organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4,5-di­chloro­benzene-1,2-di­carboxyl­ate

aDepartment of Biology, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: sylswx@163.com

(Received 20 January 2012; accepted 17 February 2012; online 24 February 2012)

In the title compound, C10H8Cl2O4, the two Cl atoms and one of the meth­oxy­carbonyl groups are almost coplanar [maxi­mum derivation = 0.035 (2) Å] with the benzene plane, and the other meth­oxy­carbonyl group exhibits an almost orthogonal disposition relative to the benzene plane, with a dihedral angle of 84.82 (3)° between the planes. In the crystal, the molecules are connected into a chain propagating along the [011] direction through nonclassical C—H⋯O hydrogen bonds.

Related literature

For the chemical properties and structural nature nature of some related benzene­carboxyl­ate derivatives, see: Galešić et al. (1984[Galešić, N., Matijašić, I. & Bruvo, M. (1984). Acta Cryst. C40, 308-311.]); Liang et al. (2004[Liang, M., Liao, D., Jiang, Z., Yan, S. & Cheng, P. (2004). Inorg. Chem. Commun. 7, 173-175.]); Mallinson et al. (2003[Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259-4270.]); Rauf et al. (2008[Rauf, M. K., Saeed, M. A., Imtiaz-ud-Din, Bolte, M., Badshah, A. & Mirz, B. (2008). J. Organomet. Chem. 693, 3043-3048.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8Cl2O4

  • Mr = 263.06

  • Triclinic, [P \overline 1]

  • a = 7.1906 (14) Å

  • b = 7.8410 (17) Å

  • c = 10.6205 (15) Å

  • α = 97.779 (15)°

  • β = 109.040 (15)°

  • γ = 91.864 (18)°

  • V = 558.95 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.871, Tmax = 0.902

  • 3362 measured reflections

  • 1966 independent reflections

  • 1663 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.03

  • 1966 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.93 2.37 3.278 (2) 164
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzenecarboxylate derivatives have been extensively studied due to their excellent chemical properties and easily modified structural natures. (Mallinson et al., 2003 and Liang et al., 2004). Furthermore, the investigate on single-crystal structure of benzenecarboxylate derivatives have become increasingly important in revealing precisely the relation between their chemical properties and molecular structures (Galešić et al., 1984 and Rauf et al., 2008). As an extension of our work on benzenecarboxylate structural characterization, the title compound, I, is synthesized and characterized by X-ray diffraction, as shown in Fig. 1.

The compound I crystallizes in the triclinic system and consists of one phenyl framework, together with two chlorine atoms and two methoxycarbonyl groups linked to its peripheral position, respectively. Two chlorine atoms are co-planar with the benzene ring, companying the maximum deviation of 0.035 (2)Å from this benzene plane. Furthermore, one methoxycarbonyl group is also co-planar with this benzene plane, with the dihedral angel of 2.03 (3)° between the methoxycarbonyl plane of C9–O3–O4–C10 and the benzene plane. In contrast, the other methoxycarbonyl plane of C7–O1–O2–C8 exhibits almostly orthogonal configuration in relative to this benzene plane with the dihedral angle of 84.82 (3)° between them. As shown in Table 1, the distances of C–O (esterified hydroxyl oxygen atom) locating in the range of 1.321 (2)-1.448 (2)Å, clearly indicate their typical single-bond nature in contrast to the obviously double-bond of CO (carbonyl oxygen atom) 1.187 (2)Å and 1.193 (2)Å, revealing the excellent flexible bridge nature of these methoxycarbonyl moieties. Furthermore, this compound molecules are connected into one-dimension chain along the [0 1 1] direction through H bond C6–H6···O4i with H6···O4i distance of 2.373 (3)°. Symmetry code: (i) x, y-1, z.

Related literature top

For the chemical properties and structural nature of many benzenecarboxylate derivatives, see: Galešić et al. (1984); Liang et al. (2004); Mallinson et al. (2003); Rauf et al. (2008).

Experimental top

To the solution of 4,5-dichloro-1,2-benzenedicarboxyl acid (466 mg, 2 mmol) in MeOH (50 ml), one drop of H2SO4 was added. After refluxed for five hours under N2 atmosphere, the resulting mixture was evaporated, and the residue was chromatographed on a silica gel column using CHCl3 as eluent. Repeated chromatography followed by recrystallization from CHCl3 and MeOH gave the target compound as white crystals. Yield: 182 mg, 34.6%. Anal. for C10H8Cl2O4: Calc. C, 45.66; H, 3.07; Found: C, 45.42; H, 3.17. The No. of CCDC: 863226.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C–H distances of 0.93Å with Uiso(H) = 1.2Ueq(C) for aryl H atoms and C–H distances of 0.96Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms. The CCDC deposit number 863226.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Dimethyl 4,5-dichlorobenzene-1,2-dicarboxylate top
Crystal data top
C10H8Cl2O4Z = 2
Mr = 263.06F(000) = 268
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: -P 1Melting point: 389 K
a = 7.1906 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8410 (17) ÅCell parameters from 1973 reflections
c = 10.6205 (15) Åθ = 2.4–25.0°
α = 97.779 (15)°µ = 0.58 mm1
β = 109.040 (15)°T = 295 K
γ = 91.864 (18)°Block, colourless
V = 558.95 (19) Å30.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1966 independent reflections
Radiation source: fine-focus sealed tube1663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.871, Tmax = 0.902k = 98
3362 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1781P]
where P = (Fo2 + 2Fc2)/3
1966 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H8Cl2O4γ = 91.864 (18)°
Mr = 263.06V = 558.95 (19) Å3
Triclinic, P1Z = 2
a = 7.1906 (14) ÅMo Kα radiation
b = 7.8410 (17) ŵ = 0.58 mm1
c = 10.6205 (15) ÅT = 295 K
α = 97.779 (15)°0.24 × 0.20 × 0.18 mm
β = 109.040 (15)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1966 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1663 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.902Rint = 0.010
3362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
1966 reflectionsΔρmin = 0.24 e Å3
147 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31371 (9)0.97739 (8)0.82726 (5)0.0629 (2)
Cl20.25088 (11)0.57862 (8)0.71088 (6)0.0693 (2)
O10.3423 (2)0.70631 (19)0.21566 (13)0.0517 (4)
O30.2024 (2)1.05587 (17)0.22604 (14)0.0524 (4)
C70.1745 (3)0.7231 (2)0.24061 (19)0.0404 (4)
C90.2309 (3)1.1128 (2)0.3543 (2)0.0414 (4)
C10.2123 (3)0.7964 (2)0.38630 (18)0.0365 (4)
C60.2187 (3)0.6771 (2)0.47290 (19)0.0449 (5)
H60.20270.55960.43970.054*
C30.2674 (3)1.0250 (2)0.57299 (19)0.0401 (4)
H70.28351.14230.60690.048*
C20.2367 (2)0.9725 (2)0.43690 (18)0.0349 (4)
C40.2743 (3)0.9063 (3)0.65837 (19)0.0404 (4)
C50.2487 (3)0.7316 (2)0.60792 (19)0.0431 (5)
O20.0140 (2)0.6798 (2)0.16088 (15)0.0648 (4)
O40.2507 (4)1.26184 (19)0.39955 (19)0.0862 (6)
C100.1877 (4)1.1857 (3)0.1392 (3)0.0655 (7)
H13A0.14881.13070.04700.098*
H13C0.31341.24990.16300.098*
H13B0.09101.26280.14990.098*
C80.3252 (4)0.6420 (3)0.0777 (2)0.0654 (7)
H14C0.26240.72320.02060.098*
H14A0.24760.53310.04910.098*
H14B0.45440.62710.07200.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0775 (4)0.0733 (4)0.0381 (3)0.0010 (3)0.0256 (3)0.0048 (3)
Cl20.1004 (5)0.0595 (4)0.0460 (3)0.0028 (3)0.0175 (3)0.0212 (3)
O10.0606 (10)0.0574 (9)0.0324 (7)0.0079 (7)0.0121 (7)0.0017 (6)
O30.0733 (10)0.0391 (8)0.0445 (8)0.0031 (7)0.0171 (7)0.0124 (6)
C70.0532 (12)0.0281 (9)0.0347 (10)0.0003 (8)0.0077 (9)0.0049 (7)
C90.0407 (11)0.0328 (10)0.0472 (11)0.0020 (8)0.0104 (9)0.0056 (8)
C10.0370 (10)0.0335 (9)0.0339 (10)0.0009 (7)0.0062 (8)0.0027 (7)
C60.0580 (13)0.0320 (10)0.0392 (11)0.0003 (8)0.0104 (9)0.0028 (8)
C30.0380 (10)0.0352 (10)0.0434 (11)0.0014 (8)0.0124 (8)0.0028 (8)
C20.0299 (9)0.0330 (9)0.0388 (10)0.0016 (7)0.0083 (8)0.0034 (7)
C40.0346 (10)0.0500 (11)0.0343 (10)0.0003 (8)0.0112 (8)0.0007 (8)
C50.0474 (11)0.0428 (11)0.0373 (10)0.0000 (8)0.0109 (9)0.0089 (8)
O20.0618 (10)0.0745 (11)0.0412 (9)0.0148 (8)0.0007 (8)0.0018 (8)
O40.159 (2)0.0288 (8)0.0697 (12)0.0046 (9)0.0378 (12)0.0052 (8)
C100.0815 (17)0.0585 (14)0.0626 (15)0.0099 (12)0.0233 (13)0.0313 (12)
C80.0928 (19)0.0670 (15)0.0366 (11)0.0110 (13)0.0243 (12)0.0006 (10)
Geometric parameters (Å, º) top
Cl1—C41.7308 (19)C6—C51.383 (3)
Cl2—C51.7260 (19)C6—H60.9300
O1—C71.324 (2)C3—C41.376 (3)
O1—C81.447 (2)C3—C21.390 (3)
O3—C91.321 (2)C3—H70.9300
O3—C101.448 (2)C4—C51.385 (3)
C7—O21.193 (2)C10—H13A0.9600
C7—C11.508 (3)C10—H13C0.9600
C9—O41.187 (2)C10—H13B0.9600
C9—C21.490 (3)C8—H14C0.9600
C1—C61.390 (3)C8—H14A0.9600
C1—C21.396 (3)C8—H14B0.9600
C7—O1—C8116.24 (17)C1—C2—C9124.47 (17)
C9—O3—C10116.45 (16)C3—C4—C5119.57 (17)
O2—C7—O1125.13 (18)C3—C4—Cl1119.55 (15)
O2—C7—C1123.77 (19)C5—C4—Cl1120.87 (15)
O1—C7—C1111.03 (16)C6—C5—C4120.08 (17)
O4—C9—O3123.07 (18)C6—C5—Cl2118.90 (15)
O4—C9—C2123.22 (19)C4—C5—Cl2121.02 (15)
O3—C9—C2113.71 (15)O3—C10—H13A109.5
C6—C1—C2119.35 (17)O3—C10—H13C109.5
C6—C1—C7116.17 (16)H13A—C10—H13C109.5
C2—C1—C7124.47 (16)O3—C10—H13B109.5
C5—C6—C1120.58 (17)H13A—C10—H13B109.5
C5—C6—H6119.7H13C—C10—H13B109.5
C1—C6—H6119.7O1—C8—H14C109.5
C4—C3—C2121.09 (17)O1—C8—H14A109.5
C4—C3—H7119.5H14C—C8—H14A109.5
C2—C3—H7119.5O1—C8—H14B109.5
C3—C2—C1119.31 (17)H14C—C8—H14B109.5
C3—C2—C9116.21 (16)H14A—C8—H14B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.373.278 (2)164
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H8Cl2O4
Mr263.06
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.1906 (14), 7.8410 (17), 10.6205 (15)
α, β, γ (°)97.779 (15), 109.040 (15), 91.864 (18)
V3)558.95 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.871, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
3362, 1966, 1663
Rint0.010
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.03
No. of reflections1966
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.373.278 (2)164.1
Symmetry code: (i) x, y1, z.
 

References

First citationGalešić, N., Matijašić, I. & Bruvo, M. (1984). Acta Cryst. C40, 308–311.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLiang, M., Liao, D., Jiang, Z., Yan, S. & Cheng, P. (2004). Inorg. Chem. Commun. 7, 173-175.  Web of Science CSD CrossRef CAS Google Scholar
First citationMallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259-4270.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRauf, M. K., Saeed, M. A., Imtiaz-ud-Din, Bolte, M., Badshah, A. & Mirz, B. (2008). J. Organomet. Chem. 693, 3043-3048.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds