organic compounds
1,3,5-Tris(pyridin-3-yl)-2,4-diazapenta-1,4-diene
aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, B.C., Mexico
*Correspondence e-mail: miguelhake@yahoo.com
In the solid state, the structure of the title compound, C18H15N5, is stabilized by weak C—H⋯N interactions. Molecules are arranged in layers parallel to the bc plane forming an interesting supramolecular structure.
Related literature
For coordination polymers and supramolecular structures, see: Itoh et al. (2005); Albrechet (2001); Leininger et al. (2000). For potential applications in catalysis, gas storage, optics, magnetism, nanotechnology and luminescence, see: James (2003); Kitagawa et al. (2004); Masaoka et al. (2001); Rarig et al. (2002); Yaghi et al. (2003); Wang et al. (2009). For the preparation of this class of compound, see: Larter et al. (1998); Lozinskaya et al. (2003); Bessonov et al. (2005); Fernandes et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXS97.
Supporting information
10.1107/S1600536812005909/rk2325sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812005909/rk2325Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812005909/rk2325Isup3.cml
The synthesis of the title compound included reagent grade starting materials and solvents. A mixture of pyridine-3-carboxaldehyde (5 mL, 0.0531 mol) and ammonium hydroxide (15 mL, 0.3843 mol) was stirred at room temperature for 24 h. The mixture was filtered off and washed with water, then recrystallized by gas phase diffusion of diethyl ether into a concentrated solution of the product in dichloromethane, providing colorless crystals. Yield (3.5 g, 22%). M.p. = 388-390 K, (KBr) 3270, 3226, 3040, 2887, 1575, 1471, 1417, 1082, 1023, 868, 863, 808, 705 cm-1. 1H NMR (CDCl3): 8.98 (d, J = 1.8 Hz, 2H), 8.79 (d, J = 1.8 Hz, 1H), 8.69 (dd, J = 4.8, 1.8 Hz, 2H), 8.66 (s, 2H), 8.59 (dd, J = 4.8, 2.1 Hz, 1H), 8.26 (ddd, J = 7.8, 1.8, 1.8 Hz, 2H), 7.87 (ddd, J = 8.2, 2.1, 1.8 Hz, 1H), 7.39 (dd, J = 7.8, 4.8 Hz, 2H), 7.33 (dd, J = 8.2, 4.8 Hz, 1H), 6.08 (s, 1H). 13C NMR (CDCl3): 158.94, 152.21, 150.75, 149.53, 148.89, 136.61, 134.98, 134.83, 131.01, 123,73, 123.64, 90.28. EIMS (70 eV) m/e (int. rel.): M+ 301 (1%), M+-Py-CH═N 196 (100%), 168 (13%), 122 (3%), 92 (10%).
Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93Å for aromatic C–H, 0.98Å for methine C–H with Uiso(H) = 1.2Ueq(C). The 621 Friedel pairs were merged during refinement.
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).C18H15N5 | F(000) = 316 |
Mr = 301.35 | Dx = 1.293 Mg m−3 |
Monoclinic, Pc | Melting point = 388–390 K |
Hall symbol: P -2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7174 (11) Å | Cell parameters from 33 reflections |
b = 8.0934 (10) Å | θ = 4.7–11.6° |
c = 16.972 (4) Å | µ = 0.08 mm−1 |
β = 99.690 (18)° | T = 298 K |
V = 774.1 (3) Å3 | Neele, colourless |
Z = 2 | 0.42 × 0.18 × 0.12 mm |
Bruker P4 diffractometer | Rint = 0.061 |
Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 2.4° |
Graphite monochromator | h = −1→8 |
2θ/ω–scans | k = −1→11 |
3235 measured reflections | l = −23→23 |
2874 independent reflections | 3 standard reflections every 97 reflections |
1159 reflections with I > 2σ(I) | intensity decay: 11.5% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.070 | w = 1/[σ2(Fo2) + (0.0352P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.135 | (Δ/σ)max < 0.001 |
S = 0.98 | Δρmax = 0.17 e Å−3 |
2874 reflections | Δρmin = −0.17 e Å−3 |
209 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.019 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983) |
Secondary atom site location: difference Fourier map |
C18H15N5 | V = 774.1 (3) Å3 |
Mr = 301.35 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 5.7174 (11) Å | µ = 0.08 mm−1 |
b = 8.0934 (10) Å | T = 298 K |
c = 16.972 (4) Å | 0.42 × 0.18 × 0.12 mm |
β = 99.690 (18)° |
Bruker P4 diffractometer | Rint = 0.061 |
3235 measured reflections | 3 standard reflections every 97 reflections |
2874 independent reflections | intensity decay: 11.5% |
1159 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.070 | 2 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.17 e Å−3 |
2874 reflections | Δρmin = −0.17 e Å−3 |
209 parameters | Absolute structure: Flack (1983) |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N3 | 0.3294 (7) | 0.4546 (5) | 0.0999 (2) | 0.0434 (11) | |
C4 | 1.0463 (12) | 0.2145 (8) | 0.4651 (3) | 0.0578 (18) | |
H4A | 1.0947 | 0.1666 | 0.5150 | 0.069* | |
N2 | 0.6027 (8) | 0.4678 (5) | 0.2201 (2) | 0.0408 (11) | |
C3 | 1.1993 (11) | 0.2058 (7) | 0.4105 (3) | 0.0588 (18) | |
H3B | 1.3474 | 0.1561 | 0.4235 | 0.071* | |
C7 | 0.5371 (9) | 0.5446 (6) | 0.1421 (3) | 0.0413 (14) | |
H7A | 0.6689 | 0.5367 | 0.1120 | 0.050* | |
C8 | 0.3369 (10) | 0.4143 (6) | 0.0281 (3) | 0.0436 (14) | |
H8A | 0.4684 | 0.4440 | 0.0057 | 0.052* | |
C16 | 0.2483 (11) | 0.9366 (7) | 0.1982 (3) | 0.0486 (15) | |
H16A | 0.1265 | 0.9714 | 0.2243 | 0.058* | |
N4 | −0.0186 (9) | 0.2211 (7) | −0.1527 (2) | 0.0604 (15) | |
C2 | 1.1242 (10) | 0.2739 (7) | 0.3358 (3) | 0.0481 (15) | |
H2B | 1.2222 | 0.2715 | 0.2973 | 0.058* | |
C13 | 0.1481 (10) | 0.2988 (7) | −0.1022 (3) | 0.0497 (16) | |
H13A | 0.2775 | 0.3410 | −0.1223 | 0.060* | |
C14 | 0.4741 (10) | 0.7230 (6) | 0.1524 (3) | 0.0402 (13) | |
C1 | 0.9022 (9) | 0.3453 (7) | 0.3190 (3) | 0.0404 (14) | |
C12 | −0.1994 (11) | 0.1565 (7) | −0.1222 (3) | 0.0587 (18) | |
H12A | −0.3174 | 0.1006 | −0.1564 | 0.070* | |
C6 | 0.8136 (10) | 0.4183 (7) | 0.2402 (3) | 0.0443 (15) | |
H6A | 0.9172 | 0.4283 | 0.2037 | 0.053* | |
N1 | 0.8360 (8) | 0.2859 (7) | 0.4515 (2) | 0.0638 (16) | |
C9 | 0.1421 (10) | 0.3216 (7) | −0.0208 (3) | 0.0411 (14) | |
C11 | −0.2194 (10) | 0.1688 (7) | −0.0427 (3) | 0.0555 (17) | |
H11A | −0.3465 | 0.1201 | −0.0238 | 0.067* | |
C10 | −0.0493 (10) | 0.2540 (7) | 0.0083 (3) | 0.0476 (15) | |
H10A | −0.0625 | 0.2662 | 0.0619 | 0.057* | |
C15 | 0.2938 (10) | 0.7702 (7) | 0.1923 (3) | 0.0482 (15) | |
H15A | 0.2052 | 0.6919 | 0.2145 | 0.058* | |
C18 | 0.5982 (12) | 0.8483 (7) | 0.1210 (3) | 0.0558 (16) | |
H18A | 0.7196 | 0.8174 | 0.0938 | 0.067* | |
C5 | 0.7697 (10) | 0.3477 (7) | 0.3793 (3) | 0.0495 (15) | |
H5A | 0.6207 | 0.3969 | 0.3683 | 0.059* | |
C17 | 0.3808 (11) | 1.0503 (8) | 0.1661 (3) | 0.0627 (18) | |
H17A | 0.3474 | 1.1617 | 0.1718 | 0.075* | |
N5 | 0.5548 (11) | 1.0099 (6) | 0.1272 (3) | 0.0731 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3 | 0.051 (3) | 0.040 (3) | 0.039 (2) | 0.001 (3) | 0.008 (2) | −0.001 (2) |
C4 | 0.063 (5) | 0.062 (5) | 0.042 (3) | −0.010 (4) | −0.008 (3) | 0.019 (3) |
N2 | 0.050 (3) | 0.039 (3) | 0.033 (2) | 0.000 (3) | 0.005 (2) | 0.001 (2) |
C3 | 0.046 (4) | 0.055 (4) | 0.069 (4) | 0.001 (4) | −0.008 (3) | 0.007 (3) |
C7 | 0.043 (4) | 0.044 (3) | 0.038 (3) | 0.002 (3) | 0.010 (3) | 0.002 (3) |
C8 | 0.049 (4) | 0.041 (3) | 0.041 (3) | −0.001 (3) | 0.010 (3) | 0.003 (3) |
C16 | 0.060 (4) | 0.041 (4) | 0.049 (3) | 0.002 (4) | 0.019 (3) | −0.006 (3) |
N4 | 0.061 (4) | 0.073 (4) | 0.044 (3) | 0.011 (4) | 0.000 (3) | −0.013 (3) |
C2 | 0.042 (4) | 0.057 (4) | 0.046 (3) | 0.002 (4) | 0.010 (3) | −0.006 (3) |
C13 | 0.050 (4) | 0.060 (4) | 0.038 (3) | 0.014 (4) | 0.006 (3) | 0.000 (3) |
C14 | 0.048 (4) | 0.040 (3) | 0.032 (3) | 0.006 (4) | 0.004 (3) | 0.004 (3) |
C1 | 0.039 (4) | 0.043 (3) | 0.037 (3) | −0.003 (3) | 0.002 (3) | 0.001 (3) |
C12 | 0.059 (5) | 0.054 (4) | 0.057 (4) | 0.006 (4) | −0.006 (3) | −0.016 (3) |
C6 | 0.050 (4) | 0.042 (3) | 0.043 (3) | 0.002 (3) | 0.012 (3) | −0.005 (3) |
N1 | 0.050 (4) | 0.089 (4) | 0.049 (3) | −0.004 (4) | −0.001 (3) | 0.015 (3) |
C9 | 0.048 (4) | 0.037 (3) | 0.038 (3) | 0.009 (3) | 0.007 (3) | −0.001 (3) |
C11 | 0.051 (4) | 0.057 (4) | 0.058 (4) | 0.002 (4) | 0.009 (3) | −0.009 (3) |
C10 | 0.057 (4) | 0.047 (4) | 0.039 (3) | 0.008 (4) | 0.007 (3) | −0.003 (3) |
C15 | 0.056 (4) | 0.048 (4) | 0.042 (3) | −0.017 (4) | 0.014 (3) | −0.002 (3) |
C18 | 0.058 (4) | 0.054 (4) | 0.061 (3) | −0.001 (4) | 0.028 (3) | −0.005 (3) |
C5 | 0.041 (4) | 0.059 (4) | 0.048 (3) | 0.000 (4) | 0.007 (3) | 0.004 (3) |
C17 | 0.089 (6) | 0.043 (4) | 0.061 (3) | −0.001 (4) | 0.026 (4) | −0.002 (3) |
N5 | 0.101 (5) | 0.050 (4) | 0.080 (3) | −0.001 (4) | 0.051 (4) | 0.010 (3) |
N3—C8 | 1.269 (5) | C13—C9 | 1.401 (6) |
N3—C7 | 1.472 (6) | C13—H13A | 0.9300 |
C4—N1 | 1.319 (7) | C14—C15 | 1.378 (7) |
C4—C3 | 1.380 (8) | C14—C18 | 1.394 (7) |
C4—H4A | 0.9300 | C1—C5 | 1.372 (7) |
N2—C6 | 1.262 (6) | C1—C6 | 1.473 (7) |
N2—C7 | 1.454 (6) | C12—C11 | 1.376 (7) |
C3—C2 | 1.383 (7) | C12—H12A | 0.9300 |
C3—H3B | 0.9300 | C6—H6A | 0.9300 |
C7—C14 | 1.506 (6) | N1—C5 | 1.319 (6) |
C7—H7A | 0.9800 | C9—C10 | 1.387 (7) |
C8—C9 | 1.476 (7) | C11—C10 | 1.374 (7) |
C8—H8A | 0.9300 | C11—H11A | 0.9300 |
C16—C17 | 1.363 (7) | C10—H10A | 0.9300 |
C16—C15 | 1.378 (7) | C15—H15A | 0.9300 |
C16—H16A | 0.9300 | C18—N5 | 1.339 (7) |
N4—C13 | 1.327 (7) | C18—H18A | 0.9300 |
N4—C12 | 1.338 (8) | C5—H5A | 0.9300 |
C2—C1 | 1.380 (7) | C17—N5 | 1.324 (7) |
C2—H2B | 0.9300 | C17—H17A | 0.9300 |
C8—N3—C7 | 116.0 (4) | C5—C1—C6 | 121.5 (5) |
N1—C4—C3 | 124.5 (5) | C2—C1—C6 | 121.3 (5) |
N1—C4—H4A | 117.7 | N4—C12—C11 | 123.2 (6) |
C3—C4—H4A | 117.7 | N4—C12—H12A | 118.4 |
C6—N2—C7 | 118.0 (4) | C11—C12—H12A | 118.4 |
C4—C3—C2 | 117.5 (6) | N2—C6—C1 | 122.6 (5) |
C4—C3—H3B | 121.2 | N2—C6—H6A | 118.7 |
C2—C3—H3B | 121.2 | C1—C6—H6A | 118.7 |
N2—C7—N3 | 107.1 (4) | C5—N1—C4 | 116.1 (5) |
N2—C7—C14 | 109.5 (4) | C10—C9—C13 | 116.8 (5) |
N3—C7—C14 | 110.0 (4) | C10—C9—C8 | 124.5 (5) |
N2—C7—H7A | 110.1 | C13—C9—C8 | 118.7 (5) |
N3—C7—H7A | 110.1 | C12—C11—C10 | 119.2 (6) |
C14—C7—H7A | 110.1 | C12—C11—H11A | 120.4 |
N3—C8—C9 | 121.7 (5) | C10—C11—H11A | 120.4 |
N3—C8—H8A | 119.1 | C11—C10—C9 | 119.4 (5) |
C9—C8—H8A | 119.1 | C11—C10—H10A | 120.3 |
C17—C16—C15 | 120.4 (6) | C9—C10—H10A | 120.3 |
C17—C16—H16A | 119.8 | C16—C15—C14 | 118.2 (5) |
C15—C16—H16A | 119.8 | C16—C15—H15A | 120.9 |
C13—N4—C12 | 117.0 (5) | C14—C15—H15A | 120.9 |
C1—C2—C3 | 119.2 (5) | N5—C18—C14 | 124.5 (6) |
C1—C2—H2B | 120.4 | N5—C18—H18A | 117.7 |
C3—C2—H2B | 120.4 | C14—C18—H18A | 117.7 |
N4—C13—C9 | 124.4 (5) | N1—C5—C1 | 125.4 (6) |
N4—C13—H13A | 117.8 | N1—C5—H5A | 117.3 |
C9—C13—H13A | 117.8 | C1—C5—H5A | 117.3 |
C15—C14—C18 | 117.2 (5) | N5—C17—C16 | 123.2 (6) |
C15—C14—C7 | 122.4 (5) | N5—C17—H17A | 118.4 |
C18—C14—C7 | 120.3 (5) | C16—C17—H17A | 118.4 |
C5—C1—C2 | 117.2 (5) | C17—N5—C18 | 116.4 (6) |
N1—C4—C3—C2 | −1.4 (9) | N4—C13—C9—C10 | 1.6 (8) |
C6—N2—C7—N3 | 125.7 (5) | N4—C13—C9—C8 | −178.4 (5) |
C6—N2—C7—C14 | −115.1 (5) | N3—C8—C9—C10 | −7.8 (8) |
C8—N3—C7—N2 | −133.5 (5) | N3—C8—C9—C13 | 172.3 (5) |
C8—N3—C7—C14 | 107.6 (5) | N4—C12—C11—C10 | 1.3 (9) |
C7—N3—C8—C9 | 179.1 (4) | C12—C11—C10—C9 | −1.8 (8) |
C4—C3—C2—C1 | −0.5 (8) | C13—C9—C10—C11 | 0.4 (7) |
C12—N4—C13—C9 | −2.2 (8) | C8—C9—C10—C11 | −179.5 (5) |
N2—C7—C14—C15 | −59.2 (6) | C17—C16—C15—C14 | −0.7 (8) |
N3—C7—C14—C15 | 58.3 (6) | C18—C14—C15—C16 | 0.1 (7) |
N2—C7—C14—C18 | 121.2 (5) | C7—C14—C15—C16 | −179.6 (5) |
N3—C7—C14—C18 | −121.4 (5) | C15—C14—C18—N5 | 0.3 (9) |
C3—C2—C1—C5 | 1.5 (8) | C7—C14—C18—N5 | 180.0 (6) |
C3—C2—C1—C6 | −179.6 (5) | C4—N1—C5—C1 | −1.1 (9) |
C13—N4—C12—C11 | 0.6 (9) | C2—C1—C5—N1 | −0.7 (9) |
C7—N2—C6—C1 | 177.3 (4) | C6—C1—C5—N1 | −179.7 (6) |
C5—C1—C6—N2 | −9.1 (8) | C15—C16—C17—N5 | 0.9 (9) |
C2—C1—C6—N2 | 171.9 (6) | C16—C17—N5—C18 | −0.5 (9) |
C3—C4—N1—C5 | 2.2 (9) | C14—C18—N5—C17 | −0.1 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···N1i | 0.93 | 2.74 | 3.552 (7) | 146 |
C17—H17A···N3ii | 0.93 | 2.66 | 3.456 (7) | 144 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C18H15N5 |
Mr | 301.35 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 298 |
a, b, c (Å) | 5.7174 (11), 8.0934 (10), 16.972 (4) |
β (°) | 99.690 (18) |
V (Å3) | 774.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.42 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3235, 2874, 1159 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.135, 0.98 |
No. of reflections | 2874 |
No. of parameters | 209 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.17 |
Absolute structure | Flack (1983) |
Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···N1i | 0.93 | 2.74 | 3.552 (7) | 146.2 |
C17—H17A···N3ii | 0.93 | 2.66 | 3.456 (7) | 144.0 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, y+1, z. |
Acknowledgements
This work was supported by Dirección General de Educación Superior Tecnológica (DGEST) (grant No. 2785.09-P). Support from Consejo Nacional de Ciencia y Tecnología (CONACyT) in the form of a graduate scholarship for CMQM is gratefully acknowledged.
References
Albrechet, M. (2001). Chem. Rev. 101, 3457–3498. Web of Science PubMed Google Scholar
Bessonov, I. V., Lozinskaya, N. A., Katachova, V. R., Proskurnina, M. V. & Zefirov, N. S. (2005). Russ. Chem. Bull. Int. Ed. 54, 211–214. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fernandes, C., Horn, A. Jr, Howie, R. A., Schripsema, J., Skakle, J. M. S. & Wardell, J. L. (2007). J. Mol. Struct. 837, 274–283. Web of Science CSD CrossRef CAS Google Scholar
Itoh, M., Nakazawa, J., Maeda, K., Mizutani, T. & Kodera, M. (2005). Inorg. Chem. 44, 691–702. Web of Science CSD CrossRef PubMed CAS Google Scholar
James, S. L. (2003). Chem. Soc. Rev. 32, 276–288. Web of Science CrossRef PubMed CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Larter, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785–4788. Web of Science CSD CrossRef CAS Google Scholar
Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908. Web of Science CrossRef PubMed CAS Google Scholar
Lozinskaya, N. A., Tsybezova, V. V., Proskurnina, M. V. & Zefirov, N. S. (2003). Russ. Chem. Bull. Int. Ed. 52, 674–678. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Masaoka, S., Furukawa, S., Chang, H.-C., Mizutani, T. & Kitagawa, S. (2001). Angew. Chem. Int. Ed. 40, 3817–3819. Web of Science CrossRef CAS Google Scholar
Rarig, R. S. Jr, Lam, R., Zavalij, P. Y., Ngala, J. K., LaDuca, R. L. Jr, Greedan, J. E. & Zubieta, J. (2002). Inorg. Chem. 41, 2124–2133. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wang, L., Gu, W., Deng, J.-X., Liu, M.-L., Xu, N. & Liu, X.-Z. (2009). Z. Anorg. Allg. Chem. 636, 1124–1128. CrossRef Google Scholar
Yaghi, O. M. O., Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of transition metals with polypyridyl ligands has progressed considerably during the last decades, and has been widely used for the construction of coordination polymers and other supramolecular structures (Itoh et al., 2005; Albrechet, 2001; Leininger et al., 2000). Such supramolecular architectures have attracted considerable attention due to potential applications in catalysis, gas storage, chirality, optical, magnetism, nanotechnology and luminescence (James, 2003; Kitagawa et al., 2004; Masaoka et al., 2001; Rarig et al., 2002; Yaghi et al., 2003; Wang et al., 2009). Also, there exists an increasing interest in the design and synthesis of luminescent compounds due to their potential applications as chemical sensors, photochemistry and electroluminescence. The development of chemosensors, is one of the main goals of supramolecular chemistry and an important area of vigorous investigation.
We are interested on the coordination chemistry of polypyridine ligands, which have fluorescent properties and could act as sensors for transition metals ions, and which can be used to construct different coordination polymers. Some of the ligands under study are: cis-(±)-2,4,5-tri(2-pyridyl)imidazoline, 2,4,6-tri(2-pyridyl)-1,3,5-triazinane, 2,4,5-tri(2-pyridyl)imidazole, trans-(±)-2,4,5-tri(4-pyridyl)imidazoline and 2,4,5-tri(4-pyridyl)imidazole.
As part of our ongoing research on the chemistry of polypyridine ligands, in our attempts to synthesize the ligand cis-(±)-3-(2,5-di(pyridin-3-yl)-4,5-dihydro-1H-imidazol-4-yl) pyridine, we have isolated the title compound, 1,3,5-tri(pyridin-3-yl)-2,4-diazapenta-1,4-diene. The 1,3,5-triaryl-2,4-diazapentadienes are known to form by the reaction of aromatic benzaldehydes with ammonia (Larter et al., 1998; Lozinskaya et al., 2003; Bessonov et al., 2005; Fernandes et al., 2007), which are analogues of the title compound. In the crystal structure adjacent networks are linked together via intermolecular hydrogen bond interactions (Table 1) (C18–H18···N1i (2.741Å), symmetry code: (i) x, 1-y, -1/2+z) in an array along the [0 0 1] and [C17–H17···N3ii (2.660Å), symmetry codes: (ii) x, 1+y, z] in an array along the [0 1 0]. The molecules are forming a layer structure parallel to the bc plane (Fig. 2).