metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second polymorph of aqua­{4-chloro-2-[(pyridin-2-ylmeth­yl)imino­meth­yl]­phenolato}copper(II) nitrate mono­hydrate

aCollege of Biological and Chemical Sciences Engineering, Jiaxing University, Jiaxing Zhejiang 314001, People's Republic of China
*Correspondence e-mail: jxxyyuj@yahoo.cn

(Received 15 January 2012; accepted 2 February 2012; online 10 February 2012)

The title complex, [Cu(C13H10ClN2O)(H2O)]NO3·H2O, was obtained by the reaction of 5-chloro­salicyl­aldehyde, 2-(amino­meth­yl)pyridine and copper nitrate in methanol. The first reported polymorph of this complex was triclinic [Liang et al. (2010[Liang, Q., Chen, X., Zhang, H. & Zou, Z. (2010). Acta Cryst. E66, m40.]). Acta Cryst. E66, m40]. The present polymorph crystallized in the monoclinic space group P21/c. The CuII ion is in a square planar environment and is coordinated by one phenolate O, one imine N and one pyridine N atom of the tridentate Schiff base ligand and by one water O atom. In the crystal, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds to form chains along the a axis.

Related literature

For the structures and properties of Schiff base copper(II) complexes, see: Patel et al. (2011[Patel, R. N., Singh, A., Shukla, K. K., Patel, D. K. & Sondhiya, V. P. (2011). J. Coord. Chem. 64, 902-919.]); Creaven et al. (2010[Creaven, B. S., Czegledi, E., Devereux, M., Enyedy, E. A., Kia, A. F. A., Karcz, D., Kellett, A., McClean, S., Nagy, N. V., Noble, A., Rockenbauer, A., Szabo-Planka, T. & Walsh, M. (2010). Dalton Trans. 39, 10854-10865.]); Osowole et al. (2008[Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046-1055.]). For the complex with triclinic space group P[\overline{1}], see: Liang et al. (2010[Liang, Q., Chen, X., Zhang, H. & Zou, Z. (2010). Acta Cryst. E66, m40.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H10ClN2O)(H2O)]NO3·H2O

  • Mr = 407.26

  • Monoclinic, P 21 /c

  • a = 7.840 (2) Å

  • b = 8.815 (3) Å

  • c = 23.079 (3) Å

  • β = 99.680 (2)°

  • V = 1572.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.720, Tmax = 0.752

  • 12290 measured reflections

  • 3410 independent reflections

  • 2647 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.06

  • 3410 reflections

  • 233 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O1i 0.85 (1) 2.06 (1) 2.887 (3) 167 (3)
O2—H2B⋯O6 0.71 (4) 1.98 (4) 2.681 (4) 172 (4)
O2—H2A⋯O5 0.81 (4) 2.63 (4) 3.078 (3) 116 (3)
O2—H2A⋯O3 0.81 (4) 1.85 (4) 2.652 (4) 170 (4)
O6—H6A⋯O4ii 0.84 (1) 2.02 (1) 2.831 (3) 162 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Schiff base copper(II) complexes have been received much attention due to their interesting structures and biological properties (Patel et al., 2011; Creaven et al., 2010; Osowole et al., 2008). The title complex was first reported as triclinic space group P-1 (Liang et al., 2010). We report herein a monoclinic polymorph in space group P21/c.

The title complex, (I) (Fig. 1), contains a mononuclear copper complex cation, a nitrate anion, and a water molecule. The Cu atom is coordinated by one phenolate O, one imine N, and one pyridine N of the Schiff base ligand, and one water O atom, forming a square planar coordination. The bond lengths (Table 1) are within the normal range. In the crystal, molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form chains along the a axis, Fig. 2.

Related literature top

For the structures and properties of Schiff base copper(II) complexes, see: Patel et al. (2011); Creaven et al. (2010); Osowole et al. (2008). For the complex with triclinic space group P1, see: Liang et al. (2010).

Experimental top

To a solution of 5-chlorosalicylaldehyde (0.156 g, 1.0 mmol), 2-aminomethylpyridine (0.108 g, 1.0 mmol) in 30 ml me thanol was added slowly a solution of copper nitrate (0.241 g, 1.0 mmol) in methanol. The mixture was stirred for 2 h at room temperature to give a blue solution, which was filtered and the filtrate was left to stand at room temperature. Blue block crystals suitable for X-ray diffraction were obtained by slow evaporation.

Refinement top

The water H atoms were located in a difference map and refined with distances restraint of O—H = 0.85 (1) Å and H···H = 1.37 (2) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
aqua{4-chloro-2-[(pyridin-2-ylmethyl)iminomethyl]phenolato}copper(II) nitrate monohydrate top
Crystal data top
[Cu(C13H10ClN2O)(H2O)]NO3·H2OF(000) = 828
Mr = 407.26Dx = 1.720 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.840 (2) ÅCell parameters from 3984 reflections
b = 8.815 (3) Åθ = 2.5–26.9°
c = 23.079 (3) ŵ = 1.60 mm1
β = 99.680 (2)°T = 298 K
V = 1572.4 (7) Å3Block, blue
Z = 40.22 × 0.20 × 0.19 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3410 independent reflections
Radiation source: fine-focus sealed tube2647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.720, Tmax = 0.752k = 1110
12290 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.669P]
where P = (Fo2 + 2Fc2)/3
3410 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(C13H10ClN2O)(H2O)]NO3·H2OV = 1572.4 (7) Å3
Mr = 407.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.840 (2) ŵ = 1.60 mm1
b = 8.815 (3) ÅT = 298 K
c = 23.079 (3) Å0.22 × 0.20 × 0.19 mm
β = 99.680 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3410 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2647 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.752Rint = 0.046
12290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
3410 reflectionsΔρmin = 0.48 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.31780 (4)0.86046 (4)0.441029 (14)0.03273 (12)
Cl10.30943 (12)1.01565 (10)0.74737 (3)0.0561 (2)
N10.2244 (3)1.0428 (2)0.46999 (9)0.0311 (5)
N20.2433 (3)0.9578 (2)0.36353 (9)0.0341 (5)
N30.0449 (3)0.5644 (3)0.39668 (10)0.0427 (6)
O10.3889 (3)0.7778 (2)0.51693 (8)0.0387 (5)
O20.4383 (4)0.6939 (3)0.40783 (11)0.0392 (5)
O30.1648 (3)0.5200 (3)0.37200 (10)0.0539 (6)
O40.0834 (3)0.4839 (3)0.39510 (12)0.0764 (8)
O50.0556 (3)0.6892 (3)0.42285 (11)0.0595 (6)
O60.6908 (3)0.5408 (3)0.47630 (10)0.0499 (5)
C10.2878 (3)0.9799 (3)0.57295 (12)0.0315 (6)
C20.3686 (3)0.8378 (3)0.56748 (11)0.0317 (6)
C30.4316 (4)0.7585 (3)0.61943 (12)0.0388 (7)
H30.48670.66580.61700.047*
C40.4142 (4)0.8134 (3)0.67321 (12)0.0397 (7)
H40.45730.75830.70690.048*
C50.3323 (4)0.9515 (3)0.67803 (12)0.0383 (7)
C60.2709 (4)1.0331 (3)0.62901 (12)0.0380 (7)
H60.21691.12570.63270.046*
C70.2211 (3)1.0744 (3)0.52380 (12)0.0339 (6)
H70.17151.16630.53170.041*
C80.1576 (4)1.1552 (3)0.42524 (12)0.0383 (7)
H8A0.22521.24760.43180.046*
H8B0.03851.17930.42790.046*
C90.1674 (3)1.0935 (3)0.36544 (12)0.0323 (6)
C100.1044 (4)1.1749 (3)0.31527 (13)0.0443 (7)
H100.05291.26930.31770.053*
C110.1198 (4)1.1132 (4)0.26167 (13)0.0486 (8)
H110.07731.16510.22720.058*
C120.1979 (4)0.9748 (4)0.25938 (13)0.0470 (8)
H120.20960.93210.22340.056*
C130.2586 (4)0.9002 (3)0.31071 (13)0.0420 (7)
H130.31220.80660.30900.050*
H6A0.773 (3)0.535 (3)0.4574 (12)0.045 (10)*
H2A0.362 (5)0.633 (4)0.3958 (16)0.067 (14)*
H2B0.502 (5)0.656 (4)0.4284 (15)0.047 (12)*
H6B0.657 (5)0.452 (2)0.4820 (18)0.100 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0389 (2)0.02223 (18)0.03751 (19)0.00418 (15)0.00787 (14)0.00095 (14)
Cl10.0715 (6)0.0575 (5)0.0400 (4)0.0038 (4)0.0120 (4)0.0117 (4)
N10.0343 (12)0.0188 (11)0.0396 (12)0.0034 (9)0.0045 (10)0.0015 (9)
N20.0384 (13)0.0257 (12)0.0381 (12)0.0011 (10)0.0063 (10)0.0001 (10)
N30.0444 (16)0.0418 (16)0.0400 (13)0.0038 (13)0.0014 (11)0.0011 (12)
O10.0533 (12)0.0250 (10)0.0385 (10)0.0094 (9)0.0100 (9)0.0021 (8)
O20.0399 (14)0.0312 (12)0.0468 (13)0.0071 (11)0.0079 (11)0.0014 (11)
O30.0568 (14)0.0522 (14)0.0567 (13)0.0071 (11)0.0214 (11)0.0186 (11)
O40.0560 (16)0.082 (2)0.095 (2)0.0297 (15)0.0250 (14)0.0259 (16)
O50.0533 (14)0.0371 (13)0.0913 (17)0.0026 (11)0.0211 (13)0.0148 (13)
O60.0554 (15)0.0354 (13)0.0579 (14)0.0075 (11)0.0067 (12)0.0017 (11)
C10.0319 (15)0.0227 (13)0.0401 (14)0.0018 (11)0.0063 (12)0.0035 (11)
C20.0319 (15)0.0252 (14)0.0382 (14)0.0022 (11)0.0064 (11)0.0022 (11)
C30.0438 (17)0.0255 (15)0.0464 (16)0.0020 (13)0.0057 (13)0.0011 (12)
C40.0437 (18)0.0359 (16)0.0385 (15)0.0040 (13)0.0042 (13)0.0042 (13)
C50.0402 (17)0.0370 (17)0.0390 (15)0.0085 (13)0.0099 (12)0.0094 (13)
C60.0402 (17)0.0297 (15)0.0451 (16)0.0001 (13)0.0099 (13)0.0076 (13)
C70.0329 (15)0.0230 (13)0.0460 (16)0.0026 (12)0.0073 (12)0.0037 (12)
C80.0460 (17)0.0240 (14)0.0438 (15)0.0078 (13)0.0040 (13)0.0021 (12)
C90.0283 (14)0.0245 (13)0.0429 (15)0.0029 (11)0.0021 (12)0.0002 (12)
C100.0478 (19)0.0321 (16)0.0468 (17)0.0032 (14)0.0100 (14)0.0017 (13)
C110.056 (2)0.0434 (19)0.0400 (16)0.0029 (16)0.0088 (14)0.0048 (14)
C120.053 (2)0.0446 (19)0.0403 (16)0.0076 (16)0.0013 (14)0.0066 (14)
C130.0471 (18)0.0327 (16)0.0459 (17)0.0002 (13)0.0074 (14)0.0042 (13)
Geometric parameters (Å, º) top
Cu1—O11.8925 (18)C2—C31.404 (4)
Cu1—N11.932 (2)C3—C41.360 (4)
Cu1—O21.970 (2)C3—H30.9300
Cu1—N21.981 (2)C4—C51.389 (4)
Cl1—C51.735 (3)C4—H40.9300
N1—C71.277 (3)C5—C61.359 (4)
N1—C81.463 (3)C6—H60.9300
N2—C91.340 (3)C7—H70.9300
N2—C131.345 (3)C8—C91.497 (4)
N3—O41.227 (3)C8—H8A0.9700
N3—O31.241 (3)C8—H8B0.9700
N3—O51.251 (3)C9—C101.381 (4)
O1—C21.314 (3)C10—C111.375 (4)
O2—H2A0.81 (4)C10—H100.9300
O2—H2B0.71 (4)C11—C121.371 (4)
O6—H6A0.839 (10)C11—H110.9300
O6—H6B0.845 (10)C12—C131.368 (4)
C1—C61.403 (4)C12—H120.9300
C1—C21.419 (3)C13—H130.9300
C1—C71.434 (4)
O1—Cu1—N194.00 (8)C5—C4—H4119.9
O1—Cu1—O289.27 (9)C6—C5—C4120.1 (3)
N1—Cu1—O2171.71 (10)C6—C5—Cl1121.2 (2)
O1—Cu1—N2176.94 (8)C4—C5—Cl1118.7 (2)
N1—Cu1—N283.13 (9)C5—C6—C1121.0 (3)
O2—Cu1—N293.43 (10)C5—C6—H6119.5
C7—N1—C8118.4 (2)C1—C6—H6119.5
C7—N1—Cu1126.06 (19)N1—C7—C1125.3 (2)
C8—N1—Cu1115.50 (16)N1—C7—H7117.3
C9—N2—C13118.3 (2)C1—C7—H7117.3
C9—N2—Cu1114.98 (18)N1—C8—C9109.7 (2)
C13—N2—Cu1126.67 (19)N1—C8—H8A109.7
O4—N3—O3118.9 (3)C9—C8—H8A109.7
O4—N3—O5120.7 (3)N1—C8—H8B109.7
O3—N3—O5120.3 (3)C9—C8—H8B109.7
C2—O1—Cu1127.32 (17)H8A—C8—H8B108.2
Cu1—O2—H2A105 (3)N2—C9—C10122.3 (3)
Cu1—O2—H2B115 (3)N2—C9—C8116.5 (2)
H2A—O2—H2B108 (4)C10—C9—C8121.2 (2)
H6A—O6—H6B109 (2)C11—C10—C9118.4 (3)
C6—C1—C2119.3 (2)C11—C10—H10120.8
C6—C1—C7117.2 (2)C9—C10—H10120.8
C2—C1—C7123.5 (2)C12—C11—C10119.6 (3)
O1—C2—C3118.7 (2)C12—C11—H11120.2
O1—C2—C1123.8 (2)C10—C11—H11120.2
C3—C2—C1117.5 (2)C13—C12—C11119.1 (3)
C4—C3—C2121.8 (3)C13—C12—H12120.4
C4—C3—H3119.1C11—C12—H12120.4
C2—C3—H3119.1N2—C13—C12122.2 (3)
C3—C4—C5120.2 (3)N2—C13—H13118.9
C3—C4—H4119.9C12—C13—H13118.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O1i0.85 (1)2.06 (1)2.887 (3)167 (3)
O2—H2B···O60.71 (4)1.98 (4)2.681 (4)172 (4)
O2—H2A···O50.81 (4)2.63 (4)3.078 (3)116 (3)
O2—H2A···O30.81 (4)1.85 (4)2.652 (4)170 (4)
O6—H6A···O4ii0.84 (1)2.02 (1)2.831 (3)162 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C13H10ClN2O)(H2O)]NO3·H2O
Mr407.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.840 (2), 8.815 (3), 23.079 (3)
β (°) 99.680 (2)
V3)1572.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.720, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
12290, 3410, 2647
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.06
No. of reflections3410
No. of parameters233
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.48

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O1i0.845 (10)2.058 (14)2.887 (3)167 (3)
O2—H2B···O60.71 (4)1.98 (4)2.681 (4)172 (4)
O2—H2A···O50.81 (4)2.63 (4)3.078 (3)116 (3)
O2—H2A···O30.81 (4)1.85 (4)2.652 (4)170 (4)
O6—H6A···O4ii0.839 (10)2.020 (14)2.831 (3)162 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The College of Biological and Chemical Sciences Engineering at Jiaxing University is acknowledged for the provision of facilities to prepare and characterize the compound.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCreaven, B. S., Czegledi, E., Devereux, M., Enyedy, E. A., Kia, A. F. A., Karcz, D., Kellett, A., McClean, S., Nagy, N. V., Noble, A., Rockenbauer, A., Szabo-Planka, T. & Walsh, M. (2010). Dalton Trans. 39, 10854–10865.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiang, Q., Chen, X., Zhang, H. & Zou, Z. (2010). Acta Cryst. E66, m40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOsowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046–1055.  Web of Science CrossRef CAS Google Scholar
First citationPatel, R. N., Singh, A., Shukla, K. K., Patel, D. K. & Sondhiya, V. P. (2011). J. Coord. Chem. 64, 902–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds