metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[(1R,2R)-N-(pyridin-2-yl­methyl)cyclo­hexane-1,2-di­amine-κ3N,N′,N′′]mercury(II)

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 6 January 2012; accepted 26 January 2012; online 4 February 2012)

In the title compound, [HgCl2(C12H19N3)], the HgII ion is coordinated by three N atoms of the (1R,2R)-N-(pyridin-2-ylmeth­yl)cyclo­hexane-1,2-diamine ligand and by a Cl atom in the basal plane, and by a second Cl atom in the apical position, within a distorted square-pyramidal geometry. The coordination of the enanti­opure ligand to the metal atom renders the central N atom chiral with an S configuration, so the complex is enanti­omerically pure and corresponds to the S,R,R diastereoisomer. Mol­ecules are linked via weak N—H⋯Cl hydrogen bonds into a one-dimensional hydrogen-bonding supramolecular chain along the crystallographic b axis.

Related literature

For related structures, see: Cheng et al. (2011[Cheng, L., Zhang, L.-M. & Wang, J.-Q. (2011). Acta Cryst. E67, o676.]); Yin et al. (2011[Yin, R.-T., Cao, Z. & Cheng, L. (2011). Acta Cryst. E67, m392.]). For nonlinear optical applications and luminescence properties, see: He et al. (2010[He, R., Song, H. H., Wei, Z., Zhang, J. J. & Gao, Y. Z. (2010). J. Solid State Chem. 183, 2021-2026.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C12H19N3)]

  • Mr = 476.79

  • Orthorhombic, P 21 21 21

  • a = 8.5319 (12) Å

  • b = 8.8244 (12) Å

  • c = 19.688 (3) Å

  • V = 1482.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.73 mm−1

  • T = 123 K

  • 0.08 × 0.06 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.481, Tmax = 0.565

  • 11063 measured reflections

  • 2902 independent reflections

  • 2796 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.045

  • S = 1.06

  • 2902 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1206 Friedel pairs

  • Flack parameter: 0.009 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl2i 0.87 2.83 3.527 (5) 138
N3—H3C⋯Cl1ii 0.87 2.45 3.316 (5) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, there has been current significant interest in the rational design and synthesis of chiral coordination polymers due to their potential utility in enantiomerically selective catalysis and separations, second–order non–linear optical applications and luminescence (He et al. 2010). A basic design route for this kind of polymers is to appropriately organize the metal ions into ordered architectures by use of chiral ligands. Herein, we report a new chiral complex, Hg(2–Amp)Cl2, where 2–Amp = 2–(((1R,2R)–2–aminocyclohexylamino)methyl)phenol, as a chiral ligand.

The title compound is a mononuclear complex, in which the coordination environment of HgII can be described as distorted square–pyramidal, being surrounded by one tridentate ligand and two chlorine anions (Fig. 1).

The molecules are linked to each other, via weak N—H···Cl hydrogen bonds, into a one–dimensional hydrogen bonding network (Table 1, Fig. 2).

Related literature top

For related structures, see: Cheng et al. (2011); Yin et al. (2011). For nonlinear optical applications and luminescence properties, see: He et al. (2010).

Experimental top

(1R,2R)-N1-(pyridin-2-yl-methyl)cyclohexane-1,2-diamine (0.041 g, 0.2 mmol) dissolved in water (8 ml) was added to a methanol solution (10 ml) of HgCl2 (0.054 g, 0.2 mmol). The mixture solution was stirred for 1 h at room temperature and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 2 weeks, colourless block crystals were obtained with 58.7% yield (0.056 g).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95–1.00Å with Uiso(H) = 1.2Ueq(C). H atoms attached to N atoms were located in difference Fourier maps and included in the subsequent refinement using restraints with N—H = 0.87Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the weak N—H···Cl hydrogen bonding chain. Symmetry codes: (i) 1-x, 1/2+y, 1/2-z; (ii) 1-x, -1/2+y, 1/2-z; (iii) x, 1+y, z; (iv) 1-x, 3/2+y, 1/2-z
Dichlorido[(1R,2R)-N-(pyridin-2-ylmethyl)cyclohexane- 1,2-diamine-κ3N,N',N'']mercury(II) top
Crystal data top
[HgCl2(C12H19N3)]F(000) = 904
Mr = 476.79Dx = 2.136 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 791 reflections
a = 8.5319 (12) Åθ = 2.4–28.0°
b = 8.8244 (12) ŵ = 10.73 mm1
c = 19.688 (3) ÅT = 123 K
V = 1482.3 (4) Å3Block, colourless
Z = 40.08 × 0.06 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2902 independent reflections
Radiation source: fine–focus sealed tube2796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.481, Tmax = 0.565k = 1010
11063 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0101P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2902 reflectionsΔρmax = 1.08 e Å3
163 parametersΔρmin = 0.68 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1206 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (7)
Crystal data top
[HgCl2(C12H19N3)]V = 1482.3 (4) Å3
Mr = 476.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5319 (12) ŵ = 10.73 mm1
b = 8.8244 (12) ÅT = 123 K
c = 19.688 (3) Å0.08 × 0.06 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2902 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2796 reflections with I > 2σ(I)
Tmin = 0.481, Tmax = 0.565Rint = 0.028
11063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.045Δρmax = 1.08 e Å3
S = 1.06Δρmin = 0.68 e Å3
2902 reflectionsAbsolute structure: Flack (1983), with 1206 Friedel pairs
163 parametersAbsolute structure parameter: 0.009 (7)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.26613 (2)0.88923 (2)0.290676 (8)0.03034 (6)
Cl10.29943 (16)1.16949 (14)0.31668 (6)0.0395 (3)
Cl20.35752 (15)0.69726 (14)0.37081 (6)0.0377 (3)
C10.0295 (7)0.8653 (6)0.4070 (3)0.0438 (14)
H1A0.05320.83450.43620.053*
C20.1777 (7)0.8749 (6)0.4328 (3)0.0492 (15)
H2A0.19750.85430.47940.059*
C30.2978 (7)0.9151 (7)0.3897 (3)0.0567 (17)
H3A0.40250.92040.40590.068*
C40.2644 (7)0.9477 (6)0.3223 (3)0.0473 (13)
H4A0.34610.97490.29180.057*
C50.1117 (6)0.9401 (5)0.3000 (2)0.0322 (11)
C60.0662 (6)0.9816 (6)0.2286 (2)0.0384 (13)
H6A0.15860.97130.19850.046*
H6B0.03201.08880.22740.046*
C70.1322 (6)0.9362 (5)0.1386 (2)0.0282 (11)
H7A0.14571.04860.14120.034*
C80.0268 (6)0.9017 (7)0.0780 (2)0.0379 (12)
H8A0.07220.95920.08290.045*
H8B0.00050.79240.07820.045*
C90.1023 (7)0.9418 (6)0.0101 (2)0.0433 (14)
H9A0.03280.90870.02730.052*
H9B0.11461.05320.00690.052*
C100.2604 (6)0.8673 (5)0.0025 (2)0.0418 (12)
H10A0.30920.90040.04070.050*
H10B0.24690.75590.00060.050*
C110.3670 (6)0.9082 (7)0.0615 (2)0.0379 (13)
H11A0.38951.01820.06040.046*
H11B0.46760.85330.05690.046*
C120.2906 (5)0.8671 (5)0.1300 (2)0.0211 (10)
H12A0.27570.75470.13010.025*
N10.0037 (5)0.8977 (5)0.34230 (19)0.0347 (10)
N20.0605 (4)0.8849 (5)0.20324 (18)0.0277 (8)
H2B0.03640.79220.19240.033*
N30.3965 (4)0.9033 (6)0.18723 (18)0.0312 (10)
H3B0.42190.99870.18910.037*
H3C0.47010.83510.18670.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02454 (9)0.03805 (10)0.02844 (9)0.00119 (9)0.00319 (9)0.00272 (8)
Cl10.0418 (8)0.0354 (6)0.0412 (6)0.0061 (6)0.0044 (5)0.0003 (5)
Cl20.0344 (7)0.0393 (7)0.0393 (6)0.0026 (6)0.0101 (6)0.0055 (6)
C10.048 (3)0.044 (4)0.039 (3)0.004 (3)0.010 (3)0.000 (3)
C20.060 (4)0.041 (3)0.047 (3)0.014 (3)0.023 (3)0.015 (3)
C30.044 (4)0.054 (4)0.072 (4)0.019 (3)0.030 (3)0.026 (3)
C40.026 (3)0.063 (3)0.053 (3)0.001 (3)0.000 (3)0.023 (3)
C50.024 (2)0.031 (3)0.042 (3)0.0020 (19)0.001 (2)0.009 (2)
C60.029 (3)0.035 (3)0.051 (3)0.009 (2)0.006 (2)0.006 (2)
C70.031 (3)0.027 (3)0.026 (2)0.002 (2)0.003 (2)0.0041 (19)
C80.038 (3)0.042 (3)0.035 (3)0.005 (3)0.013 (2)0.002 (3)
C90.057 (4)0.043 (3)0.030 (3)0.002 (3)0.011 (3)0.002 (2)
C100.049 (3)0.046 (3)0.031 (2)0.003 (3)0.002 (2)0.003 (2)
C110.039 (3)0.043 (3)0.031 (3)0.000 (3)0.006 (2)0.003 (2)
C120.024 (2)0.022 (2)0.0181 (18)0.0105 (19)0.0011 (18)0.0004 (17)
N10.026 (2)0.040 (3)0.038 (2)0.005 (2)0.0040 (18)0.001 (2)
N20.0269 (19)0.025 (2)0.031 (2)0.0037 (17)0.0025 (17)0.001 (2)
N30.026 (2)0.035 (2)0.033 (2)0.001 (2)0.0007 (16)0.0011 (19)
Geometric parameters (Å, º) top
Hg1—N32.324 (4)C7—C121.492 (6)
Hg1—Cl22.4426 (12)C7—C81.524 (6)
Hg1—N22.458 (3)C7—H7A1.0000
Hg1—N12.460 (4)C8—C91.525 (7)
Hg1—Cl12.5415 (13)C8—H8A0.9900
C1—N11.336 (6)C8—H8B0.9900
C1—C21.364 (8)C9—C101.508 (7)
C1—H1A0.9500C9—H9A0.9900
C2—C31.378 (9)C9—H9B0.9900
C2—H2A0.9500C10—C111.519 (7)
C3—C41.387 (8)C10—H10A0.9900
C3—H3A0.9500C10—H10B0.9900
C4—C51.376 (7)C11—C121.541 (6)
C4—H4A0.9500C11—H11A0.9900
C5—N11.342 (6)C11—H11B0.9900
C5—C61.505 (7)C12—N31.479 (5)
C6—N21.465 (6)C12—H12A1.0000
C6—H6A0.9900N2—H2B0.8700
C6—H6B0.9900N3—H3B0.8700
C7—N21.483 (6)N3—H3C0.8700
N3—Hg1—Cl2116.76 (12)C9—C8—H8B109.0
N3—Hg1—N274.25 (13)H8A—C8—H8B107.8
Cl2—Hg1—N2132.01 (10)C10—C9—C8111.3 (4)
N3—Hg1—N1142.75 (13)C10—C9—H9A109.4
Cl2—Hg1—N192.57 (11)C8—C9—H9A109.4
N2—Hg1—N168.91 (12)C10—C9—H9B109.4
N3—Hg1—Cl194.08 (13)C8—C9—H9B109.4
Cl2—Hg1—Cl1120.60 (4)H9A—C9—H9B108.0
N2—Hg1—Cl1103.66 (10)C9—C10—C11110.8 (4)
N1—Hg1—Cl189.37 (11)C9—C10—H10A109.5
N1—C1—C2122.5 (6)C11—C10—H10A109.5
N1—C1—H1A118.7C9—C10—H10B109.5
C2—C1—H1A118.7C11—C10—H10B109.5
C1—C2—C3118.4 (5)H10A—C10—H10B108.1
C1—C2—H2A120.8C10—C11—C12111.1 (4)
C3—C2—H2A120.8C10—C11—H11A109.4
C2—C3—C4119.3 (5)C12—C11—H11A109.4
C2—C3—H3A120.3C10—C11—H11B109.4
C4—C3—H3A120.3C12—C11—H11B109.4
C5—C4—C3119.3 (6)H11A—C11—H11B108.0
C5—C4—H4A120.4N3—C12—C7112.2 (3)
C3—C4—H4A120.4N3—C12—C11111.0 (3)
N1—C5—C4120.7 (5)C7—C12—C11112.7 (4)
N1—C5—C6117.3 (4)N3—C12—H12A106.8
C4—C5—C6122.0 (5)C7—C12—H12A106.8
N2—C6—C5111.5 (4)C11—C12—H12A106.8
N2—C6—H6A109.3C1—N1—C5119.7 (5)
C5—C6—H6A109.3C1—N1—Hg1125.5 (4)
N2—C6—H6B109.3C5—N1—Hg1114.8 (3)
C5—C6—H6B109.3C6—N2—C7114.7 (4)
H6A—C6—H6B108.0C6—N2—Hg1106.2 (3)
N2—C7—C12110.3 (3)C7—N2—Hg1107.6 (3)
N2—C7—C8111.6 (4)C6—N2—H2B117.2
C12—C7—C8111.3 (4)C7—N2—H2B100.0
N2—C7—H7A107.8Hg1—N2—H2B110.9
C12—C7—H7A107.8C12—N3—Hg1111.3 (3)
C8—C7—H7A107.8C12—N3—H3B113.1
C7—C8—C9113.0 (4)Hg1—N3—H3B97.7
C7—C8—H8A109.0C12—N3—H3C106.4
C9—C8—H8A109.0Hg1—N3—H3C108.7
C7—C8—H8B109.0H3B—N3—H3C119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl2i0.872.833.527 (5)138
N3—H3C···Cl1ii0.872.453.316 (5)173
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C12H19N3)]
Mr476.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)8.5319 (12), 8.8244 (12), 19.688 (3)
V3)1482.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)10.73
Crystal size (mm)0.08 × 0.06 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.481, 0.565
No. of measured, independent and
observed [I > 2σ(I)] reflections
11063, 2902, 2796
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.06
No. of reflections2902
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.68
Absolute structureFlack (1983), with 1206 Friedel pairs
Absolute structure parameter0.009 (7)

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl2i0.872.833.527 (5)138.4
N3—H3C···Cl1ii0.872.453.316 (5)172.9
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (grant No. 21001024), the Natural Science Foundation of Jiangsu Province (grant No. BK2011587) and Southeast University (grants No. 4007041121 and No. 9207040016).

References

First citationBruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, L., Zhang, L.-M. & Wang, J.-Q. (2011). Acta Cryst. E67, o676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, R., Song, H. H., Wei, Z., Zhang, J. J. & Gao, Y. Z. (2010). J. Solid State Chem. 183, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, R.-T., Cao, Z. & Cheng, L. (2011). Acta Cryst. E67, m392.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds