organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o765-o766

2-{(E)-1-[2-(2-Nitro­phen­yl)hydrazin-1-yl­­idene]eth­yl}benzene-1,3-diol mono­hydrate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Avenida Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 February 2012; accepted 12 February 2012; online 17 February 2012)

The hydrazone mol­ecule in title monohydrate, C14H13N3O4·H2O, is almost coplanar, the dihedral angle between the terminal benzene rings being 3.22 (15)°; the nitro group is coplanar with the benzene ring to which it is bonded [O—N—C—C = −2.8 (4)°]. The hy­droxy group forms an intra­molecular hydrogen bond with the imine N atom, and the conformation about the imine bond [1.305 (3) Å] is E. In the crystal, supra­molecular layers in the (203) plane are connected into a double layer via water–nitro O—H⋯O hydrogen bonds, along with ππ inter­actions [ring centroid–centroid distance = 3.7859 (19) Å].

Related literature

For background on the influence of substituents upon the supra­molecular structures of hydrazones, see: Glidewell et al. (2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o19-o23.]); Ferguson et al. (2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613-o616.]); Baddeley et al. (2009[Baddeley, T. C., de Souza França, L., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213-224.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O4·H2O

  • Mr = 305.29

  • Monoclinic, P 21 /n

  • a = 7.6448 (6) Å

  • b = 21.405 (2) Å

  • c = 8.5755 (7) Å

  • β = 106.976 (5)°

  • V = 1342.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 K

  • 0.45 × 0.25 × 0.02 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.998

  • 16295 measured reflections

  • 3068 independent reflections

  • 1492 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.194

  • S = 1.01

  • 3068 reflections

  • 221 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.85 (2) 1.69 (2) 2.489 (3) 157 (4)
N2—H2N⋯O3 0.88 (2) 1.93 (2) 2.602 (3) 132 (2)
O2—H2O⋯O1wi 0.84 (3) 1.90 (3) 2.742 (3) 174 (2)
O1W—H1W⋯O1ii 0.84 (2) 2.08 (3) 2.910 (3) 169 (3)
O1W—H2W⋯O4iii 0.85 (3) 2.50 (3) 3.256 (3) 150 (3)
C11—H11⋯O3iv 0.95 2.52 3.447 (4) 166
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title compound (I), has been determined in connection with on-going investigations into the structural chemistry of hydrazones, focusing in particular upon the influence of substituents upon their supramolecular structures, with a special emphasis on derivatives having potential biological activities. These studies have included investigations on substituted phenylhydrazines with substituted benzaldehydes (Glidewell et al., 2004; Ferguson et al., 2005) and 2-hydroxyacetophenone (Baddeley et al., 2009).

In (I) (Fig. 1), the dihedral angle between the benzene rings is 3.22 (15)°, indicating an approximately planar molecule. The nitro group is co-planar with the benzene ring to which it is bonded as seen in the value of the O3—N3—C10—C9 torsion angle of -2.8 (4)°. The hydroxy group forms an intramolecular hydrogen bond with the imine-N1 atom, Table 1. The configuration about the N1C7 imine bond [1.305 (3) Å] is E.

With the exception of the O1w—H2w···O4iii hydrogen bond, all the interactions listed in Table 1 combine to form supramolecular layers parallel to (203). These are connected into double layers via the O1w—H2w···O4iii hydrogen bonds and ππ interactions [ring centroid···centroid distance = 3.7859 (19) Å, angle between rings = 3.22 (15)° for i: 1 - x, -y, 1 - z]. Layers stack without specific interactions between them (Fig. 2).

Related literature top

For background on the influence of substituents upon the supramolecular structures of hydrazones, see: Glidewell et al. (2004); Ferguson et al. (2005); Baddeley et al. (2009).

Experimental top

A solution of 2-nitrophenylhydrazine and 2,6-dihydroxyacetophenone (2 mmol each) in ethanol (20 ml) was refluxed for 1 h, rotary evaporated and the residue recrystallized from methanol, m.p. 452–454 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O- and N-bound H atoms were located from a difference map and refined with the distance restraints O—H = 0.84±0.01 and N—H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the constituents of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the packing of supramolecular double layers in (I). The O—H···O (orange), O—H···N (orange), N—H···O (blue), C—H···O (brown) and ππ (purple) interactions are shown as dashed lines.
2-{(E)-1-[2-(2-Nitrophenyl)hydrazin-1-ylidene]ethyl}benzene-1,3-diol monohydrate top
Crystal data top
C14H13N3O4·H2OF(000) = 640
Mr = 305.29Dx = 1.511 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19763 reflections
a = 7.6448 (6) Åθ = 2.9–27.5°
b = 21.405 (2) ŵ = 0.12 mm1
c = 8.5755 (7) ÅT = 120 K
β = 106.976 (5)°Plate, brown
V = 1342.1 (2) Å30.45 × 0.25 × 0.02 mm
Z = 4
Data collection top
Bruker-Nonius Roper CCD camera on κ-goniostat
diffractometer
3068 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ & ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2727
Tmin = 0.776, Tmax = 0.998l = 1111
16295 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0914P)2]
where P = (Fo2 + 2Fc2)/3
3068 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.37 e Å3
6 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H13N3O4·H2OV = 1342.1 (2) Å3
Mr = 305.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6448 (6) ŵ = 0.12 mm1
b = 21.405 (2) ÅT = 120 K
c = 8.5755 (7) Å0.45 × 0.25 × 0.02 mm
β = 106.976 (5)°
Data collection top
Bruker-Nonius Roper CCD camera on κ-goniostat
diffractometer
3068 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1492 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.998Rint = 0.110
16295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0666 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.37 e Å3
3068 reflectionsΔρmin = 0.30 e Å3
221 parameters
Special details top

Experimental. IR (KBr, cm-1): ν 3600–2000 (v br), 3543, 3427, 3340, 1622, 1585, 1525. Anal. Found: C, 54.86; H, 5.03; N, 14.07. Calculated for C14H15N3O5: C, 55.08; H, 4.95; N, 13.76%.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6688 (3)0.09682 (11)0.3317 (3)0.0350 (6)
H1O0.659 (5)0.0590 (7)0.356 (5)0.062 (13)*
O21.1256 (3)0.07064 (10)0.8502 (3)0.0340 (6)
H2O1.189 (4)0.0952 (12)0.921 (3)0.034 (10)*
O30.6421 (3)0.18198 (10)0.5589 (3)0.0353 (6)
O40.4717 (3)0.25227 (10)0.4047 (3)0.0411 (7)
N10.7166 (3)0.00802 (11)0.4628 (3)0.0247 (6)
N20.6577 (3)0.06852 (12)0.4550 (3)0.0272 (6)
H2N0.702 (4)0.0956 (11)0.534 (3)0.033 (9)*
N30.5292 (3)0.19801 (13)0.4289 (3)0.0315 (7)
C10.8928 (4)0.07782 (14)0.5935 (4)0.0238 (7)
C20.8060 (4)0.11805 (15)0.4603 (4)0.0288 (8)
C30.8560 (4)0.17972 (15)0.4541 (4)0.0337 (8)
H30.79690.20480.36250.040*
C40.9922 (4)0.20473 (15)0.5816 (4)0.0322 (8)
H41.02620.24730.57790.039*
C51.0795 (4)0.16848 (14)0.7142 (4)0.0285 (8)
H51.17210.18630.80190.034*
C61.0333 (4)0.10608 (14)0.7204 (4)0.0256 (7)
C70.8350 (4)0.01181 (14)0.5962 (3)0.0228 (7)
C80.9016 (4)0.03103 (14)0.7387 (4)0.0314 (8)
H8A0.99690.05840.72120.043 (10)*
H8B0.95220.00630.83800.043 (9)*
H8C0.79960.05640.75060.067 (12)*
C90.5300 (4)0.09005 (14)0.3180 (3)0.0246 (7)
C100.4639 (4)0.15195 (14)0.3020 (3)0.0252 (7)
C110.3303 (4)0.17195 (15)0.1615 (4)0.0285 (8)
H110.28810.21390.15380.034*
C120.2596 (4)0.13127 (15)0.0345 (4)0.0307 (8)
H120.16810.14460.06050.037*
C130.3240 (4)0.07063 (15)0.0477 (4)0.0313 (8)
H130.27630.04240.03990.038*
C140.4557 (4)0.05009 (15)0.1848 (4)0.0268 (7)
H140.49730.00810.18950.032*
O1W0.6617 (3)0.14329 (12)0.9035 (3)0.0397 (6)
H1W0.560 (3)0.1348 (17)0.836 (3)0.060*
H2W0.714 (4)0.1722 (13)0.867 (4)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0414 (14)0.0315 (15)0.0260 (13)0.0007 (11)0.0000 (10)0.0022 (11)
O20.0382 (14)0.0312 (14)0.0253 (13)0.0020 (10)0.0021 (11)0.0004 (10)
O30.0420 (14)0.0314 (14)0.0275 (13)0.0038 (10)0.0022 (11)0.0001 (10)
O40.0468 (15)0.0224 (14)0.0475 (15)0.0026 (11)0.0032 (11)0.0025 (11)
N10.0256 (14)0.0238 (15)0.0257 (14)0.0001 (11)0.0088 (11)0.0013 (11)
N20.0336 (16)0.0224 (16)0.0228 (15)0.0007 (12)0.0037 (12)0.0022 (12)
N30.0348 (17)0.0299 (17)0.0292 (16)0.0038 (13)0.0083 (13)0.0002 (13)
C10.0198 (16)0.0295 (18)0.0244 (16)0.0015 (13)0.0099 (13)0.0024 (13)
C20.0312 (18)0.030 (2)0.0240 (17)0.0031 (14)0.0069 (14)0.0007 (14)
C30.043 (2)0.029 (2)0.0288 (18)0.0028 (15)0.0103 (16)0.0062 (15)
C40.0382 (19)0.0231 (19)0.038 (2)0.0017 (15)0.0150 (16)0.0007 (15)
C50.0317 (18)0.0274 (19)0.0275 (18)0.0004 (14)0.0103 (14)0.0044 (14)
C60.0298 (18)0.0255 (19)0.0225 (16)0.0049 (14)0.0092 (14)0.0029 (13)
C70.0193 (16)0.0277 (19)0.0215 (16)0.0010 (13)0.0062 (13)0.0021 (13)
C80.036 (2)0.0264 (19)0.0254 (18)0.0007 (15)0.0015 (15)0.0014 (14)
C90.0279 (18)0.0288 (19)0.0168 (16)0.0020 (14)0.0059 (13)0.0003 (13)
C100.0294 (17)0.0246 (19)0.0226 (17)0.0046 (14)0.0092 (14)0.0027 (13)
C110.0307 (18)0.0254 (18)0.0315 (18)0.0007 (14)0.0124 (14)0.0042 (14)
C120.0272 (18)0.036 (2)0.0265 (18)0.0030 (15)0.0040 (14)0.0035 (15)
C130.0338 (19)0.035 (2)0.0239 (18)0.0005 (15)0.0061 (14)0.0035 (14)
C140.0263 (17)0.0276 (18)0.0253 (17)0.0010 (14)0.0059 (13)0.0004 (14)
O1W0.0406 (15)0.0385 (16)0.0343 (14)0.0005 (12)0.0019 (11)0.0024 (12)
Geometric parameters (Å, º) top
O1—C21.359 (4)C5—C61.387 (4)
O1—H1O0.844 (10)C5—H50.9500
O2—C61.361 (3)C7—C81.494 (4)
O2—H2O0.844 (10)C8—H8A0.9800
O3—N31.242 (3)C8—H8B0.9800
O4—N31.238 (3)C8—H8C0.9800
N1—C71.305 (3)C9—C141.407 (4)
N1—N21.366 (3)C9—C101.411 (4)
N2—C91.370 (4)C10—C111.399 (4)
N2—H2N0.880 (10)C11—C121.376 (4)
N3—C101.445 (4)C11—H110.9500
C1—C61.422 (4)C12—C131.381 (4)
C1—C21.430 (4)C12—H120.9500
C1—C71.483 (4)C13—C141.378 (4)
C2—C31.380 (4)C13—H130.9500
C3—C41.379 (4)C14—H140.9500
C3—H30.9500O1W—H1W0.841 (10)
C4—C51.377 (4)O1W—H2W0.845 (10)
C4—H40.9500
C2—O1—H1O103 (3)N1—C7—C8120.1 (3)
C6—O2—H2O107 (2)C1—C7—C8124.5 (2)
C7—N1—N2119.1 (3)C7—C8—H8A109.5
N1—N2—C9120.2 (2)C7—C8—H8B109.5
N1—N2—H2N123 (2)H8A—C8—H8B109.5
C9—N2—H2N117 (2)C7—C8—H8C109.5
O4—N3—O3122.0 (3)H8A—C8—H8C109.5
O4—N3—C10119.1 (3)H8B—C8—H8C109.5
O3—N3—C10119.0 (3)N2—C9—C14120.6 (3)
C6—C1—C2115.2 (3)N2—C9—C10123.0 (3)
C6—C1—C7123.8 (3)C14—C9—C10116.3 (3)
C2—C1—C7121.0 (3)C11—C10—C9121.5 (3)
O1—C2—C3116.5 (3)C11—C10—N3116.4 (3)
O1—C2—C1121.0 (3)C9—C10—N3122.2 (3)
C3—C2—C1122.5 (3)C12—C11—C10120.5 (3)
C4—C3—C2119.7 (3)C12—C11—H11119.8
C4—C3—H3120.2C10—C11—H11119.8
C2—C3—H3120.2C11—C12—C13118.8 (3)
C3—C4—C5120.5 (3)C11—C12—H12120.6
C3—C4—H4119.8C13—C12—H12120.6
C5—C4—H4119.8C14—C13—C12121.6 (3)
C4—C5—C6120.5 (3)C14—C13—H13119.2
C4—C5—H5119.8C12—C13—H13119.2
C6—C5—H5119.8C13—C14—C9121.3 (3)
O2—C6—C5119.4 (3)C13—C14—H14119.3
O2—C6—C1118.9 (3)C9—C14—H14119.3
C5—C6—C1121.6 (3)H1W—O1W—H2W111 (3)
N1—C7—C1115.5 (3)
C7—N1—N2—C9178.3 (3)C6—C1—C7—C87.0 (5)
C6—C1—C2—O1179.6 (3)C2—C1—C7—C8172.1 (3)
C7—C1—C2—O10.5 (4)N1—N2—C9—C140.9 (4)
C6—C1—C2—C30.7 (4)N1—N2—C9—C10179.8 (3)
C7—C1—C2—C3179.8 (3)N2—C9—C10—C11178.6 (3)
O1—C2—C3—C4179.0 (3)C14—C9—C10—C110.7 (4)
C1—C2—C3—C41.3 (5)N2—C9—C10—N31.2 (5)
C2—C3—C4—C50.5 (5)C14—C9—C10—N3179.5 (3)
C3—C4—C5—C60.8 (5)O4—N3—C10—C113.3 (4)
C4—C5—C6—O2177.8 (3)O3—N3—C10—C11177.0 (3)
C4—C5—C6—C11.5 (5)O4—N3—C10—C9176.9 (3)
C2—C1—C6—O2178.6 (3)O3—N3—C10—C92.8 (4)
C7—C1—C6—O22.3 (4)C9—C10—C11—C120.0 (4)
C2—C1—C6—C50.7 (4)N3—C10—C11—C12179.8 (3)
C7—C1—C6—C5178.4 (3)C10—C11—C12—C130.6 (5)
N2—N1—C7—C1179.4 (2)C11—C12—C13—C140.4 (5)
N2—N1—C7—C81.2 (4)C12—C13—C14—C90.3 (5)
C6—C1—C7—N1173.6 (3)N2—C9—C14—C13178.5 (3)
C2—C1—C7—N17.4 (4)C10—C9—C14—C130.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.85 (2)1.69 (2)2.489 (3)157 (4)
N2—H2N···O30.88 (2)1.93 (2)2.602 (3)132 (2)
O2—H2O···O1Wi0.84 (3)1.90 (3)2.742 (3)174 (2)
O1W—H1W···O1ii0.84 (2)2.08 (3)2.910 (3)169 (3)
O1W—H2W···O4iii0.85 (3)2.50 (3)3.256 (3)150 (3)
C11—H11···O3iv0.952.523.447 (4)166
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O4·H2O
Mr305.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.6448 (6), 21.405 (2), 8.5755 (7)
β (°) 106.976 (5)
V3)1342.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.45 × 0.25 × 0.02
Data collection
DiffractometerBruker-Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.776, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
16295, 3068, 1492
Rint0.110
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.194, 1.01
No. of reflections3068
No. of parameters221
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.30

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.845 (19)1.69 (2)2.489 (3)157 (4)
N2—H2N···O30.88 (2)1.93 (2)2.602 (3)132 (2)
O2—H2O···O1Wi0.84 (3)1.90 (3)2.742 (3)174 (2)
O1W—H1W···O1ii0.84 (2)2.08 (3)2.910 (3)169 (3)
O1W—H2W···O4iii0.85 (3)2.50 (3)3.256 (3)150 (3)
C11—H11···O3iv0.952.523.447 (4)166
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationBaddeley, T. C., de Souza França, L., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613–o616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o19–o23.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o765-o766
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds