metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-bromo-2-[(naphthalen-1-yl­imino)­meth­yl]phenolato-κ2N,O}copper(II)

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 January 2012; accepted 4 February 2012; online 10 February 2012)

The title complex, [Cu(C17H11BrNO)2], lies on a centre of inversion. The chelating Schiff base anions define a square-planar N2O2 donor set. The nearly perpendicular orientation of the naphthyl residues of the chelate ring [dihedral angle = 82.12 (12)°] precludes the CuII centre from additional coordination. In the refinement, the naphthyl rings were found to be disordered over two positions.; the major component has a site occupancy of 0.667 (4).

Related literature

For background to related CuII Schiff base compounds, see: Safaei et al. (2010[Safaei, E., Kabir, M. M., Wojtczak, A., Jaglicić, Z., Kozakiewicz, A. & Yong, Y.-I. (2010). Inorg. Chim. Acta, 366, 275-282.]). For a related structure, see: Dong et al. (2007[Dong, J.-F., Li, L.-Z., Gao, L.-W., Xu, T. & Wang, D.-Q. (2007). Acta Cryst. E63, m1375-m1376.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H11BrNO)2]

  • Mr = 713.90

  • Monoclinic, P 21 /c

  • a = 11.4572 (6) Å

  • b = 9.5782 (3) Å

  • c = 13.8108 (6) Å

  • β = 114.047 (5)°

  • V = 1384.05 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.78 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.381, Tmax = 0.796

  • 15204 measured reflections

  • 2888 independent reflections

  • 2670 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.157

  • S = 1.10

  • 2888 reflections

  • 240 parameters

  • 69 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.09 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There has been recent interest in the chemistry of Schiff base CuII complexes related to the title complex (Safaei et al., 2010). In the title molecule (Fig. 1), the CuII atom is located on a crystallographic centre of inversion. The CuII atom is N,O-chelated by the Schiff base anions to define a square planar N2O2 geometry. The five-membered chelate ring is almost planar with a r.m.s. deviation = 0.173 °. The maximum deviation from the least-squares plane through the chelate ring is -0.178 (7) Å for the N1 atom. The naphthyl ring is almost perpendicular to the chelate ring forming a dihedral angle of 82.12 (12)°. This precludes the close approach of other atoms to the CuII centre.

The structure resembles very closely to that reported for the unsubstituted derivative (Dong et al., 2007).

The disorder in the structure precludes a detailed description of the crystal packing. However, the closest interactions are of the type C—H···π involving components of the disordered naphthyl residue. Globally, molecules assemble into layers via weak C—H···π interactions that stack along the a axis (Fig. 2).

Related literature top

For background to related CuII Schiff base compounds, see: Safaei et al. (2010). For a related structure, see: Dong et al. (2007). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Experimental top

A solution of 1-naphthaldehyde (10 mmol) in EtOH (25 ml) was added drop-wise to a solution of 2-(aminomethyl)-4-bromophenol (10 mmol) in EtOH (15 ml). The mixture was refluxed for 9 h. The precipitate was removed by filtration and recrystallized from a MeOH solution. The ligand (0.5 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and copper(II) perchlorate (0.5 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After eight days, crystals had deposited in the arm at ambient temperature. They were filtered off, washed with acetone and ether, and air-dried. Yield: 76%. M.pt.: 572 K

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The naphthyl ring is disordered over two positions, and each component was refined as a rigid system of 1.39 Å sides. The imino N-atom is also disordered. The C—N bond distances were restrained to within 0.01 Å of each other. The major disordered component refined to 0.667 (4); the anisotropic displacement parameters of the atoms comprising the minor component were restrained to be nearly isotropic.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered residue is shown. Symmetry code for the unlabeled atoms: -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents of the title complex.
Bis{4-bromo-2-[(naphthalen-1-ylimino)methyl]phenolato- κ2N,O}copper(II) top
Crystal data top
[Cu(C17H11BrNO)2]F(000) = 710
Mr = 713.90Dx = 1.713 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 6098 reflections
a = 11.4572 (6) Åθ = 3.5–77.0°
b = 9.5782 (3) ŵ = 4.78 mm1
c = 13.8108 (6) ÅT = 100 K
β = 114.047 (5)°Plate, brown
V = 1384.05 (10) Å30.25 × 0.20 × 0.05 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2888 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2670 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 77.2°, θmin = 4.2°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.381, Tmax = 0.796l = 1617
15204 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0348P)2 + 6.8305P]
where P = (Fo2 + 2Fc2)/3
2888 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.95 e Å3
69 restraintsΔρmin = 1.09 e Å3
Crystal data top
[Cu(C17H11BrNO)2]V = 1384.05 (10) Å3
Mr = 713.90Z = 2
Monoclinic, P21/cCu Kα radiation
a = 11.4572 (6) ŵ = 4.78 mm1
b = 9.5782 (3) ÅT = 100 K
c = 13.8108 (6) Å0.25 × 0.20 × 0.05 mm
β = 114.047 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2888 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2670 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 0.796Rint = 0.045
15204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07469 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.10Δρmax = 0.95 e Å3
2888 reflectionsΔρmin = 1.09 e Å3
240 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.76797 (9)0.77617 (9)1.04687 (5)0.0814 (3)
Cu0.50000.50000.50000.0580 (4)
O10.6132 (4)0.4554 (4)0.6397 (3)0.0516 (9)
N10.4092 (6)0.6384 (7)0.5544 (5)0.0423 (15)0.677 (4)
C10.2833 (4)0.6955 (5)0.4909 (3)0.0474 (19)0.677 (4)
C20.1801 (5)0.6389 (5)0.5059 (4)0.048 (2)0.677 (4)
H20.19400.57110.55960.057*0.677 (4)
C30.0565 (4)0.6817 (6)0.4421 (5)0.060 (4)0.677 (4)
H30.01410.64310.45230.071*0.677 (4)
C40.0361 (3)0.7810 (6)0.3635 (4)0.059 (3)0.677 (4)
H40.04840.81020.31990.071*0.677 (4)
C50.1393 (3)0.8375 (4)0.3486 (3)0.052 (2)0.677 (4)
C60.2629 (3)0.7947 (4)0.4123 (3)0.048 (2)0.677 (4)
C70.3661 (4)0.8513 (6)0.3974 (5)0.061 (3)0.677 (4)
H70.45050.82200.44090.074*0.677 (4)
C80.3457 (5)0.9505 (7)0.3187 (5)0.105 (6)0.677 (4)
H80.41620.98920.30850.126*0.677 (4)
C90.2221 (6)0.9933 (6)0.2550 (5)0.087 (4)0.677 (4)
H90.20811.06120.20120.105*0.677 (4)
C100.1189 (5)0.9368 (6)0.2699 (4)0.067 (3)0.677 (4)
H100.03440.96600.22630.080*0.677 (4)
C110.4702 (8)0.7009 (8)0.6474 (5)0.093 (3)
H110.43580.78700.65780.112*0.677 (4)
H11'0.40230.73890.66190.112*0.323 (4)
C120.5819 (5)0.6516 (6)0.7332 (4)0.0497 (13)
C130.6202 (6)0.7242 (7)0.8301 (4)0.0550 (14)
H130.57690.80700.83420.066*
C140.7192 (6)0.6753 (6)0.9174 (4)0.0558 (15)
C150.7818 (6)0.5521 (6)0.9132 (4)0.0587 (16)
H150.84950.51770.97520.070*
C160.7455 (5)0.4806 (6)0.8195 (4)0.0494 (13)
H160.78910.39720.81720.059*
C170.6444 (5)0.5287 (5)0.7260 (4)0.0430 (11)
N1'0.4581 (13)0.6949 (12)0.5452 (7)0.037 (3)0.323 (4)
C1'0.3748 (7)0.7905 (10)0.4624 (7)0.043 (3)0.323 (4)
C2'0.4313 (8)0.8883 (12)0.4206 (9)0.053 (5)0.323 (4)
H2'0.52180.89500.44780.064*0.323 (4)
C3'0.3554 (10)0.9763 (12)0.3393 (10)0.046 (5)0.323 (4)
H3'0.39401.04310.31080.056*0.323 (4)
C4'0.2231 (10)0.9664 (11)0.2996 (8)0.069 (6)0.323 (4)
H4'0.17121.02650.24400.083*0.323 (4)
C5'0.1666 (7)0.8686 (9)0.3413 (6)0.060 (6)0.323 (4)
C6'0.2424 (7)0.7807 (7)0.4227 (6)0.051 (6)0.323 (4)
C7'0.1859 (9)0.6829 (10)0.4644 (9)0.042 (4)0.323 (4)
H7'0.23780.62280.52000.050*0.323 (4)
C8'0.0536 (10)0.6731 (13)0.4248 (11)0.082 (12)0.323 (4)
H8'0.01490.60620.45330.099*0.323 (4)
C9'0.0223 (7)0.7610 (14)0.3434 (11)0.063 (6)0.323 (4)
H9'0.11280.75430.31630.075*0.323 (4)
C10'0.0342 (7)0.8588 (12)0.3017 (9)0.067 (5)0.323 (4)
H10'0.01770.91890.24610.080*0.323 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1176 (7)0.0740 (5)0.0377 (3)0.0287 (5)0.0164 (4)0.0103 (3)
Cu0.0604 (7)0.0622 (8)0.0352 (6)0.0314 (6)0.0028 (5)0.0068 (5)
O10.053 (2)0.053 (2)0.0371 (18)0.0147 (18)0.0062 (16)0.0025 (16)
N10.042 (4)0.035 (3)0.041 (3)0.001 (3)0.008 (3)0.003 (3)
C10.049 (5)0.046 (4)0.044 (4)0.006 (4)0.016 (4)0.014 (3)
C20.044 (4)0.044 (5)0.058 (5)0.001 (4)0.023 (4)0.003 (4)
C30.037 (5)0.052 (6)0.083 (7)0.003 (4)0.017 (5)0.024 (6)
C40.048 (6)0.047 (5)0.070 (6)0.003 (4)0.011 (5)0.018 (5)
C50.042 (5)0.045 (4)0.050 (5)0.014 (4)0.001 (4)0.011 (4)
C60.039 (4)0.053 (6)0.043 (5)0.018 (4)0.007 (4)0.010 (4)
C70.045 (5)0.074 (7)0.070 (6)0.021 (5)0.028 (5)0.020 (5)
C80.100 (12)0.104 (12)0.104 (11)0.032 (9)0.035 (9)0.057 (10)
C90.078 (8)0.093 (9)0.089 (9)0.026 (7)0.032 (7)0.041 (8)
C100.063 (6)0.062 (6)0.058 (5)0.023 (5)0.008 (5)0.002 (5)
C110.099 (6)0.098 (6)0.050 (4)0.062 (5)0.002 (4)0.022 (4)
C120.050 (3)0.055 (3)0.038 (3)0.008 (3)0.012 (2)0.004 (2)
C130.061 (4)0.055 (3)0.045 (3)0.003 (3)0.018 (3)0.006 (3)
C140.070 (4)0.051 (3)0.035 (3)0.017 (3)0.010 (3)0.000 (2)
C150.067 (4)0.050 (3)0.040 (3)0.016 (3)0.003 (3)0.009 (2)
C160.050 (3)0.042 (3)0.044 (3)0.006 (2)0.006 (2)0.009 (2)
C170.044 (3)0.045 (3)0.036 (2)0.000 (2)0.012 (2)0.002 (2)
N1'0.038 (6)0.024 (5)0.040 (6)0.001 (5)0.005 (5)0.006 (5)
C1'0.052 (7)0.043 (7)0.034 (6)0.010 (6)0.018 (6)0.002 (5)
C2'0.062 (9)0.049 (8)0.054 (8)0.013 (7)0.029 (7)0.007 (6)
C3'0.053 (9)0.040 (8)0.053 (8)0.013 (7)0.029 (7)0.005 (7)
C4'0.083 (10)0.073 (10)0.057 (9)0.015 (8)0.036 (8)0.008 (7)
C5'0.063 (9)0.067 (10)0.051 (9)0.013 (8)0.023 (7)0.007 (7)
C6'0.056 (9)0.044 (9)0.051 (9)0.001 (7)0.019 (8)0.000 (7)
C7'0.035 (7)0.030 (7)0.060 (8)0.006 (5)0.020 (6)0.002 (6)
C8'0.075 (15)0.083 (15)0.084 (13)0.007 (9)0.029 (9)0.011 (9)
C9'0.053 (9)0.055 (9)0.072 (9)0.002 (7)0.017 (7)0.010 (7)
C10'0.070 (9)0.057 (8)0.064 (8)0.010 (7)0.017 (7)0.010 (7)
Geometric parameters (Å, º) top
Br1—C141.905 (6)C11—H110.9500
Cu—O11.883 (3)C11—H11'0.9500
Cu—O1i1.883 (3)C12—C171.402 (7)
Cu—N12.010 (6)C12—C131.410 (7)
Cu—N1i2.010 (6)C13—C141.359 (8)
Cu—N1'2.085 (11)C13—H130.9500
Cu—N1'i2.085 (11)C14—C151.394 (9)
O1—C171.302 (6)C15—C161.371 (8)
N1—C111.328 (8)C15—H150.9500
N1—C11.455 (6)C16—C171.415 (7)
C1—C21.3900C16—H160.9500
C1—C61.3900N1'—C1'1.472 (9)
C2—C31.3900C1'—C2'1.3900
C2—H20.9500C1'—C6'1.3900
C3—C41.3900C2'—C3'1.3900
C3—H30.9500C2'—H2'0.9500
C4—C51.3900C3'—C4'1.3900
C4—H40.9500C3'—H3'0.9500
C5—C61.3900C4'—C5'1.3900
C5—C101.3900C4'—H4'0.9500
C6—C71.3900C5'—C6'1.3900
C7—C81.3900C5'—C10'1.3900
C7—H70.9500C6'—C7'1.3900
C8—C91.3900C7'—C8'1.3900
C8—H80.9500C7'—H7'0.9500
C9—C101.3900C8'—C9'1.3900
C9—H90.9500C8'—H8'0.9500
C10—H100.9500C9'—C10'1.3900
C11—N1'1.363 (10)C9'—H9'0.9500
C11—C121.424 (8)C10'—H10'0.9500
O1—Cu—O1i180.000 (1)N1'—C11—H11'119.2
O1—Cu—N190.7 (2)C12—C11—H11'119.2
O1i—Cu—N189.3 (2)C17—C12—C13120.7 (5)
O1—Cu—N1i89.3 (2)C17—C12—C11122.1 (5)
O1i—Cu—N1i90.7 (2)C13—C12—C11116.9 (5)
N1—Cu—N1i180.000 (1)C14—C13—C12119.8 (6)
O1—Cu—N1'92.5 (3)C14—C13—H13120.1
O1i—Cu—N1'87.5 (3)C12—C13—H13120.1
N1i—Cu—N1'156.9 (4)C13—C14—C15120.8 (5)
O1—Cu—N1'i87.5 (3)C13—C14—Br1118.6 (5)
O1i—Cu—N1'i92.5 (3)C15—C14—Br1120.6 (4)
N1—Cu—N1'i156.9 (4)C16—C15—C14120.0 (5)
N1'—Cu—N1'i180.000 (2)C16—C15—H15120.0
C17—O1—Cu129.3 (3)C14—C15—H15120.0
C11—N1—C1114.5 (6)C15—C16—C17121.3 (6)
C11—N1—Cu120.7 (5)C15—C16—H16119.4
C1—N1—Cu124.0 (4)C17—C16—H16119.4
C2—C1—C6120.0O1—C17—C12124.0 (5)
C2—C1—N1117.3 (4)O1—C17—C16118.5 (5)
C6—C1—N1122.5 (4)C12—C17—C16117.4 (5)
C3—C2—C1120.0C11—N1'—C1'122.6 (9)
C3—C2—H2120.0C11—N1'—Cu114.1 (7)
C1—C2—H2120.0C1'—N1'—Cu118.7 (7)
C2—C3—C4120.0C2'—C1'—C6'120.0
C2—C3—H3120.0C2'—C1'—N1'118.5 (8)
C4—C3—H3120.0C6'—C1'—N1'121.4 (8)
C5—C4—C3120.0C3'—C2'—C1'120.0
C5—C4—H4120.0C3'—C2'—H2'120.0
C3—C4—H4120.0C1'—C2'—H2'120.0
C4—C5—C6120.0C2'—C3'—C4'120.0
C4—C5—C10120.0C2'—C3'—H3'120.0
C6—C5—C10120.0C4'—C3'—H3'120.0
C7—C6—C5120.0C3'—C4'—C5'120.0
C7—C6—C1120.0C3'—C4'—H4'120.0
C5—C6—C1120.0C5'—C4'—H4'120.0
C6—C7—C8120.0C6'—C5'—C4'120.0
C6—C7—H7120.0C6'—C5'—C10'120.0
C8—C7—H7120.0C4'—C5'—C10'120.0
C9—C8—C7120.0C7'—C6'—C5'120.0
C9—C8—H8120.0C7'—C6'—C1'120.0
C7—C8—H8120.0C5'—C6'—C1'120.0
C10—C9—C8120.0C6'—C7'—C8'120.0
C10—C9—H9120.0C6'—C7'—H7'120.0
C8—C9—H9120.0C8'—C7'—H7'120.0
C9—C10—C5120.0C7'—C8'—C9'120.0
C9—C10—H10120.0C7'—C8'—H8'120.0
C5—C10—H10120.0C9'—C8'—H8'120.0
N1—C11—C12126.5 (6)C8'—C9'—C10'120.0
N1'—C11—C12121.7 (7)C8'—C9'—H9'120.0
N1—C11—H11116.7C10'—C9'—H9'120.0
N1'—C11—H11108.6C9'—C10'—C5'120.0
C12—C11—H11116.7C9'—C10'—H10'120.0
N1—C11—H11'102.9C5'—C10'—H10'120.0
N1—Cu—O1—C1722.5 (5)C13—C14—C15—C161.6 (9)
N1i—Cu—O1—C17157.5 (5)Br1—C14—C15—C16179.9 (5)
N1'—Cu—O1—C170.6 (6)C14—C15—C16—C170.5 (9)
N1'i—Cu—O1—C17179.4 (6)Cu—O1—C17—C1210.2 (8)
O1—Cu—N1—C1127.1 (7)Cu—O1—C17—C16171.3 (4)
O1i—Cu—N1—C11152.9 (7)C13—C12—C17—O1179.1 (6)
N1'—Cu—N1—C1167.6 (7)C11—C12—C17—O15.6 (10)
N1'i—Cu—N1—C11112.4 (7)C13—C12—C17—C160.6 (8)
O1—Cu—N1—C1163.7 (6)C11—C12—C17—C16172.9 (7)
O1i—Cu—N1—C116.3 (6)C15—C16—C17—O1179.2 (5)
N1'—Cu—N1—C1101.7 (10)C15—C16—C17—C120.6 (8)
N1'i—Cu—N1—C178.3 (10)N1—C11—N1'—C1'95.6 (15)
C11—N1—C1—C289.0 (7)C12—C11—N1'—C1'154.6 (10)
Cu—N1—C1—C2101.2 (5)N1—C11—N1'—Cu60.0 (8)
C11—N1—C1—C696.0 (8)C12—C11—N1'—Cu49.8 (13)
Cu—N1—C1—C673.9 (6)O1—Cu—N1'—C1127.8 (9)
C6—C1—C2—C30.0O1i—Cu—N1'—C11152.2 (9)
N1—C1—C2—C3175.2 (5)N1—Cu—N1'—C1158.1 (7)
C1—C2—C3—C40.0N1i—Cu—N1'—C11121.9 (7)
C2—C3—C4—C50.0O1—Cu—N1'—C1'175.5 (9)
C3—C4—C5—C60.0O1i—Cu—N1'—C1'4.5 (9)
C3—C4—C5—C10180.0N1—Cu—N1'—C1'98.5 (14)
C4—C5—C6—C7180.0N1i—Cu—N1'—C1'81.5 (14)
C10—C5—C6—C70.0C11—N1'—C1'—C2'111.9 (12)
C4—C5—C6—C10.0Cu—N1'—C1'—C2'93.5 (9)
C10—C5—C6—C1180.0C11—N1'—C1'—C6'70.8 (15)
C2—C1—C6—C7180.0Cu—N1'—C1'—C6'83.8 (10)
N1—C1—C6—C75.0 (5)C6'—C1'—C2'—C3'0.0
C2—C1—C6—C50.0N1'—C1'—C2'—C3'177.3 (9)
N1—C1—C6—C5175.0 (5)C1'—C2'—C3'—C4'0.0
C5—C6—C7—C80.0C2'—C3'—C4'—C5'0.0
C1—C6—C7—C8180.0C3'—C4'—C5'—C6'0.0
C6—C7—C8—C90.0C3'—C4'—C5'—C10'180.0
C7—C8—C9—C100.0C4'—C5'—C6'—C7'180.0
C8—C9—C10—C50.0C10'—C5'—C6'—C7'0.0
C4—C5—C10—C9180.0C4'—C5'—C6'—C1'0.0
C6—C5—C10—C90.0C10'—C5'—C6'—C1'180.0
C1—N1—C11—N1'97.8 (10)C2'—C1'—C6'—C7'180.0
Cu—N1—C11—N1'72.5 (9)N1'—C1'—C6'—C7'2.8 (9)
C1—N1—C11—C12167.1 (8)C2'—C1'—C6'—C5'0.0
Cu—N1—C11—C1222.6 (13)N1'—C1'—C6'—C5'177.2 (9)
N1—C11—C12—C172.5 (14)C5'—C6'—C7'—C8'0.0
N1'—C11—C12—C1740.5 (13)C1'—C6'—C7'—C8'180.0
N1—C11—C12—C13171.2 (9)C6'—C7'—C8'—C9'0.0
N1'—C11—C12—C13145.8 (9)C7'—C8'—C9'—C10'0.0
C17—C12—C13—C140.5 (9)C8'—C9'—C10'—C5'0.0
C11—C12—C13—C14174.3 (7)C6'—C5'—C10'—C9'0.0
C12—C13—C14—C151.6 (9)C4'—C5'—C10'—C9'180.0
C12—C13—C14—Br1179.9 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C17H11BrNO)2]
Mr713.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.4572 (6), 9.5782 (3), 13.8108 (6)
β (°) 114.047 (5)
V3)1384.05 (10)
Z2
Radiation typeCu Kα
µ (mm1)4.78
Crystal size (mm)0.25 × 0.20 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.381, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
15204, 2888, 2670
Rint0.045
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.157, 1.10
No. of reflections2888
No. of parameters240
No. of restraints69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 1.09

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

We gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDong, J.-F., Li, L.-Z., Gao, L.-W., Xu, T. & Wang, D.-Q. (2007). Acta Cryst. E63, m1375–m1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationSafaei, E., Kabir, M. M., Wojtczak, A., Jaglicić, Z., Kozakiewicz, A. & Yong, Y.-I. (2010). Inorg. Chim. Acta, 366, 275–282.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds