organic compounds
Trimethylsulfonium 1-amino-6-fluoro-2,3,4,5,7,8,9,10,11,12-decaiodo-1-carba-closo-dodecaborate
aInstitut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, and bInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: maik.finze@uni-wuerzburg.de
In the 3H9S+·CH2B11FI10N− or (CH3)3S[1-H2N-6-F-closo-1-CB11I10], both ions lie in general positions. The anion is perfectly ordered and so the positions of the C—NH2 vertex and the fluorine substituent are clearly assigned. The relatively short C—N bond length may be interpreted in terms of a very electron deficient {closo-1-CB11} cluster.
of the title salt, CRelated literature
For a general overview on monocarba-closo-dodecaborates, see: Körbe et al. (2006). For the synthesis and properties of 1-aminomonocarba-closo-dodecaboron clusters, see: Jelínek et al. (1986); Srivastava et al. (1996); Finze (2007, 2009); Finze et al. (2007); Finze & Sprenger (2010). For studies on the of halogenated {closo-1-CB11} clusters, see: Himmelspach et al. (2011, 2012). For the formation of (CH3)3S+ from dimethyl sulfoxide, see: Nifontova & Lavrentiev (1993); Forrester et al. (1995); Park et al. (2005). For the structure of (CH3)3SBr, see: Svensson & Kloo (1996).
Experimental
Crystal data
|
Data collection
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812004424/ru2027sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004424/ru2027Isup2.hkl
[Et4N][1-H2N-6-F-closo-1-CB11I10] (50 mg, 0.03 mmol), which was synthesized according to a published procedure (Finze & Sprenger, 2010), was suspended in a mixture of aqueous HCl (50 ml, 10% v/v) and diethyl ether (50 ml). After 30 minutes of stirring the solid dissolved. The ethereal layer was separated and the aqueous solution was extracted with Et2O (2 x 20 ml). The combined ether phases were dried with MgSO4, filtered, and most of the diethyl ether was removed under reduced pressure. DMSO was added (2 ml) and the residual Et2O was removed under reduced pressure. Methanol (2 ml) and conc. hydrochloric acid (4 ml) was added. According to 11B{1H}-NMR spectroscopy the [1-H2N-6-F-closo-1-CB11I10]- anion was not protonated. After 3 month crystals of the title compound were obtained from the reaction mixture. 1H NMR (500.13 MHz, CD2Cl2): d = 2.90 p.p.m. (s, (CH3)3S+) (the signal of the protons of the amino group was not observed as a result of signal broadening). 11B NMR (160.46 MHz, CD2Cl2): d = -1.6 (s, 1 B, BF, B-2), -14.3 (s, 1 B, B-12), -17.1 (s, 2 B, B-4 and B-5), -18.9 (s, 2 B, B-8 and B-10), -18.9 (s, 2 B, B-3 and B-6), -19.2 (s, 2 B, B-7 and B-11), -21.0 (s, 1 B, B-9). IR (ATR): nas(NH2) 3362 versus, ns(NH2) 3297 cm-1 versus.
All hydrogen atoms of the CH3 groups were refined using a riding model with the Uiso(H) set to 1.5Ueq(C). The coordinates of the two hydrogen atoms at the nitrogen atom were refined unrestrictedly together with one refined common Uiso value. Anisotropic displacement parameters of all non-hydrogen atoms were also refined unrestrictedly.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The structure of the asymmetric unit, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius. |
C3H9S+·CH2B11FI10N− | F(000) = 2608 |
Mr = 1512.11 | Dx = 3.407 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 35017 reflections |
a = 10.0672 (1) Å | θ = 3.0–34.0° |
b = 16.7057 (2) Å | µ = 10.59 mm−1 |
c = 17.5574 (2) Å | T = 100 K |
β = 93.175 (1)° | Block, colourless |
V = 2948.26 (6) Å3 | 0.79 × 0.28 × 0.20 mm |
Z = 4 |
Oxford Diffraction Xcalibur Eos diffractometer | 5482 independent reflections |
Radiation source: fine-focus sealed tube | 5282 reflections with I > 2σ(I) |
Equatorial mounted graphite monochromator | Rint = 0.029 |
Detector resolution: 16.2711 pixels mm-1 | θmax = 25.5°, θmin = 3.2° |
ω scans | h = −12→12 |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | k = −20→20 |
Tmin = 0.040, Tmax = 0.204 | l = −21→21 |
30584 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.014P)2 + 16.P] where P = (Fo2 + 2Fc2)/3 |
S = 1.31 | (Δ/σ)max = 0.001 |
5482 reflections | Δρmax = 1.06 e Å−3 |
264 parameters | Δρmin = −0.61 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.000548 (19) |
C3H9S+·CH2B11FI10N− | V = 2948.26 (6) Å3 |
Mr = 1512.11 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.0672 (1) Å | µ = 10.59 mm−1 |
b = 16.7057 (2) Å | T = 100 K |
c = 17.5574 (2) Å | 0.79 × 0.28 × 0.20 mm |
β = 93.175 (1)° |
Oxford Diffraction Xcalibur Eos diffractometer | 5482 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | 5282 reflections with I > 2σ(I) |
Tmin = 0.040, Tmax = 0.204 | Rint = 0.029 |
30584 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 2 restraints |
wR(F2) = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.31 | w = 1/[σ2(Fo2) + (0.014P)2 + 16.P] where P = (Fo2 + 2Fc2)/3 |
5482 reflections | Δρmax = 1.06 e Å−3 |
264 parameters | Δρmin = −0.61 e Å−3 |
Experimental. CrysAlisPro, Oxford Diffraction (2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2112 (5) | 0.3730 (3) | 0.5075 (3) | 0.0111 (10) | |
N1 | 0.2183 (4) | 0.4462 (3) | 0.4682 (2) | 0.0107 (9) | |
H12 | 0.292 (4) | 0.475 (4) | 0.480 (4) | 0.034 (14)* | |
H11 | 0.148 (5) | 0.478 (4) | 0.475 (4) | 0.034 (14)* | |
B2 | 0.2708 (6) | 0.3639 (4) | 0.6030 (3) | 0.0105 (11) | |
I2 | 0.34637 (3) | 0.46793 (2) | 0.661845 (19) | 0.01491 (9) | |
B3 | 0.3549 (6) | 0.3180 (4) | 0.5266 (3) | 0.0087 (11) | |
I3 | 0.54383 (3) | 0.36148 (2) | 0.494809 (19) | 0.01425 (9) | |
B4 | 0.2327 (6) | 0.2837 (4) | 0.4561 (3) | 0.0090 (11) | |
I4 | 0.27883 (3) | 0.28803 (2) | 0.338027 (18) | 0.01482 (9) | |
B5 | 0.0752 (6) | 0.3128 (3) | 0.4868 (3) | 0.0088 (11) | |
I5 | −0.08352 (3) | 0.35589 (2) | 0.411424 (19) | 0.01391 (8) | |
B6 | 0.0985 (6) | 0.3608 (4) | 0.5781 (3) | 0.0094 (11) | |
F6 | 0.0191 (3) | 0.42395 (19) | 0.59388 (17) | 0.0160 (7) | |
B7 | 0.3288 (6) | 0.2642 (4) | 0.6136 (3) | 0.0112 (12) | |
I7 | 0.49137 (3) | 0.23918 (2) | 0.694333 (18) | 0.01296 (8) | |
B8 | 0.3054 (6) | 0.2145 (4) | 0.5231 (3) | 0.0092 (11) | |
I8 | 0.44339 (4) | 0.12326 (2) | 0.49050 (2) | 0.01707 (9) | |
B9 | 0.1296 (6) | 0.2120 (4) | 0.4979 (3) | 0.0105 (11) | |
I9 | 0.03159 (4) | 0.11836 (2) | 0.43173 (2) | 0.02016 (9) | |
B10 | 0.0465 (6) | 0.2599 (4) | 0.5729 (3) | 0.0105 (11) | |
I10 | −0.15349 (3) | 0.23210 (2) | 0.60119 (2) | 0.01709 (9) | |
B11 | 0.1677 (6) | 0.2908 (4) | 0.6452 (3) | 0.0104 (11) | |
I11 | 0.12763 (4) | 0.29664 (2) | 0.763929 (19) | 0.01921 (9) | |
B12 | 0.1890 (6) | 0.1985 (3) | 0.5955 (3) | 0.0089 (11) | |
I12 | 0.17344 (4) | 0.08517 (2) | 0.65238 (2) | 0.01909 (9) | |
S1 | 0.16683 (16) | 0.54368 (9) | 0.20914 (9) | 0.0228 (3) | |
C11 | 0.2577 (8) | 0.5579 (5) | 0.2974 (5) | 0.044 (2) | |
H111 | 0.2125 | 0.5962 | 0.3275 | 0.066* | |
H112 | 0.3452 | 0.5773 | 0.2883 | 0.066* | |
H113 | 0.2647 | 0.5079 | 0.3243 | 0.066* | |
C12 | 0.2548 (8) | 0.4642 (4) | 0.1672 (4) | 0.0377 (18) | |
H121 | 0.3398 | 0.4833 | 0.1528 | 0.057* | |
H122 | 0.2047 | 0.4450 | 0.1228 | 0.057* | |
H123 | 0.2675 | 0.4214 | 0.2034 | 0.057* | |
C13 | 0.0275 (7) | 0.4896 (4) | 0.2388 (5) | 0.0403 (19) | |
H131 | 0.0574 | 0.4445 | 0.2689 | 0.060* | |
H132 | −0.0246 | 0.4712 | 0.1948 | 0.060* | |
H133 | −0.0258 | 0.5238 | 0.2687 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.011 (3) | 0.011 (3) | 0.011 (2) | 0.001 (2) | 0.001 (2) | 0.000 (2) |
N1 | 0.009 (2) | 0.010 (2) | 0.013 (2) | 0.0001 (17) | 0.0016 (17) | 0.0037 (18) |
B2 | 0.012 (3) | 0.009 (3) | 0.011 (3) | −0.001 (2) | −0.001 (2) | 0.000 (2) |
I2 | 0.01739 (18) | 0.01209 (18) | 0.01497 (17) | −0.00177 (13) | −0.00148 (13) | −0.00448 (13) |
B3 | 0.007 (3) | 0.011 (3) | 0.008 (3) | 0.001 (2) | 0.001 (2) | −0.001 (2) |
I3 | 0.00892 (16) | 0.01894 (19) | 0.01509 (17) | −0.00289 (13) | 0.00248 (13) | 0.00286 (14) |
B4 | 0.010 (3) | 0.012 (3) | 0.005 (2) | 0.003 (2) | −0.002 (2) | 0.000 (2) |
I4 | 0.01385 (17) | 0.0234 (2) | 0.00719 (16) | 0.00384 (14) | 0.00041 (12) | −0.00055 (13) |
B5 | 0.008 (3) | 0.008 (3) | 0.011 (3) | 0.001 (2) | −0.001 (2) | 0.000 (2) |
I5 | 0.01020 (17) | 0.01890 (19) | 0.01234 (16) | 0.00449 (13) | −0.00204 (13) | 0.00323 (13) |
B6 | 0.006 (3) | 0.012 (3) | 0.011 (3) | 0.001 (2) | 0.001 (2) | 0.001 (2) |
F6 | 0.0159 (16) | 0.0151 (16) | 0.0170 (16) | 0.0052 (13) | 0.0020 (12) | −0.0007 (13) |
B7 | 0.012 (3) | 0.010 (3) | 0.012 (3) | 0.000 (2) | −0.003 (2) | −0.001 (2) |
I7 | 0.01068 (17) | 0.01716 (19) | 0.01059 (16) | 0.00013 (13) | −0.00340 (12) | 0.00326 (13) |
B8 | 0.007 (3) | 0.010 (3) | 0.011 (3) | 0.004 (2) | 0.000 (2) | 0.001 (2) |
I8 | 0.01617 (18) | 0.01587 (19) | 0.01883 (18) | 0.00825 (14) | −0.00215 (14) | −0.00469 (14) |
B9 | 0.008 (3) | 0.010 (3) | 0.013 (3) | 0.003 (2) | −0.003 (2) | −0.001 (2) |
I9 | 0.01760 (19) | 0.01479 (19) | 0.0273 (2) | −0.00160 (14) | −0.00620 (15) | −0.00826 (15) |
B10 | 0.007 (3) | 0.015 (3) | 0.010 (3) | 0.000 (2) | 0.000 (2) | 0.000 (2) |
I10 | 0.00822 (17) | 0.0216 (2) | 0.02161 (18) | −0.00206 (14) | 0.00219 (13) | 0.00644 (15) |
B11 | 0.013 (3) | 0.013 (3) | 0.006 (3) | −0.001 (2) | 0.002 (2) | 0.002 (2) |
I11 | 0.01868 (19) | 0.0299 (2) | 0.00953 (16) | 0.00059 (15) | 0.00519 (13) | 0.00235 (15) |
B12 | 0.008 (3) | 0.006 (3) | 0.012 (3) | 0.002 (2) | −0.001 (2) | 0.004 (2) |
I12 | 0.01749 (18) | 0.01344 (19) | 0.0260 (2) | −0.00212 (14) | −0.00231 (15) | 0.01093 (15) |
S1 | 0.0301 (8) | 0.0173 (7) | 0.0215 (7) | 0.0052 (6) | 0.0055 (6) | 0.0044 (6) |
C11 | 0.034 (4) | 0.044 (5) | 0.052 (5) | −0.004 (3) | −0.017 (4) | −0.013 (4) |
C12 | 0.051 (5) | 0.022 (4) | 0.044 (4) | 0.011 (3) | 0.032 (4) | 0.003 (3) |
C13 | 0.024 (4) | 0.030 (4) | 0.067 (5) | −0.007 (3) | 0.011 (3) | −0.020 (4) |
C1—N1 | 1.409 (7) | B7—B8 | 1.796 (8) |
C1—B5 | 1.721 (8) | B7—B12 | 1.799 (8) |
C1—B3 | 1.730 (7) | B7—B11 | 1.798 (8) |
C1—B6 | 1.738 (7) | B7—I7 | 2.146 (6) |
C1—B2 | 1.756 (8) | B8—B12 | 1.796 (8) |
C1—B4 | 1.764 (8) | B8—B9 | 1.800 (8) |
N1—H12 | 0.898 (10) | B8—I8 | 2.161 (6) |
N1—H11 | 0.896 (10) | B9—B10 | 1.788 (8) |
B2—B6 | 1.767 (8) | B9—B12 | 1.797 (8) |
B2—B7 | 1.772 (8) | B9—I9 | 2.155 (6) |
B2—B11 | 1.788 (8) | B10—B11 | 1.787 (8) |
B2—B3 | 1.797 (8) | B10—B12 | 1.791 (8) |
B2—I2 | 2.140 (6) | B10—I10 | 2.151 (6) |
B3—B4 | 1.791 (8) | B11—B12 | 1.791 (8) |
B3—B8 | 1.799 (8) | B11—I11 | 2.148 (6) |
B3—B7 | 1.804 (8) | B12—I12 | 2.150 (6) |
B3—I3 | 2.139 (6) | S1—C13 | 1.770 (7) |
B4—B9 | 1.771 (8) | S1—C11 | 1.771 (7) |
B4—B5 | 1.771 (8) | S1—C12 | 1.778 (6) |
B4—B8 | 1.778 (8) | C11—H111 | 0.9600 |
B4—I4 | 2.150 (5) | C11—H112 | 0.9600 |
B5—B9 | 1.778 (8) | C11—H113 | 0.9600 |
B5—B10 | 1.787 (8) | C12—H121 | 0.9600 |
B5—B6 | 1.795 (8) | C12—H122 | 0.9600 |
B5—I5 | 2.143 (6) | C12—H123 | 0.9600 |
B6—F6 | 1.361 (7) | C13—H131 | 0.9600 |
B6—B10 | 1.765 (8) | C13—H132 | 0.9600 |
B6—B11 | 1.774 (8) | C13—H133 | 0.9600 |
N1—C1—B5 | 117.7 (4) | B11—B7—B3 | 108.3 (4) |
N1—C1—B3 | 119.5 (4) | B2—B7—I7 | 119.1 (4) |
B5—C1—B3 | 112.1 (4) | B8—B7—I7 | 123.5 (4) |
N1—C1—B6 | 120.2 (4) | B12—B7—I7 | 124.0 (4) |
B5—C1—B6 | 62.5 (3) | B11—B7—I7 | 120.8 (3) |
B3—C1—B6 | 111.8 (4) | B3—B7—I7 | 121.0 (4) |
N1—C1—B2 | 121.3 (4) | B4—B8—B12 | 107.7 (4) |
B5—C1—B2 | 112.1 (4) | B4—B8—B7 | 108.3 (4) |
B3—C1—B2 | 62.1 (3) | B12—B8—B7 | 60.1 (3) |
B6—C1—B2 | 60.7 (3) | B4—B8—B3 | 60.1 (3) |
N1—C1—B4 | 118.3 (4) | B12—B8—B3 | 108.0 (4) |
B5—C1—B4 | 61.1 (3) | B7—B8—B3 | 60.2 (3) |
B3—C1—B4 | 61.6 (3) | B4—B8—B9 | 59.3 (3) |
B6—C1—B4 | 111.7 (4) | B12—B8—B9 | 59.9 (3) |
B2—C1—B4 | 111.8 (4) | B7—B8—B9 | 107.9 (4) |
C1—N1—H12 | 114 (5) | B3—B8—B9 | 107.3 (4) |
C1—N1—H11 | 113 (5) | B4—B8—I8 | 122.0 (3) |
H12—N1—H11 | 108 (7) | B12—B8—I8 | 122.5 (3) |
C1—B2—B6 | 59.1 (3) | B7—B8—I8 | 120.3 (3) |
C1—B2—B7 | 105.9 (4) | B3—B8—I8 | 120.4 (3) |
B6—B2—B7 | 108.2 (4) | B9—B8—I8 | 123.8 (4) |
C1—B2—B11 | 106.2 (4) | B4—B9—B5 | 59.9 (3) |
B6—B2—B11 | 59.9 (3) | B4—B9—B10 | 108.2 (4) |
B7—B2—B11 | 60.7 (3) | B5—B9—B10 | 60.2 (3) |
C1—B2—B3 | 58.3 (3) | B4—B9—B12 | 108.0 (4) |
B6—B2—B3 | 107.4 (4) | B5—B9—B12 | 107.9 (4) |
B7—B2—B3 | 60.7 (3) | B10—B9—B12 | 59.9 (3) |
B11—B2—B3 | 109.0 (4) | B4—B9—B8 | 59.7 (3) |
C1—B2—I2 | 119.0 (3) | B5—B9—B8 | 107.3 (4) |
B6—B2—I2 | 117.5 (4) | B10—B9—B8 | 107.6 (4) |
B7—B2—I2 | 127.4 (4) | B12—B9—B8 | 59.9 (3) |
B11—B2—I2 | 123.6 (4) | B4—B9—I9 | 121.9 (4) |
B3—B2—I2 | 122.5 (4) | B5—B9—I9 | 119.9 (3) |
C1—B3—B4 | 60.1 (3) | B10—B9—I9 | 120.2 (4) |
C1—B3—B2 | 59.7 (3) | B12—B9—I9 | 122.8 (4) |
B4—B3—B2 | 108.6 (4) | B8—B9—I9 | 124.3 (4) |
C1—B3—B8 | 106.1 (4) | B6—B10—B11 | 59.9 (3) |
B4—B3—B8 | 59.4 (3) | B6—B10—B5 | 60.7 (3) |
B2—B3—B8 | 107.1 (4) | B11—B10—B5 | 108.7 (4) |
C1—B3—B7 | 105.6 (4) | B6—B10—B9 | 108.4 (4) |
B4—B3—B7 | 107.4 (4) | B11—B10—B9 | 108.8 (4) |
B2—B3—B7 | 58.9 (3) | B5—B10—B9 | 59.6 (3) |
B8—B3—B7 | 59.8 (3) | B6—B10—B12 | 107.7 (4) |
C1—B3—I3 | 121.0 (4) | B11—B10—B12 | 60.1 (3) |
B4—B3—I3 | 121.0 (3) | B5—B10—B12 | 107.8 (4) |
B2—B3—I3 | 120.8 (3) | B9—B10—B12 | 60.3 (3) |
B8—B3—I3 | 124.5 (3) | B6—B10—I10 | 118.2 (3) |
B7—B3—I3 | 124.3 (3) | B11—B10—I10 | 120.6 (3) |
C1—B4—B9 | 105.6 (4) | B5—B10—I10 | 120.0 (3) |
C1—B4—B5 | 58.3 (3) | B9—B10—I10 | 123.8 (4) |
B9—B4—B5 | 60.3 (3) | B12—B10—I10 | 125.0 (4) |
C1—B4—B8 | 105.6 (4) | B6—B11—B10 | 59.4 (3) |
B9—B4—B8 | 61.0 (3) | B6—B11—B12 | 107.3 (4) |
B5—B4—B8 | 108.6 (4) | B10—B11—B12 | 60.1 (3) |
C1—B4—B3 | 58.3 (3) | B6—B11—B2 | 59.5 (3) |
B9—B4—B3 | 109.0 (4) | B10—B11—B2 | 107.0 (4) |
B5—B4—B3 | 107.1 (4) | B12—B11—B2 | 107.4 (4) |
B8—B4—B3 | 60.6 (3) | B6—B11—B7 | 106.7 (4) |
C1—B4—I4 | 120.3 (3) | B10—B11—B7 | 107.6 (4) |
B9—B4—I4 | 125.9 (4) | B12—B11—B7 | 60.2 (3) |
B5—B4—I4 | 122.0 (3) | B2—B11—B7 | 59.2 (3) |
B8—B4—I4 | 123.9 (3) | B6—B11—I11 | 121.8 (4) |
B3—B4—I4 | 118.6 (3) | B10—B11—I11 | 123.0 (3) |
C1—B5—B4 | 60.6 (3) | B12—B11—I11 | 123.1 (4) |
C1—B5—B9 | 107.1 (4) | B2—B11—I11 | 121.0 (4) |
B4—B5—B9 | 59.9 (3) | B7—B11—I11 | 122.1 (3) |
C1—B5—B10 | 105.9 (4) | B11—B12—B10 | 59.9 (3) |
B4—B5—B10 | 108.2 (4) | B11—B12—B8 | 108.5 (4) |
B9—B5—B10 | 60.2 (3) | B10—B12—B8 | 107.7 (4) |
C1—B5—B6 | 59.2 (3) | B11—B12—B9 | 108.3 (4) |
B4—B5—B6 | 108.7 (4) | B10—B12—B9 | 59.8 (3) |
B9—B5—B6 | 107.5 (4) | B8—B12—B9 | 60.2 (3) |
B10—B5—B6 | 59.0 (3) | B11—B12—B7 | 60.1 (3) |
C1—B5—I5 | 119.4 (3) | B10—B12—B7 | 107.4 (4) |
B4—B5—I5 | 123.6 (3) | B8—B12—B7 | 60.0 (3) |
B9—B5—I5 | 126.9 (4) | B9—B12—B7 | 107.9 (4) |
B10—B5—I5 | 122.6 (3) | B11—B12—I12 | 121.2 (3) |
B6—B5—I5 | 117.2 (3) | B10—B12—I12 | 122.0 (3) |
F6—B6—C1 | 117.9 (4) | B8—B12—I12 | 121.8 (3) |
F6—B6—B10 | 125.1 (4) | B9—B12—I12 | 121.6 (4) |
C1—B6—B10 | 106.2 (4) | B7—B12—I12 | 122.1 (3) |
F6—B6—B2 | 120.4 (5) | C13—S1—C11 | 101.0 (4) |
C1—B6—B2 | 60.1 (3) | C13—S1—C12 | 99.3 (3) |
B10—B6—B2 | 109.0 (4) | C11—S1—C12 | 102.5 (4) |
F6—B6—B11 | 126.1 (4) | S1—C11—H111 | 109.5 |
C1—B6—B11 | 107.6 (4) | S1—C11—H112 | 109.5 |
B10—B6—B11 | 60.7 (3) | H111—C11—H112 | 109.5 |
B2—B6—B11 | 60.7 (3) | S1—C11—H113 | 109.5 |
F6—B6—B5 | 118.6 (4) | H111—C11—H113 | 109.5 |
C1—B6—B5 | 58.3 (3) | H112—C11—H113 | 109.5 |
B10—B6—B5 | 60.3 (3) | S1—C12—H121 | 109.5 |
B2—B6—B5 | 108.2 (4) | S1—C12—H122 | 109.5 |
B11—B6—B5 | 109.0 (4) | H121—C12—H122 | 109.5 |
B2—B7—B8 | 108.4 (4) | S1—C12—H123 | 109.5 |
B2—B7—B12 | 107.7 (4) | H121—C12—H123 | 109.5 |
B8—B7—B12 | 59.9 (3) | H122—C12—H123 | 109.5 |
B2—B7—B11 | 60.1 (3) | S1—C13—H131 | 109.5 |
B8—B7—B11 | 108.1 (4) | S1—C13—H132 | 109.5 |
B12—B7—B11 | 59.7 (3) | H131—C13—H132 | 109.5 |
B2—B7—B3 | 60.4 (3) | S1—C13—H133 | 109.5 |
B8—B7—B3 | 60.0 (3) | H131—C13—H133 | 109.5 |
B12—B7—B3 | 107.7 (4) | H132—C13—H133 | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C3H9S+·CH2B11FI10N− |
Mr | 1512.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.0672 (1), 16.7057 (2), 17.5574 (2) |
β (°) | 93.175 (1) |
V (Å3) | 2948.26 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.59 |
Crystal size (mm) | 0.79 × 0.28 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.040, 0.204 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30584, 5482, 5282 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.052, 1.31 |
No. of reflections | 5482 |
No. of parameters | 264 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.014P)2 + 16.P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.06, −0.61 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).
Acknowledgements
The financial support of the Deutsche Forschungsgemeinschaft (FI 1628/2-1) is gratefully acknowledged.
References
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Finze, M. (2007). Angew. Chem. Int. Ed. 46, 8880–8882. Web of Science CSD CrossRef CAS Google Scholar
Finze, M. (2009). Chem. Eur. J. 15, 947–962. Web of Science CSD CrossRef PubMed CAS Google Scholar
Finze, M., Reiss, G. J. & Zähres, M. (2007). Inorg. Chem. 46, 9873–9883. Web of Science CSD CrossRef PubMed CAS Google Scholar
Finze, M. & Sprenger, J. A. P. (2010). Z. Anorg. Allg. Chem. 636, 1518–1542. Web of Science CSD CrossRef Google Scholar
Forrester, J., Jones, R. V. H., Preston, P. N. & Simpson, E. S. C. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2289–2291. CrossRef Web of Science Google Scholar
Himmelspach, A., Sprenger, J. A. P., Warneke, J., Zähres, M. & Finze, M. (2012). Organometallics, doi:10.1021/om201023h. Google Scholar
Himmelspach, A., Zähres, M. & Finze, M. (2011). Inorg. Chem. 50, 3186–3188. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jelínek, T., Plešek, J., Heřmánek, S. & Štíbr, B. (1986). Collect. Czech. Chem. Commun. 51, 819–829. Google Scholar
Körbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208–5249. Web of Science PubMed Google Scholar
Nifontova, G. A. & Lavrentiev, I. P. (1993). Transition Met. Chem. 18, 27–30. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Park, K. H., So, M. S. & Kim, Y. W. (2005). Bull. Korean Chem. Soc. 26, 1491–1492. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srivastava, R. R., Hamlin, D. K. & Wilbur, D. S. (1996). J. Org. Chem. 61, 9041–9044. CrossRef PubMed CAS Web of Science Google Scholar
Svensson, P. H. & Kloo, L. (1996). Acta Cryst. C52, 2580–2581. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Monocarba-closo-dodecaborates with amino groups that are bonded to the cluster carbon or boron atoms are potential building blocks for a broad range of applications (Körbe et al., 2006). The properties of the amino group are strongly influenced by (i) the other substituents of the {closo-1-CB11} cluster (Jelínek et al. 1986; Srivastava et al. 1996; Finze et al., 2007; Finze, 2007) and (ii) the type of cluster atom that it is bonded to (Finze, 2009).
Halogenation of all boron vertices of the {closo-1-CB11} cluster (Körbe et al., 2006) results in a decrease of the electron density in the cluster. For example, this effect is evident from the calculated proton affinity of [closo-1-CB11X11]2– that strongly decreases from X = H to X = halogen (Himmelspach et al., 2012). A further example is the coordination of CH3CN or H2O to HgII of the dianionic mercury(II) complex [Hg(closo-1-CB11F11)2]2–, which is related to the Lewis-acidity of mercury (Himmelspach et al., 2011). In contrast, for the complex [Hg(closo-1-CB11H11)2]2– that possess a lower Lewis-acidity at the mercury atom no coordination of a third ligand was observed (Himmelspach et al., 2012). Similarly, a much lower electron density at the amino group is found for halogenated {1-H2N-closo-1-CB11} clusters in comparison to [1-H2N-closo-1-CB11H11]-: The non-halogenated anion is easily protonated to yield 1-H3N-closo-1-CB11H11 (pKa = 6.0) (Jelínek et al. 1986; Finze, 2009) while the attempted protonation of [1-H2N-6-F-closo-1-CB11I10]- with conc. hydrochloric acid failed (Finze & Sprenger, 2010).
Treatment of a solution of H(solv)[1-H2N-6-F-closo-1-CB11I10] in dimethyl sulfoxide (DMSO) with methanol and conc. hydrochloric acid results in the slow formation of crystals of the trimethylsulfonium salt Me3S[1-H2N-6-F-closo-1-CB11I10]. Similar reactions of DMSO to result in trimethylsulfonium salts were reported earlier (e.g. Nifontova & Lavrentiev, 1993; Forrester et al., 1995; Park et al., 2005).
The title compound trimethylsulfonium-1-amino-6-fluoro-1-carba-closo-dodecaborate (Figure 1) crystallizes in the monoclinic space group P21/n with one formula unit in the asymmetric unit. The position of the C–NH2 and the B–F vertex of the [1-H2N-6-F-closo-1-CB11I10]- anion are clearly assigned (i) from comparative refinements and (ii) the C–N and B–F as well as the inner-cluster C–B bond lengths are similar to values reported for [1-H2N-closo-1-CB11F11]- and [1-H2N-6-HO-closo-1-CB11F10]- (Finze et al., 2007). The bond lengths and angles of the trimethylsulfonium cation are similar to those reported for other (CH3)3S+ salts, for example (CH3)3SBr (Svensson & Kloo, 1996).