organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2S,6R,7aR)-2-Benzyl-1,6-dihy­dr­oxy­hexa­hydro­pyrrolizin-3-one

aLaboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP6154, CEP 13083-970, Campinas-SP, Brazil, and bLaboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, CP6154, CEP 13083-970, Campinas-SP, Brazil
*Correspondence e-mail: aparicio@iqm.unicamp.br

(Received 5 December 2011; accepted 18 January 2012; online 4 February 2012)

In the title compound, C14H17NO3, the dihedral angles show that the H atoms at two stereocenters are in a trans-diaxial configuration. In the crystal, the molecules are linked by O—H⋯O hydrogen bonds. The absolute configuration of the molecule has been established on the basis of refinement of the Hooft and Flack parameters.

Related literature

For a synthetic sequence for the preparation of the title compound, see: de Luna Freire et al. (2011[Luna Freire, K. R. de, Tormena, C. F. & Coelho, F. (2011). Synlett, 14, 2059-2063.]). For the use of this type of compounds as LFA-1 (Lymphocyte Function-Associated Anti­gen-1) inhibitors, see: Baumann (2007[Baumann, K. O. (2007). WO Patent 2007039286; Chem Abstr. 146, 421836.]). For a related structure, see: Newton et al. (2004[Newton, C., Ameijde, J., Fleet, G. W. J., Nash, R. J. & Watkin, D. J. (2004). Acta Cryst. E60, o1463-o1464.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO3

  • Mr = 247.29

  • Orthorhombic, P 21 21 21

  • a = 6.6241 (3) Å

  • b = 13.6873 (6) Å

  • c = 13.9726 (6) Å

  • V = 1266.84 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • 26923 measured reflections

  • 2295 independent reflections

  • 2290 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.078

  • S = 1.15

  • 2295 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) and Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) [Hooft parameter = 0.00(2), (943 Bijvoet pairs)]

  • Flack parameter: 0.00 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.93 (2) 1.73 (2) 2.6395 (12) 164 (2)
O1—H1A⋯O3ii 0.86 (2) 1.93 (2) 2.7716 (13) 167 (19)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.] and PLATON.

Supporting information


Comment top

The title compound can be used as a prototype for the development of new inhibitors of LFA-1 (lymphocyte function-associated antigen 1) with potential application as anti-inflammatory agents (Baumann, 2007). The title compound is a new asymmetric benzyl-pyrrolizidinone which has been synthesized in our laboratory and its crystal structure is presented in this article.

The title compound (Fig. 1) has four stereocenters and was prepared from a Morita-Baylis-Hillman adduct. The dihedral angles H3—C3—C4—H4 = -158° and H4—C4—C5—H5 = 163° show that H atoms 3, 4 and 5 at the two new stereocenters are in a trans-diaxial configuration. These values agree with the coupling constant values obtained for these H atoms in the 1H NMR analysis. The crystal structure is stabilized by intermolecular hydrogen bonds (Tab. 1 & Fig. 2).

Related literature top

For a synthetic sequence for the preparation of the title compound, see: de Luna Freire et al. (2011). For the use of this type of compounds as LFA-1 (Lymphocyte Function-Associated Antigen-1) inhibitors, see: Baumann (2007). For a related structure, see: Newton et al. (2004).

Experimental top

The title compound was prepared using a synthetic sequence described in the literature (de Luna Freire et al., 2011) and purified by flash silica gel column chromatography (CH2Cl2:MeOH – solvent gradient: 0:100 to 97:03) to afford 0.06 g (as a white solid) in 97% yield. It was then recrystallized using the liquid-vapor saturation method, dissolved in ethanol and crystallized with a vapor pressure of a second less polar liquid (ethyl ether), in a closed camera, providing the slow formation of crystals.

Refinement top

The H-atoms bonded to C-atoms were included in the refinements at geometrically idealized positions with C—H = 0.95, 0.99 and 1.00 Å, for aryl, methylene and methyne H-atoms, respectively, with and Uiso(H) = 1.2 times Ueq(C). The H-atoms bonded to O atoms were allowed to refine freely. The Flack parameter was x=0.00 (16) (Flack, 1983). Further analysis of the absolute structure was performed using likelihood methods (Hooft et al., 2008) with PLATON (Spek, 2009). A total of 943 Bijvoet pairs were included in the calculations. The resulting value of the Hooft parameter was y = 0.00 (2), with a probability for an inverted structure smaller than 1x10-100. These results indicated that the absolute structure has been correctly assigned.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A unit cell packing diagram of the title compound showing hydrogen bonds as dashed lines.
(1S,2S,6R,7aR)-2-Benzyl-1,6- dihydroxyhexahydropyrrolizin-3-one top
Crystal data top
C14H17NO3Dx = 1.297 Mg m3
Mr = 247.29Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 2295 reflections
a = 6.6241 (3) Åθ = 4.5–69.5°
b = 13.6873 (6) ŵ = 0.74 mm1
c = 13.9726 (6) ÅT = 100 K
V = 1266.84 (10) Å3Rectangular, colourless
Z = 40.17 × 0.15 × 0.12 mm
F(000) = 528
Data collection top
Bruker Kappa APEXII DUO
diffractometer
2290 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 69.5°, θmin = 4.5°
Bruker APEX CCD area–detector scansh = 77
26923 measured reflectionsk = 1516
2295 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.1808P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.17 e Å3
2295 reflectionsΔρmin = 0.16 e Å3
172 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0086 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983) and Hooft et al. (2008) [Hooft parameter = 0.00(2), (943 Bijvoet pairs)]'
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (16)
Crystal data top
C14H17NO3V = 1266.84 (10) Å3
Mr = 247.29Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.6241 (3) ŵ = 0.74 mm1
b = 13.6873 (6) ÅT = 100 K
c = 13.9726 (6) Å0.17 × 0.15 × 0.12 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
2290 reflections with I > 2σ(I)
26923 measured reflectionsRint = 0.026
2295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.17 e Å3
S = 1.15Δρmin = 0.16 e Å3
2295 reflectionsAbsolute structure: Flack (1983) and Hooft et al. (2008) [Hooft parameter = 0.00(2), (943 Bijvoet pairs)]'
172 parametersAbsolute structure parameter: 0.00 (16)
0 restraints
Special details top

Experimental. [α]D20 + 51 (c 1, MeOH); M. p. 135–136° C; IR (KBr, vmax): 3404, 3232, 2987, 2936, 2897, 2871, 1670, 1447, 1416, 1375, 1300, 1263, 1222,1175, 1121 cm-1; 1H NMR (500 MHz, CD3OD) δ 1.55 (dddd, J = 13.4, 5.3, 4.0, 1.0 Hz, 1H, H-2 A); 2.25 (ddd, J = 13.4, 8.0, 5.4 Hz, 1H, H-2B); 2.93 (m, 2H, H-8, H-5); 3.02 (m, J = 7.5, 1.8 Hz, 1H, H-6); 3.08 (ddd, J = 12.0, 4.9, 1.3 Hz, 1H, H-14 A); 3.52 (dd, J = 12.0, 2.4 Hz, 1H, H-14B); 3.64 (m, JH3,H4 = 7.0, J = 8.0, 5.3 Hz, 1H, H-3); 3.88 (dd,JH4,H5 = 9.4, JH3,H4 = 7.0 Hz, 1H, H-4); 4.41 (m, J = 5.1, 4.0, 3.0 Hz, 1H, H-1); 7.15 (m, 1H, H—Ar); 7.23 (m, 2H, H—Ar); 7.29 (m, 2H, H—Ar); 13C NMR (62.5 MHz, (CD3)2CO) δ 34.4, 38.6, 52.3, 54.0, 65.6, 72.4, 80.6, 126.5, 128.7, 130.3, 141.0, 175.6; HRMS (ESI-TOF) Calcd. for C14H18NO3 [M + H]+ 248.1287. Found 248.1286.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38278 (15)0.66691 (6)0.06882 (7)0.0253 (2)
O20.07013 (13)0.91601 (7)0.27608 (7)0.0264 (2)
O30.61142 (13)1.03167 (6)0.28357 (7)0.0238 (2)
N10.21491 (16)0.88149 (7)0.19167 (7)0.0204 (3)
C10.3664 (2)0.76715 (9)0.09195 (9)0.0217 (3)
H10.37890.80460.03080.026*
C20.52450 (19)0.80862 (9)0.16169 (9)0.0216 (3)
H2A0.53990.76670.21890.026*
H2B0.65750.81680.13040.026*
C30.42952 (18)0.90724 (9)0.18696 (9)0.0193 (3)
H30.45290.95490.13380.023*
C40.46008 (18)0.95809 (9)0.28423 (9)0.0192 (3)
H40.49130.90840.33460.023*
C50.25242 (19)1.00357 (9)0.30318 (9)0.0200 (3)
H50.24421.06500.26460.024*
C60.20002 (19)1.03016 (9)0.40713 (9)0.0235 (3)
H6A0.27591.08980.42490.028*
H6B0.05441.04610.41050.028*
C70.2453 (2)0.95143 (9)0.48012 (9)0.0256 (3)
C80.1026 (3)0.87967 (10)0.50128 (10)0.0335 (3)
H80.02440.88010.46970.040*
C90.1451 (3)0.80737 (11)0.56844 (10)0.0428 (4)
H90.04660.75910.58260.051*
C100.3288 (3)0.80545 (11)0.61435 (10)0.0421 (4)
H100.35730.75560.65970.050*
C110.10960 (19)0.92968 (8)0.25733 (9)0.0210 (3)
C120.4306 (2)0.94914 (10)0.52735 (9)0.0288 (3)
H120.52910.99760.51370.035*
C130.4730 (3)0.87670 (11)0.59435 (10)0.0372 (4)
H130.59960.87590.62630.045*
C140.1616 (2)0.79469 (9)0.13686 (9)0.0235 (3)
H14A0.05950.80960.08720.028*
H14B0.11010.74200.17880.028*
H3A0.737 (4)1.0009 (16)0.2841 (14)0.050 (5)*
H1A0.379 (3)0.6326 (15)0.1204 (16)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0350 (5)0.0173 (4)0.0237 (4)0.0039 (4)0.0009 (4)0.0011 (3)
O20.0173 (4)0.0252 (4)0.0368 (5)0.0013 (4)0.0018 (4)0.0020 (4)
O30.0171 (4)0.0209 (4)0.0334 (5)0.0010 (4)0.0019 (4)0.0044 (4)
N10.0183 (5)0.0200 (5)0.0229 (5)0.0017 (4)0.0018 (4)0.0007 (4)
C10.0283 (7)0.0173 (6)0.0194 (6)0.0033 (5)0.0009 (5)0.0005 (5)
C20.0212 (6)0.0210 (6)0.0226 (6)0.0038 (5)0.0022 (5)0.0001 (5)
C30.0181 (6)0.0189 (5)0.0209 (6)0.0020 (5)0.0013 (4)0.0018 (5)
C40.0185 (6)0.0166 (5)0.0226 (6)0.0008 (4)0.0018 (4)0.0003 (5)
C50.0188 (6)0.0162 (5)0.0251 (6)0.0022 (4)0.0024 (5)0.0008 (5)
C60.0225 (6)0.0196 (6)0.0283 (6)0.0001 (5)0.0056 (5)0.0049 (5)
C70.0351 (7)0.0200 (6)0.0217 (6)0.0004 (5)0.0089 (5)0.0059 (5)
C80.0473 (9)0.0292 (7)0.0242 (6)0.0096 (6)0.0082 (6)0.0073 (5)
C90.0763 (13)0.0275 (7)0.0245 (7)0.0166 (8)0.0113 (8)0.0040 (6)
C100.0797 (13)0.0242 (7)0.0223 (7)0.0054 (8)0.0092 (8)0.0007 (5)
C110.0203 (6)0.0182 (5)0.0246 (6)0.0039 (5)0.0010 (5)0.0023 (5)
C120.0342 (7)0.0259 (6)0.0263 (6)0.0032 (6)0.0067 (5)0.0017 (5)
C130.0522 (10)0.0351 (8)0.0244 (7)0.0117 (7)0.0047 (7)0.0030 (6)
C140.0238 (6)0.0227 (6)0.0240 (6)0.0009 (5)0.0033 (5)0.0035 (5)
Geometric parameters (Å, º) top
O1—C11.4138 (15)C5—C61.5371 (16)
O1—H1A0.86 (2)C5—H51.0000
O2—C111.2333 (16)C6—C71.5138 (18)
O3—C41.4210 (14)C6—H6A0.9900
O3—H3A0.93 (2)C6—H6B0.9900
N1—C111.3279 (17)C7—C121.394 (2)
N1—C141.4571 (16)C7—C81.395 (2)
N1—C31.4661 (16)C8—C91.392 (2)
C1—C21.5390 (18)C8—H80.9500
C1—C141.5417 (18)C9—C101.376 (3)
C1—H11.0000C9—H90.9500
C2—C31.5306 (16)C10—C131.393 (3)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C12—C131.392 (2)
C3—C41.5403 (16)C12—H120.9500
C3—H31.0000C13—H130.9500
C4—C51.5328 (17)C14—H14A0.9900
C4—H41.0000C14—H14B0.9900
C5—C111.5258 (17)
C1—O1—H1A109.6 (14)C6—C5—H5107.3
C4—O3—H3A107.9 (14)C7—C6—C5115.04 (10)
C11—N1—C14129.85 (11)C7—C6—H6A108.5
C11—N1—C3114.90 (10)C5—C6—H6A108.5
C14—N1—C3114.06 (10)C7—C6—H6B108.5
O1—C1—C2116.78 (11)C5—C6—H6B108.5
O1—C1—C14113.45 (11)H6A—C6—H6B107.5
C2—C1—C14104.54 (10)C12—C7—C8118.72 (13)
O1—C1—H1107.2C12—C7—C6120.64 (12)
C2—C1—H1107.2C8—C7—C6120.64 (14)
C14—C1—H1107.2C9—C8—C7120.42 (16)
C3—C2—C1101.05 (10)C9—C8—H8119.8
C3—C2—H2A111.6C7—C8—H8119.8
C1—C2—H2A111.6C10—C9—C8120.42 (15)
C3—C2—H2B111.6C10—C9—H9119.8
C1—C2—H2B111.6C8—C9—H9119.8
H2A—C2—H2B109.4C9—C10—C13119.97 (15)
N1—C3—C2101.36 (10)C9—C10—H10120.0
N1—C3—C4101.33 (9)C13—C10—H10120.0
C2—C3—C4123.23 (10)O2—C11—N1125.35 (12)
N1—C3—H3109.9O2—C11—C5127.58 (11)
C2—C3—H3109.9N1—C11—C5107.07 (11)
C4—C3—H3109.9C13—C12—C7120.81 (14)
O3—C4—C5110.27 (9)C13—C12—H12119.6
O3—C4—C3114.03 (10)C7—C12—H12119.6
C5—C4—C3102.59 (10)C12—C13—C10119.65 (16)
O3—C4—H4109.9C12—C13—H13120.2
C5—C4—H4109.9C10—C13—H13120.2
C3—C4—H4109.9N1—C14—C1101.53 (10)
C11—C5—C4102.40 (9)N1—C14—H14A111.5
C11—C5—C6114.43 (10)C1—C14—H14A111.5
C4—C5—C6117.51 (10)N1—C14—H14B111.5
C11—C5—H5107.3C1—C14—H14B111.5
C4—C5—H5107.3H14A—C14—H14B109.3
C(11)—N(1)—C(3)—C(2)145.23 (10)H(1)—C(1)—C(2)—C(3)73
C(11)—N(1)—C(3)—C(4)17.61 (13)H(1)—C(1)—C(2)—H(2A)169
C(14)—N(1)—C(3)—C(2)23.51 (13)H(1)—C(1)—C(2)—H(2B)46
C(14)—N(1)—C(3)—C(4)151.12 (10)O(1)—C(1)—C(14)—H(14A)86
C(3)—N(1)—C(11)—O(2)176.49 (12)O(1)—C(1)—C(14)—H(14B)36
C(3)—N(1)—C(11)—C(5)3.73 (13)C(2)—C(1)—C(14)—H(14A)145
C(14)—N(1)—C(11)—O(2)9.9 (2)C(2)—C(1)—C(14)—H(14B)92
C(14)—N(1)—C(11)—C(5)170.29 (11)H(1)—C(1)—C(14)—N(1)87
C(3)—N(1)—C(14)—C(1)1.76 (13)H(1)—C(1)—C(14)—H(14A)32
C(11)—N(1)—C(14)—C(1)168.41 (12)H(1)—C(1)—C(14)—H(14B)154
O(1)—C(1)—C(2)—C(3)167.02 (10)C(1)—C(2)—C(3)—H(3)78
C(14)—C(1)—C(2)—C(3)40.78 (12)H(2A)—C(2)—C(3)—N(1)81
O(1)—C(1)—C(14)—N(1)154.80 (10)H(2A)—C(2)—C(3)—C(4)31
C(2)—C(1)—C(14)—N(1)26.51 (12)H(2A)—C(2)—C(3)—H(3)163
C(1)—C(2)—C(3)—N(1)38.05 (11)H(2B)—C(2)—C(3)—N(1)157
C(1)—C(2)—C(3)—C(4)149.83 (11)H(2B)—C(2)—C(3)—C(4)91
N(1)—C(3)—C(4)—O(3)149.89 (9)H(2B)—C(2)—C(3)—H(3)41
N(1)—C(3)—C(4)—C(5)30.67 (11)N(1)—C(3)—C(4)—H(4)86
C(2)—C(3)—C(4)—O(3)98.31 (13)C(2)—C(3)—C(4)—H(4)26
C(2)—C(3)—C(4)—C(5)142.47 (11)H(3)—C(3)—C(4)—O(3)34
O(3)—C(4)—C(5)—C(6)78.74 (13)H(3)—C(3)—C(4)—C(5)86
O(3)—C(4)—C(5)—C(11)154.95 (10)H(3)—C(3)—C(4)—H(4)158
C(3)—C(4)—C(5)—C(6)159.44 (10)O(3)—C(4)—C(5)—H(5)42
C(3)—C(4)—C(5)—C(11)33.13 (12)C(3)—C(4)—C(5)—H(5)80
C(4)—C(5)—C(6)—C(7)47.18 (15)H(4)—C(4)—C(5)—C(6)43
C(11)—C(5)—C(6)—C(7)72.99 (14)H(4)—C(4)—C(5)—C(11)84
C(4)—C(5)—C(11)—O(2)156.61 (12)H(4)—C(4)—C(5)—H(5)163
C(4)—C(5)—C(11)—N(1)23.61 (12)C(4)—C(5)—C(6)—H(6A)75
C(6)—C(5)—C(11)—O(2)28.33 (18)C(4)—C(5)—C(6)—H(6B)169
C(6)—C(5)—C(11)—N(1)151.89 (10)C(11)—C(5)—C(6)—H(6A)165
C(5)—C(6)—C(7)—C(8)87.85 (15)C(11)—C(5)—C(6)—H(6B)49
C(5)—C(6)—C(7)—C(12)92.02 (14)H(5)—C(5)—C(6)—C(7)168
C(6)—C(7)—C(8)—C(9)179.96 (13)H(5)—C(5)—C(6)—H(6A)46
C(12)—C(7)—C(8)—C(9)0.1 (2)H(5)—C(5)—C(6)—H(6B)70
C(6)—C(7)—C(12)—C(13)179.84 (12)H(5)—C(5)—C(11)—O(2)91
C(8)—C(7)—C(12)—C(13)0.0 (2)H(5)—C(5)—C(11)—N(1)89
C(7)—C(8)—C(9)—C(10)0.4 (2)H(6A)—C(6)—C(7)—C(8)150
C(8)—C(9)—C(10)—C(13)0.6 (2)H(6A)—C(6)—C(7)—C(12)30
C(9)—C(10)—C(13)—C(12)0.5 (2)H(6B)—C(6)—C(7)—C(8)34
C(7)—C(12)—C(13)—C(10)0.2 (2)H(6B)—C(6)—C(7)—C(12)146
H(1A)—O(1)—C(1)—C(2)56.8 (14)C(6)—C(7)—C(8)—H(8)0
H(1A)—O(1)—C(1)—C(14)64.9 (14)C(12)—C(7)—C(8)—H(8)180
H(1A)—O(1)—C(1)—H(1)177C(6)—C(7)—C(12)—H(12)0
H(3A)—O(3)—C(4)—C(3)76.3 (13)C(8)—C(7)—C(12)—H(12)180
H(3A)—O(3)—C(4)—C(5)168.9 (13)C(7)—C(8)—C(9)—H(9)180
H(3A)—O(3)—C(4)—H(4)48H(8)—C(8)—C(9)—C(10)180
C(11)—N(1)—C(3)—H(3)99H(8)—C(8)—C(9)—H(9)0
C(14)—N(1)—C(3)—H(3)93C(8)—C(9)—C(10)—H(10)179
C(3)—N(1)—C(14)—H(14A)121H(9)—C(9)—C(10)—C(13)179
C(3)—N(1)—C(14)—H(14B)117H(9)—C(9)—C(10)—H(10)1
C(11)—N(1)—C(14)—H(14A)73C(9)—C(10)—C(13)—H(13)179
C(11)—N(1)—C(14)—H(14B)50H(10)—C(10)—C(13)—C(12)180
O(1)—C(1)—C(2)—H(2A)48H(10)—C(10)—C(13)—H(13)0
O(1)—C(1)—C(2)—H(2B)74C(7)—C(12)—C(13)—H(13)180
C(14)—C(1)—C(2)—H(2A)78H(12)—C(12)—C(13)—C(10)180
C(14)—C(1)—C(2)—H(2B)159H(12)—C(12)—C(13)—H(13)0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.93 (2)1.73 (2)2.6395 (12)164 (2)
O1—H1A···O3ii0.86 (2)1.93 (2)2.7716 (13)167 (19)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H17NO3
Mr247.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.6241 (3), 13.6873 (6), 13.9726 (6)
V3)1266.84 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26923, 2295, 2290
Rint0.026
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.078, 1.15
No. of reflections2295
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16
Absolute structureFlack (1983) and Hooft et al. (2008) [Hooft parameter = 0.00(2), (943 Bijvoet pairs)]'
Absolute structure parameter0.00 (16)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.93 (2)1.73 (2)2.6395 (12)164 (2)
O1—H1A···O3ii0.86 (2)1.93 (2)2.7716 (13)167 (19)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Coorden­ação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. FLO and KRLF were supported by fellowships from CAPES and CNPq, respectively. RA and FC are recipients of research fellowships from CNPq.

References

First citationBaumann, K. O. (2007). WO Patent 2007039286; Chem Abstr. 146, 421836.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLuna Freire, K. R. de, Tormena, C. F. & Coelho, F. (2011). Synlett, 14, 2059–2063.  Google Scholar
First citationNewton, C., Ameijde, J., Fleet, G. W. J., Nash, R. J. & Watkin, D. J. (2004). Acta Cryst. E60, o1463–o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds