organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Bromo­phenyl­imino)­meth­yl]-4,6-di­iodo­phenol

aState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and Jiangsu Tiansheng Pharmaceutical Company Limited, Jurong Jiangsu 212415, People's Republic of China
*Correspondence e-mail: hailiang_zhu@163.com

(Received 7 February 2012; accepted 7 February 2012; online 24 February 2012)

The title compound, C13H8BrI2NO, was prepared by the reaction of 3,5-diiodo­salicyl­aldehyde with 4-bromo­phenyl­amine in ethanol. There is an intra­molecular O—H⋯N hydrogen bond in the mol­ecule, which generates an S(6) ring. The dihedral angle between the benzene rings is 2.6 (3)°.

Related literature

For the biological activities of Schiff bases, see: Chohan et al. (2012[Chohan, Z. H., Shad, H. A. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 58-68.]); Yan et al. (2011[Yan, L., Liu, F. W. & Liu, H. M. (2011). Chin. J. Org. Chem. 31, 1639-1642.]); Zhang et al. (2011[Zhang, H.-J., Qin, X., Liu, K., Zhu, D.-D., Wang, X.-M. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 5708-5715.]). For the coordination of Schiff bases, see: You et al. (2008[You, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862-871.]); Xu et al. (2009[Xu, S.-P., Lv, P.-C., Fang, R.-Q. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 2048-2057.]); Chen et al. (2010[Chen, W., Li, Y.-G., Cui, Y.-M., Zhang, X.-A., Zhu, H.-L. & Zeng, Q.-F. (2010). Eur. J. Med. Chem. 45, 4473-4478.]); Cui et al. (2011[Cui, Y.-M., Li, Y.-G., Cai, Y.-J., Chen, W. & Zhu, H.-L. (2011). J. Coord. Chem. 64, 610-616.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8BrI2NO

  • Mr = 527.91

  • Triclinic, [P \overline 1]

  • a = 7.9870 (13) Å

  • b = 8.9811 (14) Å

  • c = 11.3907 (18) Å

  • α = 91.093 (2)°

  • β = 99.873 (2)°

  • γ = 114.570 (2)°

  • V = 728.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.05 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.380, Tmax = 0.418

  • 6174 measured reflections

  • 3125 independent reflections

  • 2425 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.07

  • 3125 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.576 (5) 148

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Schiff bases have been extensively studied for their biological activities (Chohan et al., 2012; Yan et al., 2011; Zhang et al., 2011). In addition, Schiff bases are versatile ligands for the preparation of metal complexes (You et al., 2008; Xu et al., 2009; Chen et al., 2010; Cui et al., 2011). In the present paper, the new title compound is reported.

The molecule of the compound exists in a trans configuration with respect to the methylidene unit (Fig. 1). There is an intramolecular O1—H1···N1 hydrogen bond in the molecule (Table 1). The dihedral angle between the C1–C6 and C8–C13 benzene rings is 2.6 (3)°. The bond distances are within the normal range (Allen et al., 1987).

Related literature top

For the biological activities of Schiff bases, see: Chohan et al. (2012); Yan et al. (2011); Zhang et al. (2011). For the coordination of Schiff bases, see: You et al. (2008); Xu et al. (2009); Chen et al. (2010); Cui et al. (2011). For reference bond lengths, see: Allen et al. (1987).

Experimental top

3,5-Diiodosalicylaldehyde (0.37 g, 1 mmol) and 4-bromophenylamine (0.17 g, 1 mmol) were mixed in ethanol (20 ml). The mixture was stirred at room temperature for 30 min to give a yellow solution. Yellow block-shaped single crystals were obtained by slow evaporation of the solution in air.

Refinement top

H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with Uiso(H) set to 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is indicated by a dashed line.
2-[(4-Bromophenylimino)methyl]-4,6-diiodophenol top
Crystal data top
C13H8BrI2NOZ = 2
Mr = 527.91F(000) = 484
Triclinic, P1Dx = 2.407 Mg m3
a = 7.9870 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9811 (14) ÅCell parameters from 1027 reflections
c = 11.3907 (18) Åθ = 2.5–25.1°
α = 91.093 (2)°µ = 7.05 mm1
β = 99.873 (2)°T = 298 K
γ = 114.570 (2)°Block, yellow
V = 728.4 (2) Å30.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3125 independent reflections
Radiation source: fine-focus sealed tube2425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.380, Tmax = 0.418k = 1011
6174 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0399P)2 + 1.2928P]
where P = (Fo2 + 2Fc2)/3
3125 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C13H8BrI2NOγ = 114.570 (2)°
Mr = 527.91V = 728.4 (2) Å3
Triclinic, P1Z = 2
a = 7.9870 (13) ÅMo Kα radiation
b = 8.9811 (14) ŵ = 7.05 mm1
c = 11.3907 (18) ÅT = 298 K
α = 91.093 (2)°0.17 × 0.15 × 0.15 mm
β = 99.873 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3125 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2425 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.418Rint = 0.022
6174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.07Δρmax = 1.26 e Å3
3125 reflectionsΔρmin = 0.76 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.87298 (7)0.30448 (5)0.38474 (3)0.06516 (15)
Br10.27660 (10)0.16630 (8)0.47166 (5)0.0712 (2)
I21.20768 (6)1.02378 (4)0.20734 (4)0.06502 (15)
N10.6508 (5)0.3888 (5)0.0440 (3)0.0403 (9)
O10.7124 (6)0.2911 (4)0.1515 (3)0.0532 (9)
H10.66350.28390.09290.080*
C10.8487 (7)0.5748 (6)0.0729 (4)0.0390 (10)
C20.8205 (6)0.4496 (6)0.1604 (4)0.0380 (10)
C30.9082 (7)0.4926 (6)0.2583 (4)0.0421 (11)
C41.0185 (7)0.6550 (6)0.2713 (4)0.0444 (11)
H41.07640.68200.33710.053*
C51.0422 (7)0.7773 (6)0.1854 (4)0.0418 (11)
C60.9621 (7)0.7389 (6)0.0865 (4)0.0416 (11)
H60.98300.82200.02820.050*
C70.7600 (7)0.5360 (6)0.0313 (4)0.0419 (11)
H70.78360.62020.08940.050*
C80.5660 (6)0.3466 (6)0.1464 (4)0.0397 (10)
C90.5782 (8)0.4581 (7)0.2364 (5)0.0554 (14)
H90.64530.57030.23250.066*
C100.4912 (8)0.4041 (7)0.3323 (5)0.0548 (14)
H100.49860.47960.39220.066*
C110.3947 (7)0.2400 (7)0.3386 (4)0.0469 (12)
C120.3773 (8)0.1262 (7)0.2497 (5)0.0547 (14)
H120.30980.01430.25450.066*
C130.4618 (8)0.1808 (7)0.1527 (5)0.0517 (13)
H130.44840.10480.09100.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0980 (3)0.0439 (2)0.0485 (2)0.0182 (2)0.0335 (2)0.00210 (15)
Br10.0904 (5)0.0621 (4)0.0500 (3)0.0110 (3)0.0415 (3)0.0074 (3)
I20.0833 (3)0.0366 (2)0.0657 (3)0.01060 (18)0.0292 (2)0.01196 (16)
N10.041 (2)0.044 (2)0.039 (2)0.0172 (18)0.0162 (17)0.0086 (17)
O10.067 (2)0.0355 (18)0.047 (2)0.0065 (16)0.0266 (18)0.0060 (15)
C10.041 (3)0.042 (3)0.037 (2)0.018 (2)0.0134 (19)0.0135 (19)
C20.039 (2)0.036 (2)0.038 (2)0.0129 (19)0.0105 (19)0.0054 (18)
C30.049 (3)0.044 (3)0.036 (2)0.020 (2)0.013 (2)0.007 (2)
C40.053 (3)0.043 (3)0.040 (2)0.019 (2)0.018 (2)0.013 (2)
C50.047 (3)0.032 (2)0.046 (3)0.013 (2)0.018 (2)0.012 (2)
C60.044 (3)0.040 (3)0.043 (2)0.019 (2)0.010 (2)0.004 (2)
C70.049 (3)0.043 (3)0.040 (2)0.022 (2)0.017 (2)0.008 (2)
C80.037 (2)0.047 (3)0.038 (2)0.017 (2)0.0153 (19)0.010 (2)
C90.070 (4)0.041 (3)0.049 (3)0.012 (3)0.028 (3)0.005 (2)
C100.070 (4)0.047 (3)0.042 (3)0.016 (3)0.022 (3)0.002 (2)
C110.049 (3)0.051 (3)0.038 (2)0.015 (2)0.019 (2)0.007 (2)
C120.063 (3)0.043 (3)0.053 (3)0.011 (2)0.027 (3)0.007 (2)
C130.063 (3)0.045 (3)0.049 (3)0.020 (3)0.026 (3)0.005 (2)
Geometric parameters (Å, º) top
I1—C32.093 (5)C5—C61.369 (7)
Br1—C111.907 (5)C6—H60.9300
I2—C52.101 (5)C7—H70.9300
N1—C71.273 (6)C8—C91.382 (7)
N1—C81.427 (6)C8—C131.382 (7)
O1—C21.340 (6)C9—C101.382 (7)
O1—H10.8200C9—H90.9300
C1—C61.401 (7)C10—C111.360 (8)
C1—C21.406 (7)C10—H100.9300
C1—C71.460 (6)C11—C121.373 (7)
C2—C31.394 (6)C12—C131.385 (7)
C3—C41.382 (7)C12—H120.9300
C4—C51.387 (7)C13—H130.9300
C4—H40.9300
C7—N1—C8122.4 (4)N1—C7—H7119.4
C2—O1—H1109.5C1—C7—H7119.4
C6—C1—C2119.6 (4)C9—C8—C13118.8 (4)
C6—C1—C7119.6 (4)C9—C8—N1125.0 (5)
C2—C1—C7120.8 (4)C13—C8—N1116.1 (4)
O1—C2—C3119.6 (4)C8—C9—C10120.4 (5)
O1—C2—C1121.7 (4)C8—C9—H9119.8
C3—C2—C1118.7 (4)C10—C9—H9119.8
C4—C3—C2121.2 (4)C11—C10—C9119.7 (5)
C4—C3—I1120.4 (3)C11—C10—H10120.1
C2—C3—I1118.4 (4)C9—C10—H10120.1
C3—C4—C5119.3 (4)C10—C11—C12121.3 (5)
C3—C4—H4120.3C10—C11—Br1119.5 (4)
C5—C4—H4120.3C12—C11—Br1119.2 (4)
C6—C5—C4121.0 (4)C11—C12—C13118.9 (5)
C6—C5—I2120.1 (4)C11—C12—H12120.6
C4—C5—I2118.9 (3)C13—C12—H12120.6
C5—C6—C1120.2 (4)C8—C13—C12120.8 (5)
C5—C6—H6119.9C8—C13—H13119.6
C1—C6—H6119.9C12—C13—H13119.6
N1—C7—C1121.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.576 (5)148

Experimental details

Crystal data
Chemical formulaC13H8BrI2NO
Mr527.91
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9870 (13), 8.9811 (14), 11.3907 (18)
α, β, γ (°)91.093 (2), 99.873 (2), 114.570 (2)
V3)728.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)7.05
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.380, 0.418
No. of measured, independent and
observed [I > 2σ(I)] reflections
6174, 3125, 2425
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.07
No. of reflections3125
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 0.76

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.576 (5)147.5
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Li, Y.-G., Cui, Y.-M., Zhang, X.-A., Zhu, H.-L. & Zeng, Q.-F. (2010). Eur. J. Med. Chem. 45, 4473–4478.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChohan, Z. H., Shad, H. A. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 58–68.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCui, Y.-M., Li, Y.-G., Cai, Y.-J., Chen, W. & Zhu, H.-L. (2011). J. Coord. Chem. 64, 610–616.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-P., Lv, P.-C., Fang, R.-Q. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 2048–2057.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, L., Liu, F. W. & Liu, H. M. (2011). Chin. J. Org. Chem. 31, 1639–1642.  CAS Google Scholar
First citationYou, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862–871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, H.-J., Qin, X., Liu, K., Zhu, D.-D., Wang, X.-M. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 5708–5715.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds