organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­methyl­sulfonium 1-amino-6-fluoro-2,3,4,5,7,8,9,10,11,12-deca­iodo-1-carba-closo-dodeca­borate

aInstitut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, and bInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: maik.finze@uni-wuerzburg.de

(Received 26 January 2012; accepted 2 February 2012; online 10 February 2012)

In the asymmetric unit of the title salt, C3H9S+·CH2B11FI10N or (CH3)3S[1-H2N-6-F-closo-1-CB11I10], both ions lie in general positions. The anion is perfectly ordered and so the positions of the C—NH2 vertex and the fluorine substituent are clearly assigned. The relatively short C—N bond length may be inter­preted in terms of a very electron deficient {closo-1-CB11} cluster.

Related literature

For a general overview on monocarba-closo-dodeca­borates, see: Körbe et al. (2006[Körbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208-5249.]). For the synthesis and properties of 1-amino­monocarba-closo-dodeca­boron clusters, see: Jelínek et al. (1986[Jelínek, T., Plešek, J., Heřmánek, S. & Štíbr, B. (1986). Collect. Czech. Chem. Commun. 51, 819-829.]); Srivastava et al. (1996[Srivastava, R. R., Hamlin, D. K. & Wilbur, D. S. (1996). J. Org. Chem. 61, 9041-9044.]); Finze (2007[Finze, M. (2007). Angew. Chem. Int. Ed. 46, 8880-8882.], 2009[Finze, M. (2009). Chem. Eur. J. 15, 947-962.]); Finze et al. (2007[Finze, M., Reiss, G. J. & Zähres, M. (2007). Inorg. Chem. 46, 9873-9883.]); Finze & Sprenger (2010[Finze, M. & Sprenger, J. A. P. (2010). Z. Anorg. Allg. Chem. 636, 1518-1542.]). For studies on the proton affinity of halogenated {closo-1-CB11} clusters, see: Himmelspach et al. (2011[Himmelspach, A., Zähres, M. & Finze, M. (2011). Inorg. Chem. 50, 3186-3188.], 2012[Himmelspach, A., Sprenger, J. A. P., Warneke, J., Zähres, M. & Finze, M. (2012). Organometallics, doi:10.1021/om201023h.]). For the formation of (CH3)3S+ from dimethyl sulfoxide, see: Nifontova & Lavrentiev (1993[Nifontova, G. A. & Lavrentiev, I. P. (1993). Transition Met. Chem. 18, 27-30.]); Forrester et al. (1995[Forrester, J., Jones, R. V. H., Preston, P. N. & Simpson, E. S. C. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2289-2291.]); Park et al. (2005[Park, K. H., So, M. S. & Kim, Y. W. (2005). Bull. Korean Chem. Soc. 26, 1491-1492.]). For the structure of (CH3)3SBr, see: Svensson & Kloo (1996[Svensson, P. H. & Kloo, L. (1996). Acta Cryst. C52, 2580-2581.]).

[Scheme 1]

Experimental

Crystal data
  • C3H9S+·CH2B11FI10N

  • Mr = 1512.11

  • Monoclinic, P 21 /n

  • a = 10.0672 (1) Å

  • b = 16.7057 (2) Å

  • c = 17.5574 (2) Å

  • β = 93.175 (1)°

  • V = 2948.26 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.59 mm−1

  • T = 100 K

  • 0.79 × 0.28 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.040, Tmax = 0.204

  • 30584 measured reflections

  • 5482 independent reflections

  • 5282 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.052

  • S = 1.31

  • 5482 reflections

  • 264 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Monocarba-closo-dodecaborates with amino groups that are bonded to the cluster carbon or boron atoms are potential building blocks for a broad range of applications (Körbe et al., 2006). The properties of the amino group are strongly influenced by (i) the other substituents of the {closo-1-CB11} cluster (Jelínek et al. 1986; Srivastava et al. 1996; Finze et al., 2007; Finze, 2007) and (ii) the type of cluster atom that it is bonded to (Finze, 2009).

Halogenation of all boron vertices of the {closo-1-CB11} cluster (Körbe et al., 2006) results in a decrease of the electron density in the cluster. For example, this effect is evident from the calculated proton affinity of [closo-1-CB11X11]2– that strongly decreases from X = H to X = halogen (Himmelspach et al., 2012). A further example is the coordination of CH3CN or H2O to HgII of the dianionic mercury(II) complex [Hg(closo-1-CB11F11)2]2–, which is related to the Lewis-acidity of mercury (Himmelspach et al., 2011). In contrast, for the complex [Hg(closo-1-CB11H11)2]2– that possess a lower Lewis-acidity at the mercury atom no coordination of a third ligand was observed (Himmelspach et al., 2012). Similarly, a much lower electron density at the amino group is found for halogenated {1-H2N-closo-1-CB11} clusters in comparison to [1-H2N-closo-1-CB11H11]-: The non-halogenated anion is easily protonated to yield 1-H3N-closo-1-CB11H11 (pKa = 6.0) (Jelínek et al. 1986; Finze, 2009) while the attempted protonation of [1-H2N-6-F-closo-1-CB11I10]- with conc. hydrochloric acid failed (Finze & Sprenger, 2010).

Treatment of a solution of H(solv)[1-H2N-6-F-closo-1-CB11I10] in dimethyl sulfoxide (DMSO) with methanol and conc. hydrochloric acid results in the slow formation of crystals of the trimethylsulfonium salt Me3S[1-H2N-6-F-closo-1-CB11I10]. Similar reactions of DMSO to result in trimethylsulfonium salts were reported earlier (e.g. Nifontova & Lavrentiev, 1993; Forrester et al., 1995; Park et al., 2005).

The title compound trimethylsulfonium-1-amino-6-fluoro-1-carba-closo-dodecaborate (Figure 1) crystallizes in the monoclinic space group P21/n with one formula unit in the asymmetric unit. The position of the C–NH2 and the B–F vertex of the [1-H2N-6-F-closo-1-CB11I10]- anion are clearly assigned (i) from comparative refinements and (ii) the C–N and B–F as well as the inner-cluster C–B bond lengths are similar to values reported for [1-H2N-closo-1-CB11F11]- and [1-H2N-6-HO-closo-1-CB11F10]- (Finze et al., 2007). The bond lengths and angles of the trimethylsulfonium cation are similar to those reported for other (CH3)3S+ salts, for example (CH3)3SBr (Svensson & Kloo, 1996).

Related literature top

For a general overview on monocarba-closo-dodecaborates, see: Körbe et al. (2006). For the synthesis and properties of 1-aminomonocarba-closo-dodecaboron clusters, see: Jelínek et al. (1986); Srivastava et al. (1996); Finze (2007, 2009); Finze et al. (2007); Finze & Sprenger (2010). For studies on the proton affinity of halogenated {closo-1-CB11} clusters, see: Himmelspach et al. (2011, 2012). For the formation of (CH3)3S+ from dimethyl sulfoxide, see: Nifontova & Lavrentiev (1993); Forrester et al. (1995); Park et al. (2005). For the structure of (CH3)3SBr, see: Svensson & Kloo (1996).

Experimental top

[Et4N][1-H2N-6-F-closo-1-CB11I10] (50 mg, 0.03 mmol), which was synthesized according to a published procedure (Finze & Sprenger, 2010), was suspended in a mixture of aqueous HCl (50 ml, 10% v/v) and diethyl ether (50 ml). After 30 minutes of stirring the solid dissolved. The ethereal layer was separated and the aqueous solution was extracted with Et2O (2 x 20 ml). The combined ether phases were dried with MgSO4, filtered, and most of the diethyl ether was removed under reduced pressure. DMSO was added (2 ml) and the residual Et2O was removed under reduced pressure. Methanol (2 ml) and conc. hydrochloric acid (4 ml) was added. According to 11B{1H}-NMR spectroscopy the [1-H2N-6-F-closo-1-CB11I10]- anion was not protonated. After 3 month crystals of the title compound were obtained from the reaction mixture. 1H NMR (500.13 MHz, CD2Cl2): d = 2.90 p.p.m. (s, (CH3)3S+) (the signal of the protons of the amino group was not observed as a result of signal broadening). 11B NMR (160.46 MHz, CD2Cl2): d = -1.6 (s, 1 B, BF, B-2), -14.3 (s, 1 B, B-12), -17.1 (s, 2 B, B-4 and B-5), -18.9 (s, 2 B, B-8 and B-10), -18.9 (s, 2 B, B-3 and B-6), -19.2 (s, 2 B, B-7 and B-11), -21.0 (s, 1 B, B-9). IR (ATR): nas(NH2) 3362 versus, ns(NH2) 3297 cm-1 versus.

Refinement top

All hydrogen atoms of the CH3 groups were refined using a riding model with the Uiso(H) set to 1.5Ueq(C). The coordinates of the two hydrogen atoms at the nitrogen atom were refined unrestrictedly together with one refined common Uiso value. Anisotropic displacement parameters of all non-hydrogen atoms were also refined unrestrictedly.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
Trimethylsulfonium 1-amino-6-fluoro-2,3,4,5,7,8,9,10,11,12-decaiodo- 1-carba-closo-dodecaborate top
Crystal data top
C3H9S+·CH2B11FI10NF(000) = 2608
Mr = 1512.11Dx = 3.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 35017 reflections
a = 10.0672 (1) Åθ = 3.0–34.0°
b = 16.7057 (2) ŵ = 10.59 mm1
c = 17.5574 (2) ÅT = 100 K
β = 93.175 (1)°Block, colourless
V = 2948.26 (6) Å30.79 × 0.28 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5482 independent reflections
Radiation source: fine-focus sealed tube5282 reflections with I > 2σ(I)
Equatorial mounted graphite monochromatorRint = 0.029
Detector resolution: 16.2711 pixels mm-1θmax = 25.5°, θmin = 3.2°
ω scansh = 1212
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 2020
Tmin = 0.040, Tmax = 0.204l = 2121
30584 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.014P)2 + 16.P]
where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max = 0.001
5482 reflectionsΔρmax = 1.06 e Å3
264 parametersΔρmin = 0.61 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000548 (19)
Crystal data top
C3H9S+·CH2B11FI10NV = 2948.26 (6) Å3
Mr = 1512.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0672 (1) ŵ = 10.59 mm1
b = 16.7057 (2) ÅT = 100 K
c = 17.5574 (2) Å0.79 × 0.28 × 0.20 mm
β = 93.175 (1)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5482 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
5282 reflections with I > 2σ(I)
Tmin = 0.040, Tmax = 0.204Rint = 0.029
30584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.31 w = 1/[σ2(Fo2) + (0.014P)2 + 16.P]
where P = (Fo2 + 2Fc2)/3
5482 reflectionsΔρmax = 1.06 e Å3
264 parametersΔρmin = 0.61 e Å3
Special details top

Experimental. CrysAlisPro, Oxford Diffraction (2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2112 (5)0.3730 (3)0.5075 (3)0.0111 (10)
N10.2183 (4)0.4462 (3)0.4682 (2)0.0107 (9)
H120.292 (4)0.475 (4)0.480 (4)0.034 (14)*
H110.148 (5)0.478 (4)0.475 (4)0.034 (14)*
B20.2708 (6)0.3639 (4)0.6030 (3)0.0105 (11)
I20.34637 (3)0.46793 (2)0.661845 (19)0.01491 (9)
B30.3549 (6)0.3180 (4)0.5266 (3)0.0087 (11)
I30.54383 (3)0.36148 (2)0.494809 (19)0.01425 (9)
B40.2327 (6)0.2837 (4)0.4561 (3)0.0090 (11)
I40.27883 (3)0.28803 (2)0.338027 (18)0.01482 (9)
B50.0752 (6)0.3128 (3)0.4868 (3)0.0088 (11)
I50.08352 (3)0.35589 (2)0.411424 (19)0.01391 (8)
B60.0985 (6)0.3608 (4)0.5781 (3)0.0094 (11)
F60.0191 (3)0.42395 (19)0.59388 (17)0.0160 (7)
B70.3288 (6)0.2642 (4)0.6136 (3)0.0112 (12)
I70.49137 (3)0.23918 (2)0.694333 (18)0.01296 (8)
B80.3054 (6)0.2145 (4)0.5231 (3)0.0092 (11)
I80.44339 (4)0.12326 (2)0.49050 (2)0.01707 (9)
B90.1296 (6)0.2120 (4)0.4979 (3)0.0105 (11)
I90.03159 (4)0.11836 (2)0.43173 (2)0.02016 (9)
B100.0465 (6)0.2599 (4)0.5729 (3)0.0105 (11)
I100.15349 (3)0.23210 (2)0.60119 (2)0.01709 (9)
B110.1677 (6)0.2908 (4)0.6452 (3)0.0104 (11)
I110.12763 (4)0.29664 (2)0.763929 (19)0.01921 (9)
B120.1890 (6)0.1985 (3)0.5955 (3)0.0089 (11)
I120.17344 (4)0.08517 (2)0.65238 (2)0.01909 (9)
S10.16683 (16)0.54368 (9)0.20914 (9)0.0228 (3)
C110.2577 (8)0.5579 (5)0.2974 (5)0.044 (2)
H1110.21250.59620.32750.066*
H1120.34520.57730.28830.066*
H1130.26470.50790.32430.066*
C120.2548 (8)0.4642 (4)0.1672 (4)0.0377 (18)
H1210.33980.48330.15280.057*
H1220.20470.44500.12280.057*
H1230.26750.42140.20340.057*
C130.0275 (7)0.4896 (4)0.2388 (5)0.0403 (19)
H1310.05740.44450.26890.060*
H1320.02460.47120.19480.060*
H1330.02580.52380.26870.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.011 (3)0.011 (3)0.011 (2)0.001 (2)0.001 (2)0.000 (2)
N10.009 (2)0.010 (2)0.013 (2)0.0001 (17)0.0016 (17)0.0037 (18)
B20.012 (3)0.009 (3)0.011 (3)0.001 (2)0.001 (2)0.000 (2)
I20.01739 (18)0.01209 (18)0.01497 (17)0.00177 (13)0.00148 (13)0.00448 (13)
B30.007 (3)0.011 (3)0.008 (3)0.001 (2)0.001 (2)0.001 (2)
I30.00892 (16)0.01894 (19)0.01509 (17)0.00289 (13)0.00248 (13)0.00286 (14)
B40.010 (3)0.012 (3)0.005 (2)0.003 (2)0.002 (2)0.000 (2)
I40.01385 (17)0.0234 (2)0.00719 (16)0.00384 (14)0.00041 (12)0.00055 (13)
B50.008 (3)0.008 (3)0.011 (3)0.001 (2)0.001 (2)0.000 (2)
I50.01020 (17)0.01890 (19)0.01234 (16)0.00449 (13)0.00204 (13)0.00323 (13)
B60.006 (3)0.012 (3)0.011 (3)0.001 (2)0.001 (2)0.001 (2)
F60.0159 (16)0.0151 (16)0.0170 (16)0.0052 (13)0.0020 (12)0.0007 (13)
B70.012 (3)0.010 (3)0.012 (3)0.000 (2)0.003 (2)0.001 (2)
I70.01068 (17)0.01716 (19)0.01059 (16)0.00013 (13)0.00340 (12)0.00326 (13)
B80.007 (3)0.010 (3)0.011 (3)0.004 (2)0.000 (2)0.001 (2)
I80.01617 (18)0.01587 (19)0.01883 (18)0.00825 (14)0.00215 (14)0.00469 (14)
B90.008 (3)0.010 (3)0.013 (3)0.003 (2)0.003 (2)0.001 (2)
I90.01760 (19)0.01479 (19)0.0273 (2)0.00160 (14)0.00620 (15)0.00826 (15)
B100.007 (3)0.015 (3)0.010 (3)0.000 (2)0.000 (2)0.000 (2)
I100.00822 (17)0.0216 (2)0.02161 (18)0.00206 (14)0.00219 (13)0.00644 (15)
B110.013 (3)0.013 (3)0.006 (3)0.001 (2)0.002 (2)0.002 (2)
I110.01868 (19)0.0299 (2)0.00953 (16)0.00059 (15)0.00519 (13)0.00235 (15)
B120.008 (3)0.006 (3)0.012 (3)0.002 (2)0.001 (2)0.004 (2)
I120.01749 (18)0.01344 (19)0.0260 (2)0.00212 (14)0.00231 (15)0.01093 (15)
S10.0301 (8)0.0173 (7)0.0215 (7)0.0052 (6)0.0055 (6)0.0044 (6)
C110.034 (4)0.044 (5)0.052 (5)0.004 (3)0.017 (4)0.013 (4)
C120.051 (5)0.022 (4)0.044 (4)0.011 (3)0.032 (4)0.003 (3)
C130.024 (4)0.030 (4)0.067 (5)0.007 (3)0.011 (3)0.020 (4)
Geometric parameters (Å, º) top
C1—N11.409 (7)B7—B81.796 (8)
C1—B51.721 (8)B7—B121.799 (8)
C1—B31.730 (7)B7—B111.798 (8)
C1—B61.738 (7)B7—I72.146 (6)
C1—B21.756 (8)B8—B121.796 (8)
C1—B41.764 (8)B8—B91.800 (8)
N1—H120.898 (10)B8—I82.161 (6)
N1—H110.896 (10)B9—B101.788 (8)
B2—B61.767 (8)B9—B121.797 (8)
B2—B71.772 (8)B9—I92.155 (6)
B2—B111.788 (8)B10—B111.787 (8)
B2—B31.797 (8)B10—B121.791 (8)
B2—I22.140 (6)B10—I102.151 (6)
B3—B41.791 (8)B11—B121.791 (8)
B3—B81.799 (8)B11—I112.148 (6)
B3—B71.804 (8)B12—I122.150 (6)
B3—I32.139 (6)S1—C131.770 (7)
B4—B91.771 (8)S1—C111.771 (7)
B4—B51.771 (8)S1—C121.778 (6)
B4—B81.778 (8)C11—H1110.9600
B4—I42.150 (5)C11—H1120.9600
B5—B91.778 (8)C11—H1130.9600
B5—B101.787 (8)C12—H1210.9600
B5—B61.795 (8)C12—H1220.9600
B5—I52.143 (6)C12—H1230.9600
B6—F61.361 (7)C13—H1310.9600
B6—B101.765 (8)C13—H1320.9600
B6—B111.774 (8)C13—H1330.9600
N1—C1—B5117.7 (4)B11—B7—B3108.3 (4)
N1—C1—B3119.5 (4)B2—B7—I7119.1 (4)
B5—C1—B3112.1 (4)B8—B7—I7123.5 (4)
N1—C1—B6120.2 (4)B12—B7—I7124.0 (4)
B5—C1—B662.5 (3)B11—B7—I7120.8 (3)
B3—C1—B6111.8 (4)B3—B7—I7121.0 (4)
N1—C1—B2121.3 (4)B4—B8—B12107.7 (4)
B5—C1—B2112.1 (4)B4—B8—B7108.3 (4)
B3—C1—B262.1 (3)B12—B8—B760.1 (3)
B6—C1—B260.7 (3)B4—B8—B360.1 (3)
N1—C1—B4118.3 (4)B12—B8—B3108.0 (4)
B5—C1—B461.1 (3)B7—B8—B360.2 (3)
B3—C1—B461.6 (3)B4—B8—B959.3 (3)
B6—C1—B4111.7 (4)B12—B8—B959.9 (3)
B2—C1—B4111.8 (4)B7—B8—B9107.9 (4)
C1—N1—H12114 (5)B3—B8—B9107.3 (4)
C1—N1—H11113 (5)B4—B8—I8122.0 (3)
H12—N1—H11108 (7)B12—B8—I8122.5 (3)
C1—B2—B659.1 (3)B7—B8—I8120.3 (3)
C1—B2—B7105.9 (4)B3—B8—I8120.4 (3)
B6—B2—B7108.2 (4)B9—B8—I8123.8 (4)
C1—B2—B11106.2 (4)B4—B9—B559.9 (3)
B6—B2—B1159.9 (3)B4—B9—B10108.2 (4)
B7—B2—B1160.7 (3)B5—B9—B1060.2 (3)
C1—B2—B358.3 (3)B4—B9—B12108.0 (4)
B6—B2—B3107.4 (4)B5—B9—B12107.9 (4)
B7—B2—B360.7 (3)B10—B9—B1259.9 (3)
B11—B2—B3109.0 (4)B4—B9—B859.7 (3)
C1—B2—I2119.0 (3)B5—B9—B8107.3 (4)
B6—B2—I2117.5 (4)B10—B9—B8107.6 (4)
B7—B2—I2127.4 (4)B12—B9—B859.9 (3)
B11—B2—I2123.6 (4)B4—B9—I9121.9 (4)
B3—B2—I2122.5 (4)B5—B9—I9119.9 (3)
C1—B3—B460.1 (3)B10—B9—I9120.2 (4)
C1—B3—B259.7 (3)B12—B9—I9122.8 (4)
B4—B3—B2108.6 (4)B8—B9—I9124.3 (4)
C1—B3—B8106.1 (4)B6—B10—B1159.9 (3)
B4—B3—B859.4 (3)B6—B10—B560.7 (3)
B2—B3—B8107.1 (4)B11—B10—B5108.7 (4)
C1—B3—B7105.6 (4)B6—B10—B9108.4 (4)
B4—B3—B7107.4 (4)B11—B10—B9108.8 (4)
B2—B3—B758.9 (3)B5—B10—B959.6 (3)
B8—B3—B759.8 (3)B6—B10—B12107.7 (4)
C1—B3—I3121.0 (4)B11—B10—B1260.1 (3)
B4—B3—I3121.0 (3)B5—B10—B12107.8 (4)
B2—B3—I3120.8 (3)B9—B10—B1260.3 (3)
B8—B3—I3124.5 (3)B6—B10—I10118.2 (3)
B7—B3—I3124.3 (3)B11—B10—I10120.6 (3)
C1—B4—B9105.6 (4)B5—B10—I10120.0 (3)
C1—B4—B558.3 (3)B9—B10—I10123.8 (4)
B9—B4—B560.3 (3)B12—B10—I10125.0 (4)
C1—B4—B8105.6 (4)B6—B11—B1059.4 (3)
B9—B4—B861.0 (3)B6—B11—B12107.3 (4)
B5—B4—B8108.6 (4)B10—B11—B1260.1 (3)
C1—B4—B358.3 (3)B6—B11—B259.5 (3)
B9—B4—B3109.0 (4)B10—B11—B2107.0 (4)
B5—B4—B3107.1 (4)B12—B11—B2107.4 (4)
B8—B4—B360.6 (3)B6—B11—B7106.7 (4)
C1—B4—I4120.3 (3)B10—B11—B7107.6 (4)
B9—B4—I4125.9 (4)B12—B11—B760.2 (3)
B5—B4—I4122.0 (3)B2—B11—B759.2 (3)
B8—B4—I4123.9 (3)B6—B11—I11121.8 (4)
B3—B4—I4118.6 (3)B10—B11—I11123.0 (3)
C1—B5—B460.6 (3)B12—B11—I11123.1 (4)
C1—B5—B9107.1 (4)B2—B11—I11121.0 (4)
B4—B5—B959.9 (3)B7—B11—I11122.1 (3)
C1—B5—B10105.9 (4)B11—B12—B1059.9 (3)
B4—B5—B10108.2 (4)B11—B12—B8108.5 (4)
B9—B5—B1060.2 (3)B10—B12—B8107.7 (4)
C1—B5—B659.2 (3)B11—B12—B9108.3 (4)
B4—B5—B6108.7 (4)B10—B12—B959.8 (3)
B9—B5—B6107.5 (4)B8—B12—B960.2 (3)
B10—B5—B659.0 (3)B11—B12—B760.1 (3)
C1—B5—I5119.4 (3)B10—B12—B7107.4 (4)
B4—B5—I5123.6 (3)B8—B12—B760.0 (3)
B9—B5—I5126.9 (4)B9—B12—B7107.9 (4)
B10—B5—I5122.6 (3)B11—B12—I12121.2 (3)
B6—B5—I5117.2 (3)B10—B12—I12122.0 (3)
F6—B6—C1117.9 (4)B8—B12—I12121.8 (3)
F6—B6—B10125.1 (4)B9—B12—I12121.6 (4)
C1—B6—B10106.2 (4)B7—B12—I12122.1 (3)
F6—B6—B2120.4 (5)C13—S1—C11101.0 (4)
C1—B6—B260.1 (3)C13—S1—C1299.3 (3)
B10—B6—B2109.0 (4)C11—S1—C12102.5 (4)
F6—B6—B11126.1 (4)S1—C11—H111109.5
C1—B6—B11107.6 (4)S1—C11—H112109.5
B10—B6—B1160.7 (3)H111—C11—H112109.5
B2—B6—B1160.7 (3)S1—C11—H113109.5
F6—B6—B5118.6 (4)H111—C11—H113109.5
C1—B6—B558.3 (3)H112—C11—H113109.5
B10—B6—B560.3 (3)S1—C12—H121109.5
B2—B6—B5108.2 (4)S1—C12—H122109.5
B11—B6—B5109.0 (4)H121—C12—H122109.5
B2—B7—B8108.4 (4)S1—C12—H123109.5
B2—B7—B12107.7 (4)H121—C12—H123109.5
B8—B7—B1259.9 (3)H122—C12—H123109.5
B2—B7—B1160.1 (3)S1—C13—H131109.5
B8—B7—B11108.1 (4)S1—C13—H132109.5
B12—B7—B1159.7 (3)H131—C13—H132109.5
B2—B7—B360.4 (3)S1—C13—H133109.5
B8—B7—B360.0 (3)H131—C13—H133109.5
B12—B7—B3107.7 (4)H132—C13—H133109.5

Experimental details

Crystal data
Chemical formulaC3H9S+·CH2B11FI10N
Mr1512.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.0672 (1), 16.7057 (2), 17.5574 (2)
β (°) 93.175 (1)
V3)2948.26 (6)
Z4
Radiation typeMo Kα
µ (mm1)10.59
Crystal size (mm)0.79 × 0.28 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.040, 0.204
No. of measured, independent and
observed [I > 2σ(I)] reflections
30584, 5482, 5282
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.31
No. of reflections5482
No. of parameters264
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.014P)2 + 16.P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.06, 0.61

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

 

Acknowledgements

The financial support of the Deutsche Forschungsgemeinschaft (FI 1628/2-1) is gratefully acknowledged.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFinze, M. (2007). Angew. Chem. Int. Ed. 46, 8880–8882.  Web of Science CSD CrossRef CAS Google Scholar
First citationFinze, M. (2009). Chem. Eur. J. 15, 947–962.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFinze, M., Reiss, G. J. & Zähres, M. (2007). Inorg. Chem. 46, 9873–9883.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFinze, M. & Sprenger, J. A. P. (2010). Z. Anorg. Allg. Chem. 636, 1518–1542.  Web of Science CSD CrossRef Google Scholar
First citationForrester, J., Jones, R. V. H., Preston, P. N. & Simpson, E. S. C. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2289–2291.  CrossRef Web of Science Google Scholar
First citationHimmelspach, A., Sprenger, J. A. P., Warneke, J., Zähres, M. & Finze, M. (2012). Organometallics, doi:10.1021/om201023h.  Google Scholar
First citationHimmelspach, A., Zähres, M. & Finze, M. (2011). Inorg. Chem. 50, 3186–3188.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJelínek, T., Plešek, J., Heřmánek, S. & Štíbr, B. (1986). Collect. Czech. Chem. Commun. 51, 819–829.  Google Scholar
First citationKörbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208–5249.  Web of Science PubMed Google Scholar
First citationNifontova, G. A. & Lavrentiev, I. P. (1993). Transition Met. Chem. 18, 27–30.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPark, K. H., So, M. S. & Kim, Y. W. (2005). Bull. Korean Chem. Soc. 26, 1491–1492.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. R., Hamlin, D. K. & Wilbur, D. S. (1996). J. Org. Chem. 61, 9041–9044.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSvensson, P. H. & Kloo, L. (1996). Acta Cryst. C52, 2580–2581.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds