organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-[(2E)-3-Phenyl­prop-2-en-1-yl­­idene]-2,3-di­hydro-1H-inden-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 February 2012; accepted 16 February 2012; online 24 February 2012)

The title indan-1-one derivative, C18H14O, is planar with an r.m.s. deviation for all 19 non-H atoms of 0.098 Å. The conformation about each of the C=C bonds [1.343 (3) and 1.349 (3) Å] is E. Supra­molecular layers in the bc plane, mediated by C—H⋯O and ππ [ring centroid–centroid distance = 3.5282 (15) Å] inter­actions, feature in the crystal packing.

Related literature

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009[Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295-302.]). For the crystal structure of a closely related compound, see: Magomedova et al. (1980[Magomedova, N. S., Zvonkova, Z. V., Geita, L. S., Smelyanskaya, E. M. & Ginzburg, S. L. (1980). Zh. Strukt. Khim. 21, 1312-1314.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14O

  • Mr = 246.29

  • Orthorhombic, P c a 21

  • a = 29.192 (4) Å

  • b = 3.9110 (3) Å

  • c = 11.2025 (7) Å

  • V = 1279.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.981, Tmax = 0.992

  • 3652 measured reflections

  • 1521 independent reflections

  • 1375 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 1.05

  • 1521 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.99 2.58 3.432 (3) 144
Symmetry code: (i) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I), was investigated owing to its relationship to some active compounds developed for the treatment of Chagas disease (Vera-DiVaio et al., 2009).

The molecule of (I) (Fig. 1), is planar with a r.m.s. deviation for all 19 non-hydrogen atoms = 0.098 Å. The maximum deviations are found for the C12 [0.138 (2) Å] and C15 [-0.154 (3) Å] atoms. The configuration about the C9C10 bond [1.343 (3) Å] is E and a similar configuration is found for the C11C12 bond [1.349 (3) Å].

In the crystal packing, C—H···O (Table 1), and ππ [ring centroid(C1,C2,C7–C9)···centroid(C2–C7)i distance = 3.5282 (15) Å, angle between planes = 1.49 (13)°, for symmetry operation i: x, 1 + y, z] interactions link molecules into layers in the bc plane (Fig. 2). The layers stack along the a axis with no specific interactions between them (Fig. 2).

Related literature top

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009). For the crystal structure of a closely related compound, see: Magomedova et al. (1980) or (2009).

Experimental top

A solution of cinnamaldehyde (1.3 g, 0.01 mol) in ethanol (20 ml) was added to a stirred solution of 1-indanone (1.3 g, 0.01 mol) in ethanolic KOH (20%, 20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured onto water (200 ml) and set aside overnight. The precipitated product was collected by filtration, washed with water, dried and recrystallized from its ethanol solution as prisms, m.p.: 390–391 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. In the absence of significant anomalous scattering effects, 521 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane in (I). The C—H···O and ππ interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I). The C—H···O and ππ interactions are shown as orange and purple dashed lines, respectively.
(2E)-2-[(2E)-3-Phenylprop-2-en-1-ylidene]-2,3-dihydro-1H- inden-1-one top
Crystal data top
C18H14OF(000) = 520
Mr = 246.29Dx = 1.279 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1378 reflections
a = 29.192 (4) Åθ = 2.8–27.5°
b = 3.9110 (3) ŵ = 0.08 mm1
c = 11.2025 (7) ÅT = 100 K
V = 1279.0 (2) Å3Prism, light-brown
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1521 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1375 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 2138
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 34
Tmin = 0.981, Tmax = 0.992l = 149
3652 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2004P]
where P = (Fo2 + 2Fc2)/3
1521 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C18H14OV = 1279.0 (2) Å3
Mr = 246.29Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 29.192 (4) ŵ = 0.08 mm1
b = 3.9110 (3) ÅT = 100 K
c = 11.2025 (7) Å0.25 × 0.15 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1521 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1375 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.992Rint = 0.035
3652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
1521 reflectionsΔρmin = 0.20 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44657 (6)0.7797 (5)0.50084 (17)0.0279 (4)
C10.44960 (8)0.6972 (6)0.6062 (2)0.0198 (5)
C20.41457 (9)0.5162 (6)0.6782 (2)0.0199 (5)
C30.37141 (9)0.3984 (6)0.6439 (2)0.0228 (5)
H30.36090.42610.56420.027*
C40.34418 (9)0.2399 (6)0.7290 (3)0.0250 (6)
H40.31490.15420.70730.030*
C50.35962 (9)0.2057 (6)0.8465 (2)0.0250 (6)
H50.34050.10030.90430.030*
C60.40277 (9)0.3243 (6)0.8799 (2)0.0226 (5)
H60.41300.30050.96000.027*
C70.43058 (8)0.4770 (6)0.7953 (2)0.0192 (5)
C80.47848 (8)0.6172 (6)0.8098 (2)0.0194 (5)
H8A0.50030.43440.83230.023*
H8B0.47940.79960.87100.023*
C90.48938 (9)0.7589 (6)0.6868 (2)0.0184 (5)
C100.52758 (8)0.9192 (6)0.6502 (2)0.0205 (5)
H100.52761.00520.57090.025*
C110.56849 (8)0.9734 (6)0.7194 (2)0.0199 (5)
H110.56940.89570.79970.024*
C120.60551 (9)1.1316 (6)0.6731 (2)0.0222 (5)
H120.60231.21580.59400.027*
C130.65002 (9)1.1892 (6)0.7300 (2)0.0220 (5)
C140.68584 (9)1.3265 (6)0.6620 (3)0.0279 (6)
H140.68051.38810.58110.033*
C150.72899 (9)1.3738 (7)0.7109 (3)0.0310 (6)
H150.75301.46390.66300.037*
C160.73741 (9)1.2911 (7)0.8289 (3)0.0317 (7)
H160.76691.32620.86250.038*
C170.70216 (9)1.1559 (7)0.8976 (3)0.0290 (6)
H170.70781.09670.97850.035*
C180.65895 (9)1.1062 (7)0.8501 (2)0.0234 (6)
H180.63521.01570.89860.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (10)0.0385 (11)0.0142 (8)0.0023 (8)0.0007 (8)0.0023 (8)
C10.0217 (12)0.0194 (11)0.0183 (11)0.0062 (9)0.0006 (10)0.0037 (11)
C20.0244 (12)0.0157 (11)0.0197 (11)0.0054 (10)0.0024 (10)0.0018 (10)
C30.0241 (13)0.0201 (11)0.0242 (12)0.0047 (10)0.0054 (11)0.0020 (11)
C40.0215 (12)0.0218 (13)0.0317 (15)0.0015 (10)0.0014 (12)0.0006 (12)
C50.0255 (14)0.0203 (12)0.0292 (14)0.0031 (10)0.0056 (11)0.0025 (11)
C60.0286 (14)0.0197 (12)0.0194 (12)0.0044 (10)0.0019 (11)0.0023 (11)
C70.0225 (12)0.0147 (11)0.0205 (11)0.0063 (9)0.0015 (10)0.0039 (10)
C80.0231 (13)0.0204 (12)0.0147 (11)0.0025 (9)0.0015 (10)0.0022 (10)
C90.0218 (12)0.0182 (11)0.0153 (11)0.0039 (9)0.0000 (9)0.0014 (10)
C100.0267 (12)0.0181 (11)0.0166 (10)0.0048 (9)0.0014 (10)0.0001 (10)
C110.0224 (13)0.0209 (12)0.0164 (11)0.0026 (10)0.0015 (10)0.0001 (11)
C120.0280 (13)0.0185 (12)0.0203 (12)0.0018 (9)0.0008 (11)0.0007 (11)
C130.0261 (13)0.0163 (12)0.0235 (13)0.0004 (9)0.0033 (12)0.0048 (11)
C140.0297 (14)0.0248 (13)0.0292 (14)0.0030 (10)0.0052 (12)0.0043 (12)
C150.0265 (14)0.0284 (14)0.0382 (16)0.0047 (11)0.0089 (13)0.0055 (13)
C160.0236 (14)0.0299 (14)0.0417 (17)0.0004 (11)0.0039 (13)0.0105 (14)
C170.0307 (15)0.0295 (13)0.0268 (14)0.0020 (12)0.0056 (12)0.0048 (12)
C180.0240 (13)0.0247 (13)0.0215 (12)0.0007 (10)0.0024 (11)0.0015 (11)
Geometric parameters (Å, º) top
O1—C11.227 (3)C10—C111.439 (3)
C1—C21.482 (3)C10—H100.9500
C1—C91.491 (3)C11—C121.349 (3)
C2—C31.396 (3)C11—H110.9500
C2—C71.401 (3)C12—C131.465 (3)
C3—C41.388 (4)C12—H120.9500
C3—H30.9500C13—C141.401 (4)
C4—C51.398 (4)C13—C181.408 (4)
C4—H40.9500C14—C151.386 (4)
C5—C61.393 (4)C14—H140.9500
C5—H50.9500C15—C161.382 (4)
C6—C71.383 (4)C15—H150.9500
C6—H60.9500C16—C171.390 (4)
C7—C81.511 (3)C16—H160.9500
C8—C91.518 (3)C17—C181.383 (4)
C8—H8A0.9900C17—H170.9500
C8—H8B0.9900C18—H180.9500
C9—C101.343 (3)
O1—C1—C2126.8 (2)C1—C9—C8109.1 (2)
O1—C1—C9126.6 (2)C9—C10—C11126.4 (2)
C2—C1—C9106.6 (2)C9—C10—H10116.8
C3—C2—C7121.5 (2)C11—C10—H10116.8
C3—C2—C1129.1 (2)C12—C11—C10121.7 (2)
C7—C2—C1109.4 (2)C12—C11—H11119.2
C4—C3—C2118.4 (3)C10—C11—H11119.2
C4—C3—H3120.8C11—C12—C13127.9 (2)
C2—C3—H3120.8C11—C12—H12116.1
C3—C4—C5120.3 (3)C13—C12—H12116.1
C3—C4—H4119.8C14—C13—C18118.0 (2)
C5—C4—H4119.8C14—C13—C12118.9 (2)
C6—C5—C4120.8 (2)C18—C13—C12123.0 (2)
C6—C5—H5119.6C15—C14—C13120.9 (3)
C4—C5—H5119.6C15—C14—H14119.5
C7—C6—C5119.4 (2)C13—C14—H14119.5
C7—C6—H6120.3C16—C15—C14120.6 (3)
C5—C6—H6120.3C16—C15—H15119.7
C6—C7—C2119.5 (2)C14—C15—H15119.7
C6—C7—C8128.8 (2)C15—C16—C17119.2 (3)
C2—C7—C8111.7 (2)C15—C16—H16120.4
C7—C8—C9103.25 (19)C17—C16—H16120.4
C7—C8—H8A111.1C18—C17—C16121.0 (3)
C9—C8—H8A111.1C18—C17—H17119.5
C7—C8—H8B111.1C16—C17—H17119.5
C9—C8—H8B111.1C17—C18—C13120.3 (2)
H8A—C8—H8B109.1C17—C18—H18119.8
C10—C9—C1122.5 (2)C13—C18—H18119.8
C10—C9—C8128.4 (2)
O1—C1—C2—C30.5 (4)O1—C1—C9—C8179.6 (2)
C9—C1—C2—C3179.3 (2)C2—C1—C9—C80.5 (3)
O1—C1—C2—C7178.5 (2)C7—C8—C9—C10178.8 (2)
C9—C1—C2—C71.6 (3)C7—C8—C9—C10.7 (2)
C7—C2—C3—C40.1 (4)C1—C9—C10—C11176.3 (2)
C1—C2—C3—C4178.8 (2)C8—C9—C10—C114.3 (4)
C2—C3—C4—C51.1 (4)C9—C10—C11—C12178.5 (2)
C3—C4—C5—C61.1 (4)C10—C11—C12—C13176.6 (2)
C4—C5—C6—C70.1 (4)C11—C12—C13—C14173.1 (2)
C5—C6—C7—C21.3 (3)C11—C12—C13—C185.5 (4)
C5—C6—C7—C8178.7 (2)C18—C13—C14—C151.1 (4)
C3—C2—C7—C61.3 (3)C12—C13—C14—C15177.6 (2)
C1—C2—C7—C6177.8 (2)C13—C14—C15—C161.0 (4)
C3—C2—C7—C8178.7 (2)C14—C15—C16—C170.7 (4)
C1—C2—C7—C82.2 (3)C15—C16—C17—C180.6 (4)
C6—C7—C8—C9178.2 (2)C16—C17—C18—C130.6 (4)
C2—C7—C8—C91.8 (2)C14—C13—C18—C170.9 (4)
O1—C1—C9—C100.1 (4)C12—C13—C18—C17177.8 (2)
C2—C1—C9—C10180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.583.432 (3)144
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14O
Mr246.29
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)29.192 (4), 3.9110 (3), 11.2025 (7)
V3)1279.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.981, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3652, 1521, 1375
Rint0.035
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.05
No. of reflections1521
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.583.432 (3)144
Symmetry code: (i) x+1, y+1, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department of King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMagomedova, N. S., Zvonkova, Z. V., Geita, L. S., Smelyanskaya, E. M. & Ginzburg, S. L. (1980). Zh. Strukt. Khim. 21, 1312–1314.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds