—H22B107.6 (12)H20A—C20—H20B109.5
C22i—C22—H22B109.4 (12)C17—C20—H20C109.5
H22A—C22—H22B108.6 (18)H20A—C20—H20C109.5
O9—C21—O10122.58 (16)H20B—C20—H20C109.5
O9—C21—C22123.77 (16)C17—C19—H19A109.5
O10—C21—C22113.65 (15)C17—C19—H19B109.5
O2—C8—P1108.92 (13)H19A—C19—H19B109.5
O2—C8—H8A112.5 (14)C17—C19—H19C109.5
P1—C8—H8A111.6 (15)H19A—C19—H19C109.5
O2—C8—H8B111.4 (14)H19B—C19—H19C109.5
P1—C8—H8B109.8 (14)C11—C13—H13A109.5
H8A—C8—H8B102.5 (19)C11—C13—H13B109.5
N3—C1—N2129.67 (18)H13A—C13—H13B109.5
N3—C1—H1A115.2 (12)C11—C13—H13C109.5
N2—C1—H1A115.1 (12)H13A—C13—H13C109.5
O4—C9—O3107.72 (17)H13B—C13—H13C109.5
O4—C9—H9B111.6 (16)
Symmetry code: (i) x+2, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1ii0.812 (19)2.14 (2)2.941 (2)170.16 (18)
N1—H1B···O90.79 (2)2.05 (2)2.842 (2)175 (2)
O10—H10···N40.84 (2)1.91 (2)2.734 (2)166 (2)
Symmetry code: (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC20H32N5O8P·0.5C4H6O4
Mr560.52
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7122 (12), 10.1577 (15), 19.185 (3)
α, β, γ (°)80.409 (8), 79.718 (9), 80.407 (8)
V3)1443.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.11 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.982, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
49737, 7222, 4593
Rint0.053
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.01
No. of reflections7222
No. of parameters417
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.812 (19)2.14 (2)2.941 (2)170.16 (18)
N1—H1B···O90.79 (2)2.05 (2)2.842 (2)175 (2)
O10—H10···N40.84 (2)1.91 (2)2.734 (2)166 (2)
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2010-0005045). It was also supported by the Advanced Track of Green Production Processing for Reducing Greenhouse Gas Emissions of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Government Ministry of Knowledge Economy (grant No. 20114010203140).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, Y., Zheng, Q.-T. & Lu, Y. (2007). Acta Cryst. E63, o1014–o1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJulander, J. G., Sidwell, R. W. & Morrey, J. D. (2002). Antiviral Res. 55, 27–40.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQaqish, R. B., Mattes, K. A. & Ritchie, D. J. (2003). Clin. Ther. 25, 3084–3099.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarrett, J. E., Tortolani, D. R., Hitchcock, M. J. M., Martin, J. C. & Mansuri, M. M. (1992). Antiviral Res. 19, 267–273.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYu, R. H., Schultze, J. C., Rohloff, J. C., Dudzinski, P. W. & Kelly, D. E. (1999). Org. Process Res. Dev. 3, 53–55.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o809-o810
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds