inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages i21-i22

LiCe9Mo16O35

aSciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I - INSA Rennes, Avenue du Général Leclerc, 35042 Rennes CEDEX, France
*Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

(Received 17 February 2012; accepted 22 February 2012; online 29 February 2012)

The structure of lithium nona­cerium hexa­deca­molybdenum penta­trideca­oxide, LiCe9Mo16O35, is isotypic with LiNd9Mo16O35 [Gougeon Gall, Cuny, Gautier, Le Polles, Delevoye & Trebosc (2011[Gougeon, P., Gall, P., Cuny, J., Gautier, R., Le Polles, L., Delevoye, L. & Trebosc, J. (2011). Chem. Eur. J. 17, 13806-13813.]). Chem. Eur. J. 17, 13806–13813]. It is characterized by Mo16O26iO10a units (where i = inner and a = apical) containing Mo16 clusters that share some of their O atoms to form infinite molybdenum cluster chains running parallel to the b axis and separated by Li+ and Ce3+ cations. The Mo16 cluster units are centred at Wyckoff positions 2c and have point-group symmetry 2/m. The Li+ atom, in a flattened octa­hedron of O atoms, is in a 2a Wyckoff position with 2/m symmetry. The Ce3+ cations have coordination numbers to the O atoms of 6, 9 or 10. Two Ce, two Mo and five O atoms lie on sites with m symmetry (Wyckoff site 4i), and one Ce and one O atom on sites with 2/m symmetry (Wyckoff sites 2b and 2d, respectively).

Related literature

For the crystal structure of the LiNd9Mo16O35 compound, see: Gougeon et al. (2011[Gougeon, P., Gall, P., Cuny, J., Gautier, R., Le Polles, L., Delevoye, L. & Trebosc, J. (2011). Chem. Eur. J. 17, 13806-13813.]). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964[Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-845.]). For compounds containing Mo10 clusters, see: Hibble et al. (1988[Hibble, S. J., Cheetham, A. K., Bogle, A. R. L., Wakerley, H. R. & Cox, D. E. (1988). J. Am. Chem. Soc. 110, 3295-3296.]); Dronskowski & Simon (1989[Dronskowski, R. & Simon, A. (1989). Angew. Chem. Int. Ed. Engl. 28, 758-760.]); Gougeon et al. (1990[Gougeon, P., Potel, M. & Sergent, M. (1990). Acta Cryst. C46, 1188-1190.], 1991[Gougeon, P., Gall, P. & Sergent, M. (1991). Acta Cryst. C47, 421-423.], 2003[Gougeon, P., Gall, P., Halet, J.-F. & Gautier, R. (2003). Acta Cryst. B59, 472-478.], 2007[Gougeon, P., Gall, P. & McCarroll, W. H. (2007). Acta Cryst. E63, i119-i121.]); Dronskowski et al. (1991[Dronskowski, R., Simon, A. & Mertin, W. (1991). Z. Anorg. Allg. Chem. 602, 49-63.]); Gall et al. (1993[Gall, P., Noel, H. & Gougeon, P. (1993). Mater. Res. Bull. 28, 1225-1231.], 1995[Gall, P., Gougeon, P., Greenblatt, M., Jones, E. B., Mc Carroll, W. H. & Ramanujachary, K. V. (1995). Croat. Chem. Acta, 68, 849-860.], 1999[Gall, P., Gautier, R., Halet, J.-F. & Gougeon, P. (1999). Inorg. Chem. 38, 4455-4461.]); Gall & Gougeon (1993[Gall, P. & Gougeon, P. (1993). Acta Cryst. C49, 659-663.], 1994a[Gall, P. & Gougeon, P. (1994a). Acta Cryst. C50, 7-9.],b[Gall, P. & Gougeon, P. (1994b). Acta Cryst. C50, 1183-1185.], 1998[Gall, P. & Gougeon, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 1-2.]); Gougeon & Gall (2002[Gougeon, P. & Gall, P. (2002). Acta Cryst. E58, i65-i67.]). The oxidation states of the Mo, Ce and Li atoms were estimated using the data given by Brown & Wu (1976[Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.]).

Experimental

Crystal data
  • LiCe9Mo16O35

  • Mr = 3363.06

  • Monoclinic, C 2/m

  • a = 18.3000 (2) Å

  • b = 8.6326 (1) Å

  • c = 9.8172 (1) Å

  • β = 102.0953 (7)°

  • V = 1516.46 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 19.66 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.190, Tmax = 0.418

  • 21270 measured reflections

  • 3511 independent reflections

  • 3383 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.033

  • S = 1.29

  • 3511 reflections

  • 158 parameters

  • Δρmax = 1.13 e Å−3

  • Δρmin = −1.33 e Å−3

Table 1
Selected bond lengths (Å)

Li—O7 1.861 (3)
Li—O10 2.4135 (16)
Ce1—O3i 2.3603 (16)
Ce1—O12 2.3916 (16)
Ce1—O1ii 2.4055 (5)
Ce1—O8 2.4159 (16)
Ce1—O10iii 2.5499 (19)
Ce1—O4ii 2.7161 (18)
Ce1—O2ii 2.874 (2)
Ce1—O11 2.8865 (16)
Ce1—O7iv 2.8959 (17)
Ce2—O12 2.337 (3)
Ce2—O3v 2.3829 (19)
Ce2—O3 2.3829 (19)
Ce2—O1iv 2.622 (2)
Ce2—O2vi 2.6352 (17)
Ce2—O2iv 2.6352 (17)
Ce2—O5ii 2.8054 (16)
Ce2—O5vii 2.8054 (16)
Ce2—O2vii 2.9625 (17)
Ce2—O2ii 2.9625 (17)
Ce3—O8 2.3670 (17)
Ce3—O8viii 2.3670 (17)
Ce3—O4ii 2.5309 (18)
Ce3—O4ix 2.5309 (18)
Ce3—O5viii 2.7980 (17)
Ce3—O5 2.7980 (17)
Ce3—O4viii 3.0001 (17)
Ce3—O4 3.0001 (17)
Ce3—O11ii 3.089 (3)
Ce4—O6x 2.280 (2)
Ce4—O6 2.280 (2)
Ce4—O3 2.4244 (19)
Ce4—O3x 2.4244 (19)
Ce4—O3v 2.4244 (19)
Ce4—O3xi 2.4244 (19)
Mo1—O2 1.9759 (16)
Mo1—O2v 1.9759 (16)
Mo1—O4v 2.0332 (17)
Mo1—O4 2.0332 (17)
Mo1—O1 2.045 (3)
Mo1—Mo3 2.7003 (3)
Mo1—Mo2 2.7129 (3)
Mo2—O3ix 2.0277 (16)
Mo2—O2 2.077 (2)
Mo2—O7 2.0773 (16)
Mo2—O5 2.0985 (16)
Mo2—O10 2.0997 (19)
Mo2—Mo4ii 2.6412 (3)
Mo2—Mo5xii 2.7691 (3)
Mo2—Mo3 2.7739 (2)
Mo2—Mo2v 2.7851 (4)
Mo3—O8 2.0315 (16)
Mo3—O5 2.0688 (16)
Mo3—O11 2.0795 (16)
Mo3—O4 2.0860 (19)
Mo3—Mo3v 2.7338 (4)
Mo3—Mo4ii 2.7375 (3)
Mo3—Mo5 2.7405 (3)
Mo3—Mo4xiii 2.8391 (3)
Mo3—Mo5xii 2.8928 (3)
Mo4—O6 2.0145 (14)
Mo4—O8xiv 2.0758 (19)
Mo4—O5ii 2.0797 (19)
Mo4—O10ii 2.0857 (16)
Mo4—O9 2.1141 (2)
Mo4—Mo4xv 2.7958 (3)
Mo5—O11 2.078 (3)
Mo5—O10xii 2.0950 (16)
Mo5—O10iii 2.0950 (16)
Mo5—Mo5xii 2.9030 (5)
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (ii) [-x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (iii) -x-1, y, -z+1; (iv) x, y, z-1; (v) x, -y-1, z; (vi) x, -y-1, z-1; (vii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (viii) x, -y, z; (ix) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (x) -x, -y-1, -z; (xi) -x, y, -z; (xii) -x-1, -y-1, -z+1; (xiii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (xiv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (xv) -x, y, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bergerhoff, 1996[Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

LiCe9Mo16O35 is isotopic with the LiNd9Mo16O35 (Gougeon et al., 2011) structure type. The crystal structure (Fig. 1) is based on Mo16O26iO10a cluster units (Fig. 2) sharing two Oi or four Oa ligands (for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964)) to form infinite molybdenum cluster chains running parallel to the b axis. The Mo16 core of the Mo16O26iO10a unit can be seen as resulting of the fusion of two bioctahedral Mo10 clusters through the sharing of three edges per Mo10 cluster. The Mo10 cluster results itself from metal edge-sharing of two Mo6 octahedra and was first observed forming infinite chains in the MMo5O8 (M = Ca, Sr, Sn, Pb, La–Gd) compounds (Hibble et al., 1988; Dronskowski & Simon, 1989; Gougeon et al., 1990, 1991, 2003, 2007; Dronskowski et al., 1991; Gall et al., 1993, 1995; Gall & Gougeon, 1994a,b; Gougeon & Gall, 2002) and more later as isolated cluster in the R16Mo21O56 (R = La, Ce, Pr, and Nd) series (Gall & Gougeon, 1993, 1998; Gall et al., 1999). The Mo16O26iO10a cluster is centered on 2b position and thus has point-group symmetry 2/m. The Mo—Mo distances lie between 2.6412 (3) and 2.9030 (5) Å compared to 2.725 Å in the Mo metal and the Mo—O distances between 1.9759 (16) and 2.11407 (18) Å. The Mo—O chains, which have the connectivity formula Mo16O24iO2/2i-iO6aO4/2a-a are separated by the Li+ and Ce3+ cations. The Li+ cation occupies a highly tetragonally distorted octahedral site of O atoms of symmetry 2/m centered at the origin of the unit cell. The Li—O distances in the equatorial plane are 2.4135 (16) Å [Li—O10] and the two trans Li—O7 bonds are 1.861 (3) Å. The coordination numbers of the Ce ions are 6, 9 or 10 with Ce—O distances spreading over a wide range [2.280 (2) to 3.089 (3) Å]. By using the bond-length–bond-strength formula (Brown & Wu, 1976) for the Mo—O, Ce—O and Li—O bonds (s = [d(Mo—O)/1.882]-6, s = [d(Ce—O)/2.160]-6.5 and s = [d(Li—O)/1.378]-4.065), an assignment of oxidation states to the Mo, Ce and Li atoms was made. The valence of each independent Mo atom was determined as follows: Mo(1) +3.36, Mo(2) +2.78, Mo(3) +2.29, Mo(4) + 2.81, and Mo(5) + 1.6. From these values, we could deduce an average Mo oxidation state of + 2.60 which is close to that based on the stoichiometry, + 2.625, when considering all the Ce ions as trivalent and the Li ion monovalent. Bond-valence sums of the Ce—O bonds was +3.08, +3.11, +3.09, and +3.30 for Ce1, Ce2, Ce3, and Ce4, respectively. For the Li atom, a value of +1.00 was found. It is interesting to note that for the total valence sum Σ(Mo—O) + Σ(Ce—O) + Σ(Li—O), we obtained a value of 70.5 per formula unit, which is in very good agreement with the theoretical value of 70 based on the 35 O atoms.

Related literature top

For the crystal structure of the LiNd9Mo16O35 compound, see: Gougeon et al. (2011). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964). For compounds containing Mo10 clusters, see: Hibble et al. (1988); Dronskowski & Simon (1989); Gougeon et al. (1990, 1991, 2003, 2007); Dronskowski et al. (1991); Gall et al. (1993, 1995, 1999); Gall & Gougeon (1993, 1994a,b, 1998); Gougeon & Gall (2002). The oxidation states of the Mo, Ce and Li atoms were estimated using the data given by Brown & Wu (1976).

Experimental top

Single crystals of LiCe9Mo16O35 were obtained from a mixture of Li2MoO4, CeO2, MoO3, and Mo with the nominal composition Li2CeMo6O12. Before use, Mo powder was reduced under H2 flowing gas at 1273 K during 10 h in order to eliminate any trace of oxygen. The initial mixture (ca 4 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K/h up to 2000 K, temperature which was held for 18 h, then cooled at 100 K/h down to 1373 K and finally furnace cooled.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the crystal structure of LiCe9Mo16O35 (Displacement ellipsoids are drawn at the 97% probability level).
[Figure 2] Fig. 2. Plot showing the atom-numbering scheme of the Mo16O26iO10a units. Displacement ellipsoids are drawn at the 97% probability level.
lithium nonacerium hexadecamolybdenum pentatridecaoxide top
Crystal data top
LiCe9Mo16O35F(000) = 2954
Mr = 3363.06Dx = 7.365 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71069 Å
a = 18.3000 (2) ÅCell parameters from 21270 reflections
b = 8.6326 (1) Åθ = 0.9–35.0°
c = 9.8172 (1) ŵ = 19.66 mm1
β = 102.0953 (7)°T = 293 K
V = 1516.46 (3) Å3Multi-faceted fragment, black
Z = 20.15 × 0.12 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3511 independent reflections
Radiation source: fine-focus sealed tube3383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ scans (κ = 0) and additional ω scansθmax = 35.0°, θmin = 3.5°
Absorption correction: multi-scan
(PLATON; Spek, 2009)
h = 2629
Tmin = 0.190, Tmax = 0.418k = 1313
21270 measured reflectionsl = 1510
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.P)2 + 6.2844P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.004
S = 1.29Δρmax = 1.13 e Å3
3511 reflectionsΔρmin = 1.33 e Å3
158 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00166 (3)
Crystal data top
LiCe9Mo16O35V = 1516.46 (3) Å3
Mr = 3363.06Z = 2
Monoclinic, C2/mMo Kα radiation
a = 18.3000 (2) ŵ = 19.66 mm1
b = 8.6326 (1) ÅT = 293 K
c = 9.8172 (1) Å0.15 × 0.12 × 0.06 mm
β = 102.0953 (7)°
Data collection top
Nonius KappaCCD
diffractometer
3511 independent reflections
Absorption correction: multi-scan
(PLATON; Spek, 2009)
3383 reflections with I > 2σ(I)
Tmin = 0.190, Tmax = 0.418Rint = 0.027
21270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016158 parameters
wR(F2) = 0.0330 restraints
S = 1.29Δρmax = 1.13 e Å3
3511 reflectionsΔρmin = 1.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li0.50000.50001.00000.038 (4)
Ce10.345982 (8)0.273486 (15)0.201055 (12)0.00556 (3)
Ce20.191529 (11)0.50000.071345 (17)0.00625 (4)
Ce30.298077 (11)0.00000.534154 (17)0.00582 (4)
Ce40.00000.50000.00000.00664 (5)
Mo10.290730 (16)0.50000.74596 (2)0.00368 (5)
Mo20.401044 (12)0.33869 (2)0.828637 (17)0.00338 (4)
Mo30.388827 (11)0.34166 (2)0.551746 (17)0.00319 (4)
Mo40.000772 (11)0.31629 (2)0.357312 (17)0.00311 (4)
Mo50.490663 (16)0.50000.35678 (2)0.00316 (5)
O10.17701 (15)0.50000.8112 (2)0.0070 (4)
O20.28523 (11)0.3349 (2)0.88711 (16)0.0064 (3)
O30.10014 (11)0.6759 (2)0.02198 (16)0.0062 (3)
O40.27246 (11)0.3355 (2)0.60863 (16)0.0059 (3)
O50.38352 (11)0.1616 (2)0.69257 (16)0.0051 (3)
O60.00695 (16)0.50000.2346 (2)0.0066 (4)
O70.40015 (16)0.50000.9860 (2)0.0067 (4)
O80.38482 (10)0.1769 (2)0.40574 (15)0.0050 (3)
O90.00000.50000.50000.0059 (6)
O100.51815 (10)0.33622 (19)0.79643 (16)0.0050 (3)
O110.37455 (15)0.50000.3998 (2)0.0052 (4)
O120.26903 (15)0.50000.2327 (2)0.0063 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li0.007 (6)0.070 (12)0.037 (7)0.0000.005 (5)0.000
Ce10.00563 (6)0.00466 (5)0.00630 (5)0.00095 (4)0.00106 (4)0.00077 (3)
Ce20.00587 (9)0.00703 (8)0.00639 (6)0.0000.00251 (5)0.000
Ce30.00568 (9)0.00564 (7)0.00553 (6)0.0000.00025 (5)0.000
Ce40.00575 (12)0.00932 (11)0.00530 (9)0.0000.00216 (7)0.000
Mo10.00269 (12)0.00349 (10)0.00447 (9)0.0000.00012 (7)0.000
Mo20.00339 (9)0.00276 (7)0.00372 (6)0.00000 (6)0.00011 (5)0.00036 (5)
Mo30.00291 (9)0.00265 (7)0.00385 (6)0.00007 (6)0.00036 (5)0.00014 (5)
Mo40.00306 (9)0.00221 (7)0.00386 (6)0.00005 (6)0.00029 (5)0.00010 (5)
Mo50.00309 (12)0.00254 (10)0.00372 (9)0.0000.00047 (7)0.000
O10.0034 (11)0.0067 (10)0.0095 (9)0.0000.0014 (7)0.000
O20.0061 (8)0.0056 (7)0.0068 (6)0.0004 (6)0.0004 (5)0.0021 (5)
O30.0073 (8)0.0050 (7)0.0063 (6)0.0000 (6)0.0010 (5)0.0013 (5)
O40.0038 (8)0.0062 (7)0.0077 (6)0.0006 (6)0.0010 (5)0.0006 (5)
O50.0044 (8)0.0043 (7)0.0062 (6)0.0001 (6)0.0006 (5)0.0000 (5)
O60.0110 (12)0.0039 (10)0.0047 (8)0.0000.0013 (7)0.000
O70.0089 (12)0.0051 (10)0.0058 (8)0.0000.0011 (7)0.000
O80.0039 (8)0.0051 (7)0.0055 (6)0.0001 (6)0.0000 (5)0.0009 (5)
O90.0100 (17)0.0036 (13)0.0041 (11)0.0000.0014 (10)0.000
O100.0037 (8)0.0041 (7)0.0073 (6)0.0001 (6)0.0013 (5)0.0000 (5)
O110.0046 (11)0.0060 (10)0.0053 (8)0.0000.0017 (7)0.000
O120.0063 (12)0.0063 (10)0.0060 (8)0.0000.0002 (7)0.000
Geometric parameters (Å, º) top
Li—O7i1.861 (3)Mo3—O112.0795 (16)
Li—O71.861 (3)Mo3—O42.0860 (19)
Li—O10ii2.4135 (16)Mo3—Mo3ii2.7338 (4)
Li—O10iii2.4135 (16)Mo3—Mo4v2.7375 (3)
Li—O10i2.4135 (16)Mo3—Mo52.7405 (3)
Li—O102.4135 (16)Mo3—Mo4xv2.8391 (3)
Ce1—O3iv2.3603 (16)Mo3—Mo5xiv2.8928 (3)
Ce1—O122.3916 (16)Mo4—O62.0145 (14)
Ce1—O1v2.4055 (5)Mo4—O8xvi2.0758 (19)
Ce1—O82.4159 (16)Mo4—O5v2.0797 (19)
Ce1—O10vi2.5499 (19)Mo4—O10v2.0857 (16)
Ce1—O4v2.7161 (18)Mo4—O92.1141 (2)
Ce1—O2v2.874 (2)Mo4—Mo2v2.6412 (3)
Ce1—O112.8865 (16)Mo4—Mo5xvii2.7367 (2)
Ce1—O7vii2.8959 (17)Mo4—Mo3v2.7375 (3)
Ce2—O122.337 (3)Mo4—Mo4xviii2.7958 (3)
Ce2—O3ii2.3829 (19)Mo4—Mo3xvi2.8391 (3)
Ce2—O32.3829 (19)Mo4—Mo4ii3.1718 (4)
Ce2—O1vii2.622 (2)Mo5—O112.078 (3)
Ce2—O2viii2.6352 (17)Mo5—O10xiv2.0950 (16)
Ce2—O2vii2.6352 (17)Mo5—O10vi2.0950 (16)
Ce2—O5v2.8054 (16)Mo5—Mo4xix2.7367 (2)
Ce2—O5ix2.8054 (16)Mo5—Mo4xv2.7367 (2)
Ce2—O2ix2.9625 (17)Mo5—Mo3ii2.7405 (3)
Ce2—O2v2.9625 (17)Mo5—Mo2xiv2.7691 (3)
Ce3—O12v2.360 (2)Mo5—Mo2vi2.7691 (3)
Ce3—O82.3670 (17)Mo5—Mo3xiv2.8928 (3)
Ce3—O8x2.3670 (17)Mo5—Mo3vi2.8928 (3)
Ce3—O4v2.5309 (18)Mo5—Mo5xiv2.9030 (5)
Ce3—O4xi2.5309 (18)O1—Ce1v2.4055 (5)
Ce3—O5x2.7980 (17)O1—Ce1ix2.4055 (5)
Ce3—O52.7980 (17)O1—Ce2xx2.622 (2)
Ce3—O4x3.0001 (17)O1—Ce3v3.325 (2)
Ce3—O43.0001 (17)O2—Ce2xx2.6352 (17)
Ce3—O11v3.089 (3)O2—Ce1v2.874 (2)
Ce4—O6xii2.280 (2)O2—Ce2v2.9625 (17)
Ce4—O62.280 (2)O3—Mo2ix2.0277 (16)
Ce4—O32.4244 (19)O3—Ce1xxi2.3603 (16)
Ce4—O3xii2.4244 (19)O4—Ce3v2.5309 (18)
Ce4—O3ii2.4244 (19)O4—Ce1v2.7161 (18)
Ce4—O3xiii2.4244 (19)O5—Mo4v2.0797 (19)
Mo1—O21.9759 (16)O5—Ce2v2.8054 (16)
Mo1—O2ii1.9759 (16)O6—Mo4ii2.0145 (14)
Mo1—O4ii2.0332 (17)O7—Mo2ii2.0773 (16)
Mo1—O42.0332 (17)O7—Ce1xx2.8959 (17)
Mo1—O12.045 (3)O7—Ce1xxii2.8959 (17)
Mo1—Mo3ii2.7003 (3)O8—Mo4xv2.0758 (19)
Mo1—Mo32.7003 (3)O9—Mo4ii2.1141 (2)
Mo1—Mo2ii2.7129 (3)O9—Mo4xviii2.1141 (2)
Mo1—Mo22.7129 (3)O9—Mo4xxiii2.1141 (2)
Mo2—O3xi2.0277 (16)O9—Ce3v3.6397 (2)
Mo2—O22.077 (2)O9—Ce3xxiv3.6397 (2)
Mo2—O72.0773 (16)O10—Mo4v2.0857 (16)
Mo2—O52.0985 (16)O10—Mo5xiv2.0950 (16)
Mo2—O102.0997 (19)O10—Ce1vi2.5499 (19)
Mo2—Mo4v2.6412 (3)O11—Mo3ii2.0795 (16)
Mo2—Mo5xiv2.7691 (3)O11—Ce1ii2.8865 (16)
Mo2—Mo32.7739 (2)O11—Ce3v3.089 (3)
Mo2—Mo2ii2.7851 (4)O12—Ce3v2.360 (2)
Mo3—O82.0315 (16)O12—Ce1ii2.3916 (16)
Mo3—O52.0688 (16)
O7i—Li—O7180.0O2ii—Mo1—Mo295.29 (6)
O7i—Li—O10ii95.41 (7)O4ii—Mo1—Mo2142.46 (6)
O7—Li—O10ii84.59 (7)O4—Mo1—Mo294.36 (5)
O7i—Li—O10iii84.59 (7)O1—Mo1—Mo2132.72 (5)
O7—Li—O10iii95.41 (7)Mo3ii—Mo1—Mo292.568 (10)
O10ii—Li—O10iii180.0Mo3—Mo1—Mo261.651 (7)
O7i—Li—O10i84.59 (7)Mo2ii—Mo1—Mo261.767 (10)
O7—Li—O10i95.41 (7)O2—Mo1—Ce2xx52.36 (5)
O10ii—Li—O10i108.28 (8)O2ii—Mo1—Ce2xx52.36 (5)
O10iii—Li—O10i71.72 (8)O4ii—Mo1—Ce2xx120.27 (5)
O7i—Li—O1095.41 (7)O4—Mo1—Ce2xx120.27 (5)
O7—Li—O1084.59 (7)O1—Mo1—Ce2xx52.01 (7)
O10ii—Li—O1071.72 (8)Mo3ii—Mo1—Ce2xx145.707 (6)
O10iii—Li—O10108.28 (8)Mo3—Mo1—Ce2xx145.707 (6)
O10i—Li—O10180.000 (1)Mo2ii—Mo1—Ce2xx90.187 (8)
O7i—Li—Mo2138.20 (5)Mo2—Mo1—Ce2xx90.187 (8)
O7—Li—Mo241.80 (5)O2—Mo1—Ce1v57.59 (6)
O10ii—Li—Mo278.79 (4)O2ii—Mo1—Ce1v117.78 (5)
O10iii—Li—Mo2101.21 (4)O4ii—Mo1—Ce1v111.62 (5)
O10i—Li—Mo2136.78 (4)O4—Mo1—Ce1v53.03 (5)
O10—Li—Mo243.22 (4)O1—Mo1—Ce1v44.290 (8)
O7i—Li—Mo2i41.80 (5)Mo3ii—Mo1—Ce1v144.943 (9)
O7—Li—Mo2i138.20 (5)Mo3—Mo1—Ce1v96.635 (6)
O10ii—Li—Mo2i101.21 (4)Mo2ii—Mo1—Ce1v151.707 (9)
O10iii—Li—Mo2i78.79 (4)Mo2—Mo1—Ce1v99.651 (5)
O10i—Li—Mo2i43.22 (4)Ce2xx—Mo1—Ce1v67.487 (5)
O10—Li—Mo2i136.78 (4)O2—Mo1—Ce1ix117.78 (5)
Mo2—Li—Mo2i180.000 (6)O2ii—Mo1—Ce1ix57.59 (6)
O7i—Li—Mo2ii138.20 (5)O4ii—Mo1—Ce1ix53.03 (5)
O7—Li—Mo2ii41.80 (5)O4—Mo1—Ce1ix111.62 (5)
O10ii—Li—Mo2ii43.22 (4)O1—Mo1—Ce1ix44.290 (8)
O10iii—Li—Mo2ii136.78 (4)Mo3ii—Mo1—Ce1ix96.635 (6)
O10i—Li—Mo2ii101.21 (4)Mo3—Mo1—Ce1ix144.943 (9)
O10—Li—Mo2ii78.79 (4)Mo2ii—Mo1—Ce1ix99.651 (5)
Mo2—Li—Mo2ii54.260 (7)Mo2—Mo1—Ce1ix151.707 (9)
Mo2i—Li—Mo2ii125.740 (7)Ce2xx—Mo1—Ce1ix67.487 (5)
O7i—Li—Mo2iii41.80 (5)Ce1v—Mo1—Ce1ix87.964 (8)
O7—Li—Mo2iii138.20 (5)O3xi—Mo2—O286.18 (7)
O10ii—Li—Mo2iii136.78 (4)O3xi—Mo2—O785.95 (6)
O10iii—Li—Mo2iii43.22 (4)O2—Mo2—O787.51 (9)
O10i—Li—Mo2iii78.79 (4)O3xi—Mo2—O588.61 (7)
O10—Li—Mo2iii101.21 (4)O2—Mo2—O583.17 (7)
Mo2—Li—Mo2iii125.740 (7)O7—Mo2—O5169.50 (9)
Mo2i—Li—Mo2iii54.260 (7)O3xi—Mo2—O1087.58 (7)
Mo2ii—Li—Mo2iii180.0O2—Mo2—O10172.63 (6)
O7i—Li—Ce1xx128.23 (5)O7—Mo2—O1088.14 (9)
O7—Li—Ce1xx51.77 (5)O5—Mo2—O10100.61 (7)
O10ii—Li—Ce1xx135.89 (4)O3xi—Mo2—Mo4v92.95 (5)
O10iii—Li—Ce1xx44.11 (4)O2—Mo2—Mo4v133.64 (5)
O10i—Li—Ce1xx84.80 (4)O7—Mo2—Mo4v138.74 (8)
O10—Li—Ce1xx95.20 (4)O5—Mo2—Mo4v50.48 (5)
Mo2—Li—Ce1xx64.780 (4)O10—Mo2—Mo4v50.64 (4)
Mo2i—Li—Ce1xx115.220 (4)O3xi—Mo2—Mo1132.54 (6)
Mo2ii—Li—Ce1xx93.573 (4)O2—Mo2—Mo146.41 (5)
Mo2iii—Li—Ce1xx86.427 (4)O7—Mo2—Mo189.31 (7)
O7i—Li—Ce1xiv51.77 (5)O5—Mo2—Mo187.76 (5)
O7—Li—Ce1xiv128.23 (5)O10—Mo2—Mo1139.47 (5)
O10ii—Li—Ce1xiv44.11 (4)Mo4v—Mo2—Mo1119.623 (9)
O10iii—Li—Ce1xiv135.89 (4)O3xi—Mo2—Mo5xiv136.18 (6)
O10i—Li—Ce1xiv95.20 (4)O2—Mo2—Mo5xiv137.57 (5)
O10—Li—Ce1xiv84.80 (4)O7—Mo2—Mo5xiv92.57 (6)
Mo2—Li—Ce1xiv115.220 (4)O5—Mo2—Mo5xiv97.57 (5)
Mo2i—Li—Ce1xiv64.780 (4)O10—Mo2—Mo5xiv48.62 (4)
Mo2ii—Li—Ce1xiv86.427 (4)Mo4v—Mo2—Mo5xiv60.718 (6)
Mo2iii—Li—Ce1xiv93.573 (4)Mo1—Mo2—Mo5xiv91.153 (9)
Ce1xx—Li—Ce1xiv180.000 (3)O3xi—Mo2—Mo3136.41 (5)
O3iv—Ce1—O12122.15 (7)O2—Mo2—Mo389.08 (4)
O3iv—Ce1—O1v69.32 (7)O7—Mo2—Mo3137.13 (4)
O12—Ce1—O1v134.79 (8)O5—Mo2—Mo347.81 (4)
O3iv—Ce1—O8120.66 (6)O10—Mo2—Mo398.15 (4)
O12—Ce1—O8116.24 (7)Mo4v—Mo2—Mo360.674 (7)
O1v—Ce1—O877.76 (7)Mo1—Mo2—Mo358.951 (7)
O3iv—Ce1—O10vi82.31 (6)Mo5xiv—Mo2—Mo362.917 (8)
O12—Ce1—O10vi111.96 (7)O3xi—Mo2—Mo2ii133.86 (5)
O1v—Ce1—O10vi112.96 (7)O2—Mo2—Mo2ii90.91 (5)
O8—Ce1—O10vi66.91 (6)O7—Mo2—Mo2ii47.91 (4)
O3iv—Ce1—O4v129.24 (6)O5—Mo2—Mo2ii136.76 (4)
O12—Ce1—O4v80.26 (6)O10—Mo2—Mo2ii90.58 (5)
O1v—Ce1—O4v64.64 (7)Mo4v—Mo2—Mo2ii120.433 (6)
O8—Ce1—O4v68.88 (6)Mo1—Mo2—Mo2ii59.117 (5)
O10vi—Ce1—O4v134.92 (5)Mo5xiv—Mo2—Mo2ii59.809 (5)
O3iv—Ce1—O2v79.48 (6)Mo3—Mo2—Mo2ii89.470 (5)
O12—Ce1—O2v78.39 (7)O3xi—Mo2—Li80.52 (5)
O1v—Ce1—O2v59.97 (7)O2—Mo2—Li122.93 (5)
O8—Ce1—O2v123.24 (5)O7—Mo2—Li36.66 (8)
O10vi—Ce1—O2v161.79 (5)O5—Mo2—Li150.49 (5)
O4v—Ce1—O2v59.85 (5)O10—Mo2—Li51.92 (4)
O3iv—Ce1—O11140.28 (7)Mo4v—Mo2—Li102.456 (8)
O12—Ce1—O1162.84 (7)Mo1—Mo2—Li119.677 (7)
O1v—Ce1—O11139.21 (6)Mo5xiv—Mo2—Li72.991 (7)
O8—Ce1—O1162.94 (5)Mo3—Mo2—Li135.603 (8)
O10vi—Ce1—O1162.26 (6)Mo2ii—Mo2—Li62.870 (4)
O4v—Ce1—O1190.07 (6)O3xi—Mo2—Ce2v43.12 (5)
O2v—Ce1—O11134.84 (6)O2—Mo2—Ce2v59.43 (5)
O3iv—Ce1—O7vii63.38 (5)O7—Mo2—Ce2v115.69 (5)
O12—Ce1—O7vii69.19 (7)O5—Mo2—Ce2v55.05 (4)
O1v—Ce1—O7vii131.52 (6)O10—Mo2—Ce2v117.60 (5)
O8—Ce1—O7vii136.39 (7)Mo4v—Mo2—Ce2v89.410 (7)
O10vi—Ce1—O7vii71.23 (7)Mo1—Mo2—Ce2v99.782 (8)
O4v—Ce1—O7vii146.86 (6)Mo5xiv—Mo2—Ce2v149.571 (7)
O2v—Ce1—O7vii100.38 (6)Mo3—Mo2—Ce2v98.774 (7)
O11—Ce1—O7vii87.29 (5)Mo2ii—Mo2—Ce2v148.794 (4)
O3iv—Ce1—Mo1v92.59 (5)Li—Mo2—Ce2v123.174 (6)
O12—Ce1—Mo1v98.83 (5)O8—Mo3—O586.67 (6)
O1v—Ce1—Mo1v36.42 (6)O8—Mo3—O1185.73 (6)
O8—Ce1—Mo1v88.19 (4)O5—Mo3—O11167.88 (8)
O10vi—Ce1—Mo1v146.49 (4)O8—Mo3—O489.16 (7)
O4v—Ce1—Mo1v36.73 (4)O5—Mo3—O484.24 (7)
O2v—Ce1—Mo1v35.48 (3)O11—Mo3—O486.22 (9)
O11—Ce1—Mo1v126.78 (5)O8—Mo3—Mo1137.36 (5)
O7vii—Ce1—Mo1v135.15 (5)O5—Mo3—Mo188.70 (5)
O3iv—Ce1—Mo4xv96.09 (5)O11—Mo3—Mo190.50 (6)
O12—Ce1—Mo4xv128.25 (6)O4—Mo3—Mo148.20 (5)
O1v—Ce1—Mo4xv88.36 (6)O8—Mo3—Mo3ii134.44 (5)
O8—Ce1—Mo4xv34.03 (4)O5—Mo3—Mo3ii138.70 (4)
O10vi—Ce1—Mo4xv34.97 (4)O11—Mo3—Mo3ii48.91 (4)
O4v—Ce1—Mo4xv102.68 (4)O4—Mo3—Mo3ii91.45 (5)
O2v—Ce1—Mo4xv147.69 (3)Mo1—Mo3—Mo3ii59.590 (5)
O11—Ce1—Mo4xv65.48 (4)O8—Mo3—Mo4v91.12 (5)
O7vii—Ce1—Mo4xv106.14 (6)O5—Mo3—Mo4v48.88 (5)
Mo1v—Ce1—Mo4xv114.039 (6)O11—Mo3—Mo4v140.67 (7)
O3iv—Ce1—Mo2vii31.40 (4)O4—Mo3—Mo4v132.99 (5)
O12—Ce1—Mo2vii92.04 (5)Mo1—Mo3—Mo4v116.662 (9)
O1v—Ce1—Mo2vii96.68 (5)Mo3ii—Mo3—Mo4v119.873 (6)
O8—Ce1—Mo2vii145.48 (4)O8—Mo3—Mo588.64 (5)
O10vi—Ce1—Mo2vii84.91 (3)O5—Mo3—Mo5140.47 (5)
O4v—Ce1—Mo2vii139.49 (4)O11—Mo3—Mo548.74 (7)
O2v—Ce1—Mo2vii79.64 (3)O4—Mo3—Mo5134.94 (5)
O11—Ce1—Mo2vii121.66 (4)Mo1—Mo3—Mo5119.660 (8)
O7vii—Ce1—Mo2vii34.91 (3)Mo3ii—Mo3—Mo560.081 (5)
Mo1v—Ce1—Mo2vii107.584 (6)Mo4v—Mo3—Mo592.056 (9)
Mo4xv—Ce1—Mo2vii112.839 (6)O8—Mo3—Mo2135.01 (5)
O12—Ce2—O3ii133.58 (5)O5—Mo3—Mo248.73 (4)
O12—Ce2—O3133.58 (5)O11—Mo3—Mo2139.20 (4)
O3ii—Ce2—O379.20 (9)O4—Mo3—Mo291.42 (4)
O12—Ce2—O1vii149.28 (9)Mo1—Mo3—Mo259.398 (8)
O3ii—Ce2—O1vii65.37 (6)Mo3ii—Mo3—Mo290.530 (5)
O3—Ce2—O1vii65.37 (6)Mo4v—Mo3—Mo257.266 (7)
O12—Ce2—O2viii93.73 (7)Mo5—Mo3—Mo2120.425 (10)
O3ii—Ce2—O2viii126.07 (5)O8—Mo3—Mo4xv46.92 (5)
O3—Ce2—O2viii84.21 (6)O5—Mo3—Mo4xv90.84 (5)
O1vii—Ce2—O2viii61.04 (6)O11—Mo3—Mo4xv90.85 (6)
O12—Ce2—O2vii93.73 (7)O4—Mo3—Mo4xv136.07 (5)
O3ii—Ce2—O2vii84.21 (6)Mo1—Mo3—Mo4xv175.622 (10)
O3—Ce2—O2vii126.07 (5)Mo3ii—Mo3—Mo4xv118.702 (5)
O1vii—Ce2—O2vii61.04 (6)Mo4v—Mo3—Mo4xv60.145 (7)
O2viii—Ce2—O2vii65.50 (7)Mo5—Mo3—Mo4xv58.713 (6)
O12—Ce2—O5v72.64 (6)Mo2—Mo3—Mo4xv117.351 (9)
O3ii—Ce2—O5v66.93 (5)O8—Mo3—Mo5xiv133.82 (5)
O3—Ce2—O5v104.01 (6)O5—Mo3—Mo5xiv94.57 (5)
O1vii—Ce2—O5v132.27 (6)O11—Mo3—Mo5xiv97.51 (6)
O2viii—Ce2—O5v166.30 (5)O4—Mo3—Mo5xiv136.95 (5)
O2vii—Ce2—O5v115.69 (5)Mo1—Mo3—Mo5xiv88.790 (9)
O12—Ce2—O5ix72.64 (6)Mo3ii—Mo3—Mo5xiv61.803 (5)
O3ii—Ce2—O5ix104.01 (6)Mo4v—Mo3—Mo5xiv58.087 (6)
O3—Ce2—O5ix66.93 (5)Mo5—Mo3—Mo5xiv61.970 (9)
O1vii—Ce2—O5ix132.27 (6)Mo2—Mo3—Mo5xiv58.461 (7)
O2viii—Ce2—O5ix115.69 (5)Mo4xv—Mo3—Mo5xiv86.906 (8)
O2vii—Ce2—O5ix166.30 (5)O8—Mo3—Ce342.95 (5)
O5v—Ce2—O5ix59.64 (7)O5—Mo3—Ce355.13 (5)
O12—Ce2—O2ix77.39 (4)O11—Mo3—Ce3113.38 (5)
O3ii—Ce2—O2ix140.99 (6)O4—Mo3—Ce360.69 (5)
O3—Ce2—O2ix62.17 (6)Mo1—Mo3—Ce3102.416 (8)
O1vii—Ce2—O2ix100.42 (3)Mo3ii—Mo3—Ce3149.964 (5)
O2viii—Ce2—O2ix58.34 (6)Mo4v—Mo3—Ce389.212 (7)
O2vii—Ce2—O2ix122.06 (3)Mo5—Mo3—Ce3131.587 (7)
O5v—Ce2—O2ix115.54 (5)Mo2—Mo3—Ce3100.481 (7)
O5ix—Ce2—O2ix57.35 (5)Mo4xv—Mo3—Ce380.844 (7)
O12—Ce2—O2v77.39 (4)Mo5xiv—Mo3—Ce3146.743 (8)
O3ii—Ce2—O2v62.17 (6)O6—Mo4—O8xvi85.31 (9)
O3—Ce2—O2v140.99 (6)O6—Mo4—O5v89.00 (9)
O1vii—Ce2—O2v100.42 (3)O8xvi—Mo4—O5v173.10 (7)
O2viii—Ce2—O2v122.06 (3)O6—Mo4—O10v91.20 (7)
O2vii—Ce2—O2v58.34 (6)O8xvi—Mo4—O10v82.35 (7)
O5v—Ce2—O2v57.35 (5)O5v—Mo4—O10v101.70 (7)
O5ix—Ce2—O2v115.54 (5)O6—Mo4—O979.29 (5)
O2ix—Ce2—O2v154.73 (7)O8xvi—Mo4—O987.84 (5)
O12—Ce2—Mo1vii111.35 (6)O5v—Mo4—O987.27 (4)
O3ii—Ce2—Mo1vii94.00 (4)O10v—Mo4—O9166.89 (5)
O3—Ce2—Mo1vii94.00 (4)O6—Mo4—Mo2v96.21 (6)
O1vii—Ce2—Mo1vii37.93 (6)O8xvi—Mo4—Mo2v133.42 (5)
O2viii—Ce2—Mo1vii36.42 (4)O5v—Mo4—Mo2v51.11 (4)
O2vii—Ce2—Mo1vii36.42 (4)O10v—Mo4—Mo2v51.11 (5)
O5v—Ce2—Mo1vii150.15 (3)O9—Mo4—Mo2v138.338 (10)
O5ix—Ce2—Mo1vii150.15 (3)O6—Mo4—Mo5xvii140.45 (5)
O2ix—Ce2—Mo1vii93.84 (3)O8xvi—Mo4—Mo5xvii87.85 (5)
O2v—Ce2—Mo1vii93.84 (3)O5v—Mo4—Mo5xvii99.03 (5)
O12—Ce2—Mo2v98.05 (3)O10v—Mo4—Mo5xvii49.26 (5)
O3ii—Ce2—Mo2v35.57 (4)O9—Mo4—Mo5xvii139.345 (9)
O3—Ce2—Mo2v106.07 (5)Mo2v—Mo4—Mo5xvii61.952 (8)
O1vii—Ce2—Mo2v97.73 (3)O6—Mo4—Mo3v137.41 (8)
O2viii—Ce2—Mo2v150.68 (4)O8xvi—Mo4—Mo3v136.74 (4)
O2vii—Ce2—Mo2v86.93 (4)O5v—Mo4—Mo3v48.54 (5)
O5v—Ce2—Mo2v37.81 (3)O10v—Mo4—Mo3v99.64 (5)
O5ix—Ce2—Mo2v93.48 (4)O9—Mo4—Mo3v93.467 (8)
O2ix—Ce2—Mo2v150.67 (3)Mo2v—Mo4—Mo3v62.060 (7)
O2v—Ce2—Mo2v37.12 (4)Mo5xvii—Mo4—Mo3v63.801 (8)
Mo1vii—Ce2—Mo2v114.434 (4)O6—Mo4—Mo4xviii127.74 (5)
O12v—Ce3—O8132.16 (5)O8xvi—Mo4—Mo4xviii88.58 (4)
O12v—Ce3—O8x132.16 (5)O5v—Mo4—Mo4xviii91.83 (4)
O8—Ce3—O8x80.35 (8)O10v—Mo4—Mo4xviii139.18 (4)
O12v—Ce3—O4v108.37 (7)O9—Mo4—Mo4xviii48.606 (5)
O8—Ce3—O4v72.90 (6)Mo2v—Mo4—Mo4xviii123.722 (10)
O8x—Ce3—O4v115.46 (5)Mo5xvii—Mo4—Mo4xviii90.884 (6)
O12v—Ce3—O4xi108.37 (7)Mo3v—Mo4—Mo4xviii61.730 (7)
O8—Ce3—O4xi115.46 (5)O6—Mo4—Mo3xvi130.47 (8)
O8x—Ce3—O4xi72.90 (6)O8xvi—Mo4—Mo3xvi45.63 (4)
O4v—Ce3—O4xi68.25 (8)O5v—Mo4—Mo3xvi139.29 (4)
O12v—Ce3—O5x72.46 (7)O10v—Mo4—Mo3xvi88.72 (5)
O8—Ce3—O5x103.13 (6)O9—Mo4—Mo3xvi90.635 (7)
O8x—Ce3—O5x65.41 (5)Mo2v—Mo4—Mo3xvi120.793 (9)
O4v—Ce3—O5x175.45 (6)Mo5xvii—Mo4—Mo3xvi58.843 (8)
O4xi—Ce3—O5x115.94 (5)Mo3v—Mo4—Mo3xvi91.111 (9)
O12v—Ce3—O572.47 (7)Mo4xviii—Mo4—Mo3xvi58.125 (7)
O8—Ce3—O565.41 (5)O6—Mo4—Mo4ii38.07 (5)
O8x—Ce3—O5103.13 (6)O8xvi—Mo4—Mo4ii88.38 (5)
O4v—Ce3—O5115.94 (5)O5v—Mo4—Mo4ii84.74 (5)
O4xi—Ce3—O5175.45 (6)O10v—Mo4—Mo4ii129.14 (5)
O5x—Ce3—O559.82 (7)O9—Mo4—Mo4ii41.395 (5)
O12v—Ce3—O4x74.97 (3)Mo2v—Mo4—Mo4ii120.433 (6)
O8—Ce3—O4x143.69 (6)Mo5xvii—Mo4—Mo4ii176.099 (7)
O8x—Ce3—O4x63.90 (5)Mo3v—Mo4—Mo4ii119.873 (6)
O4v—Ce3—O4x127.22 (4)Mo4xviii—Mo4—Mo4ii90.0
O4xi—Ce3—O4x61.42 (6)Mo3xvi—Mo4—Mo4ii118.702 (5)
O5x—Ce3—O4x57.32 (5)O6—Mo4—Ce1xvi75.70 (7)
O5—Ce3—O4x115.02 (5)O8xvi—Mo4—Ce1xvi40.64 (4)
O12v—Ce3—O474.97 (3)O5v—Mo4—Ce1xvi141.03 (4)
O8—Ce3—O463.90 (5)O10v—Mo4—Ce1xvi44.48 (5)
O8x—Ce3—O4143.69 (6)O9—Mo4—Ce1xvi123.412 (8)
O4v—Ce3—O461.42 (6)Mo2v—Mo4—Ce1xvi94.531 (7)
O4xi—Ce3—O4127.22 (3)Mo5xvii—Mo4—Ce1xvi73.927 (8)
O5x—Ce3—O4115.02 (5)Mo3v—Mo4—Ce1xvi137.453 (8)
O5—Ce3—O457.32 (5)Mo4xviii—Mo4—Ce1xvi125.945 (10)
O4x—Ce3—O4149.80 (6)Mo3xvi—Mo4—Ce1xvi70.101 (6)
O12v—Ce3—O11v59.67 (8)Mo4ii—Mo4—Ce1xvi102.511 (4)
O8—Ce3—O11v130.85 (5)O11—Mo5—O10xiv85.23 (7)
O8x—Ce3—O11v130.85 (5)O11—Mo5—O10vi85.23 (7)
O4v—Ce3—O11v59.89 (5)O10xiv—Mo5—O10vi84.89 (9)
O4xi—Ce3—O11v59.89 (5)O11—Mo5—Mo4xix93.800 (8)
O5x—Ce3—O11v123.33 (5)O10xiv—Mo5—Mo4xix48.96 (4)
O5—Ce3—O11v123.33 (5)O10vi—Mo5—Mo4xix133.64 (5)
O4x—Ce3—O11v81.27 (4)O11—Mo5—Mo4xv93.800 (8)
O4—Ce3—O11v81.27 (4)O10xiv—Mo5—Mo4xv133.64 (5)
O12v—Ce3—O1v157.12 (8)O10vi—Mo5—Mo4xv48.96 (4)
O8—Ce3—O1v61.54 (5)Mo4xix—Mo5—Mo4xv172.199 (15)
O8x—Ce3—O1v61.54 (5)O11—Mo5—Mo348.79 (4)
O4v—Ce3—O1v53.99 (5)O10xiv—Mo5—Mo3134.00 (5)
O4xi—Ce3—O1v53.99 (5)O10vi—Mo5—Mo391.23 (5)
O5x—Ce3—O1v126.41 (5)Mo4xix—Mo5—Mo3122.183 (10)
O5—Ce3—O1v126.41 (5)Mo4xv—Mo5—Mo362.444 (6)
O4x—Ce3—O1v103.27 (3)O11—Mo5—Mo3ii48.79 (4)
O4—Ce3—O1v103.27 (3)O10xiv—Mo5—Mo3ii91.23 (5)
O11v—Ce3—O1v97.45 (6)O10vi—Mo5—Mo3ii134.00 (5)
O12v—Ce3—Mo396.37 (3)Mo4xix—Mo5—Mo3ii62.444 (6)
O8—Ce3—Mo335.79 (4)Mo4xv—Mo5—Mo3ii122.183 (10)
O8x—Ce3—Mo3107.81 (4)Mo3—Mo5—Mo3ii59.838 (9)
O4v—Ce3—Mo381.55 (4)O11—Mo5—Mo2xiv133.96 (4)
O4xi—Ce3—Mo3145.52 (4)O10xiv—Mo5—Mo2xiv48.76 (5)
O5x—Ce3—Mo393.92 (4)O10vi—Mo5—Mo2xiv91.12 (5)
O5—Ce3—Mo337.35 (3)Mo4xix—Mo5—Mo2xiv57.330 (6)
O4x—Ce3—Mo3151.21 (4)Mo4xv—Mo5—Mo2xiv117.621 (10)
O4—Ce3—Mo337.32 (4)Mo3—Mo5—Mo2xiv176.566 (12)
O11v—Ce3—Mo3118.510 (8)Mo3ii—Mo5—Mo2xiv119.773 (6)
O1v—Ce3—Mo395.02 (2)O11—Mo5—Mo2vi133.96 (4)
O12v—Ce3—Mo3x96.37 (3)O10xiv—Mo5—Mo2vi91.12 (5)
O8—Ce3—Mo3x107.81 (4)O10vi—Mo5—Mo2vi48.76 (5)
O8x—Ce3—Mo3x35.79 (4)Mo4xix—Mo5—Mo2vi117.621 (10)
O4v—Ce3—Mo3x145.52 (4)Mo4xv—Mo5—Mo2vi57.330 (6)
O4xi—Ce3—Mo3x81.55 (4)Mo3—Mo5—Mo2vi119.773 (6)
O5x—Ce3—Mo3x37.35 (3)Mo3ii—Mo5—Mo2vi176.566 (12)
O5—Ce3—Mo3x93.92 (4)Mo2xiv—Mo5—Mo2vi60.381 (9)
O4x—Ce3—Mo3x37.32 (4)O11—Mo5—Mo3xiv138.63 (4)
O4—Ce3—Mo3x151.21 (4)O10xiv—Mo5—Mo3xiv94.72 (5)
O11v—Ce3—Mo3x118.510 (8)O10vi—Mo5—Mo3xiv136.07 (5)
O1v—Ce3—Mo3x95.02 (2)Mo4xix—Mo5—Mo3xiv58.113 (6)
Mo3—Ce3—Mo3x119.929 (9)Mo4xv—Mo5—Mo3xiv114.493 (10)
O12v—Ce3—Mo1v122.20 (7)Mo3—Mo5—Mo3xiv118.030 (9)
O8—Ce3—Mo1v87.20 (4)Mo3ii—Mo5—Mo3xiv89.919 (9)
O8x—Ce3—Mo1v87.20 (4)Mo2xiv—Mo5—Mo3xiv58.622 (7)
O4v—Ce3—Mo1v35.35 (4)Mo2vi—Mo5—Mo3xiv87.395 (10)
O4xi—Ce3—Mo1v35.35 (4)O11—Mo5—Mo3vi138.63 (4)
O5x—Ce3—Mo1v148.03 (3)O10xiv—Mo5—Mo3vi136.07 (5)
O5—Ce3—Mo1v148.03 (3)O10vi—Mo5—Mo3vi94.72 (5)
O4x—Ce3—Mo1v96.76 (3)Mo4xix—Mo5—Mo3vi114.493 (10)
O4—Ce3—Mo1v96.76 (3)Mo4xv—Mo5—Mo3vi58.113 (6)
O11v—Ce3—Mo1v62.53 (4)Mo3—Mo5—Mo3vi89.919 (9)
O1v—Ce3—Mo1v34.92 (5)Mo3ii—Mo5—Mo3vi118.030 (9)
Mo3—Ce3—Mo1v110.725 (4)Mo2xiv—Mo5—Mo3vi87.395 (10)
Mo3x—Ce3—Mo1v110.725 (4)Mo2vi—Mo5—Mo3vi58.622 (7)
O12v—Ce3—O9xxv113.66 (7)Mo3xiv—Mo5—Mo3vi56.395 (9)
O8—Ce3—O9xxv52.86 (4)O11—Mo5—Mo5xiv97.23 (6)
O8x—Ce3—O9xxv52.86 (4)O10xiv—Mo5—Mo5xiv137.55 (4)
O4v—Ce3—O9xxv125.08 (4)O10vi—Mo5—Mo5xiv137.55 (4)
O4xi—Ce3—O9xxv125.08 (4)Mo4xix—Mo5—Mo5xiv88.648 (6)
O5x—Ce3—O9xxv51.42 (4)Mo4xv—Mo5—Mo5xiv88.648 (6)
O5—Ce3—O9xxv51.42 (4)Mo3—Mo5—Mo5xiv61.593 (9)
O4x—Ce3—O9xxv97.25 (4)Mo3ii—Mo5—Mo5xiv61.593 (9)
O4—Ce3—O9xxv97.25 (4)Mo2xiv—Mo5—Mo5xiv115.053 (13)
O11v—Ce3—O9xxv173.33 (4)Mo2vi—Mo5—Mo5xiv115.053 (13)
O1v—Ce3—O9xxv89.22 (5)Mo3xiv—Mo5—Mo5xiv56.437 (9)
Mo3—Ce3—O9xxv60.555 (5)Mo3vi—Mo5—Mo5xiv56.437 (9)
Mo3x—Ce3—O9xxv60.555 (5)Mo1—O1—Ce1v99.29 (6)
Mo1v—Ce3—O9xxv124.139 (7)Mo1—O1—Ce1ix99.29 (6)
O12v—Ce3—Ce1xi36.60 (3)Ce1v—O1—Ce1ix157.89 (13)
O8—Ce3—Ce1xi168.71 (4)Mo1—O1—Ce2xx90.06 (9)
O8x—Ce3—Ce1xi108.76 (4)Ce1v—O1—Ce2xx95.93 (6)
O4v—Ce3—Ce1xi107.70 (4)Ce1ix—O1—Ce2xx95.93 (6)
O4xi—Ce3—Ce1xi74.40 (4)Mo1—O1—Ce3v76.55 (7)
O5x—Ce3—Ce1xi75.73 (4)Ce1v—O1—Ce3v86.38 (6)
O5—Ce3—Ce1xi105.23 (3)Ce1ix—O1—Ce3v86.38 (6)
O4x—Ce3—Ce1xi44.87 (3)Ce2xx—O1—Ce3v166.61 (11)
O4—Ce3—Ce1xi106.11 (3)Mo1—O2—Mo284.01 (7)
O11v—Ce3—Ce1xi47.87 (3)Mo1—O2—Ce2xx91.22 (7)
O1v—Ce3—Ce1xi128.32 (4)Mo2—O2—Ce2xx131.36 (8)
Mo3—Ce3—Ce1xi132.947 (5)Mo1—O2—Ce1v86.94 (6)
Mo3x—Ce3—Ce1xi78.291 (4)Mo2—O2—Ce1v142.24 (7)
Mo1v—Ce3—Ce1xi99.649 (6)Ce2xx—O2—Ce1v85.31 (6)
O9xxv—Ce3—Ce1xi127.147 (5)Mo1—O2—Ce2v144.38 (7)
O6xii—Ce4—O6180.0Mo2—O2—Ce2v83.45 (6)
O6xii—Ce4—O3101.93 (7)Ce2xx—O2—Ce2v121.66 (6)
O6—Ce4—O378.07 (7)Ce1v—O2—Ce2v82.93 (5)
O6xii—Ce4—O3xii78.07 (7)Mo2ix—O3—Ce1xxi111.27 (8)
O6—Ce4—O3xii101.93 (7)Mo2ix—O3—Ce2101.31 (7)
O3—Ce4—O3xii180.00 (6)Ce1xxi—O3—Ce2103.98 (7)
O6xii—Ce4—O3ii101.93 (7)Mo2ix—O3—Ce4127.21 (8)
O6—Ce4—O3ii78.07 (7)Ce1xxi—O3—Ce4108.51 (6)
O3—Ce4—O3ii77.58 (9)Ce2—O3—Ce4101.22 (6)
O3xii—Ce4—O3ii102.42 (9)Mo1—O4—Mo381.91 (7)
O6xii—Ce4—O3xiii78.07 (7)Mo1—O4—Ce3v98.59 (7)
O6—Ce4—O3xiii101.93 (7)Mo3—O4—Ce3v116.62 (7)
O3—Ce4—O3xiii102.42 (9)Mo1—O4—Ce1v90.24 (6)
O3xii—Ce4—O3xiii77.58 (9)Mo3—O4—Ce1v144.66 (8)
O3ii—Ce4—O3xiii180.00 (6)Ce3v—O4—Ce1v98.58 (6)
O6xii—Ce4—Ce2109.59 (7)Mo1—O4—Ce3142.82 (8)
O6—Ce4—Ce270.41 (7)Mo3—O4—Ce381.99 (6)
O3—Ce4—Ce238.98 (4)Ce3v—O4—Ce3118.58 (6)
O3xii—Ce4—Ce2141.02 (4)Ce1v—O4—Ce383.95 (5)
O3ii—Ce4—Ce238.98 (4)Mo3—O5—Mo4v82.58 (6)
O3xiii—Ce4—Ce2141.02 (4)Mo3—O5—Mo283.46 (6)
O6xii—Ce4—Ce2xii70.41 (7)Mo4v—O5—Mo278.42 (6)
O6—Ce4—Ce2xii109.59 (7)Mo3—O5—Ce387.52 (6)
O3—Ce4—Ce2xii141.02 (4)Mo4v—O5—Ce3125.09 (7)
O3xii—Ce4—Ce2xii38.98 (4)Mo2—O5—Ce3153.48 (9)
O3ii—Ce4—Ce2xii141.02 (4)Mo3—O5—Ce2v150.69 (9)
O3xiii—Ce4—Ce2xii38.98 (4)Mo4v—O5—Ce2v122.56 (7)
Ce2—Ce4—Ce2xii180.000 (1)Mo2—O5—Ce2v87.13 (5)
O6xii—Ce4—Ce1xvi113.22 (5)Ce3—O5—Ce2v88.70 (5)
O6—Ce4—Ce1xvi66.78 (5)Mo4—O6—Mo4ii103.86 (10)
O3—Ce4—Ce1xvi144.81 (4)Mo4—O6—Ce4127.46 (5)
O3xii—Ce4—Ce1xvi35.19 (4)Mo4ii—O6—Ce4127.46 (5)
O3ii—Ce4—Ce1xvi93.18 (4)Li—O7—Mo2ii101.54 (10)
O3xiii—Ce4—Ce1xvi86.82 (4)Li—O7—Mo2101.54 (10)
Ce2—Ce4—Ce1xvi121.134 (3)Mo2ii—O7—Mo284.19 (8)
Ce2xii—Ce4—Ce1xvi58.866 (3)Li—O7—Ce1xx97.91 (7)
O6xii—Ce4—Ce1xxi66.78 (5)Mo2ii—O7—Ce1xx160.55 (13)
O6—Ce4—Ce1xxi113.22 (5)Mo2—O7—Ce1xx92.16 (3)
O3—Ce4—Ce1xxi35.19 (4)Li—O7—Ce1xxii97.91 (7)
O3xii—Ce4—Ce1xxi144.81 (4)Mo2ii—O7—Ce1xxii92.16 (3)
O3ii—Ce4—Ce1xxi86.82 (4)Mo2—O7—Ce1xxii160.55 (13)
O3xiii—Ce4—Ce1xxi93.18 (4)Ce1xx—O7—Ce1xxii84.94 (6)
Ce2—Ce4—Ce1xxi58.866 (3)Mo3—O8—Mo4xv87.45 (7)
Ce2xii—Ce4—Ce1xxi121.134 (3)Mo3—O8—Ce3101.26 (6)
Ce1xvi—Ce4—Ce1xxi180.000 (3)Mo4xv—O8—Ce3132.81 (8)
O6xii—Ce4—Ce1xxiv113.22 (5)Mo3—O8—Ce1113.93 (8)
O6—Ce4—Ce1xxiv66.78 (5)Mo4xv—O8—Ce1105.34 (6)
O3—Ce4—Ce1xxiv93.18 (4)Ce3—O8—Ce1112.60 (7)
O3xii—Ce4—Ce1xxiv86.82 (4)Mo4ii—O9—Mo4xviii180.000 (11)
O3ii—Ce4—Ce1xxiv144.81 (4)Mo4ii—O9—Mo497.211 (10)
O3xiii—Ce4—Ce1xxiv35.19 (4)Mo4xviii—O9—Mo482.789 (10)
Ce2—Ce4—Ce1xxiv121.134 (3)Mo4ii—O9—Mo4xxiii82.789 (10)
Ce2xii—Ce4—Ce1xxiv58.866 (3)Mo4xviii—O9—Mo4xxiii97.211 (10)
Ce1xvi—Ce4—Ce1xxiv74.878 (4)Mo4—O9—Mo4xxiii180.000 (11)
Ce1xxi—Ce4—Ce1xxiv105.122 (4)Mo4ii—O9—Ce3v94.201 (6)
O6xii—Ce4—Ce1xxvi66.78 (5)Mo4xviii—O9—Ce3v85.799 (6)
O6—Ce4—Ce1xxvi113.22 (5)Mo4—O9—Ce3v94.201 (6)
O3—Ce4—Ce1xxvi86.82 (4)Mo4xxiii—O9—Ce3v85.799 (6)
O3xii—Ce4—Ce1xxvi93.18 (4)Mo4ii—O9—Ce3xxiv85.799 (6)
O3ii—Ce4—Ce1xxvi35.19 (4)Mo4xviii—O9—Ce3xxiv94.201 (6)
O3xiii—Ce4—Ce1xxvi144.81 (4)Mo4—O9—Ce3xxiv85.799 (6)
Ce2—Ce4—Ce1xxvi58.866 (3)Mo4xxiii—O9—Ce3xxiv94.201 (6)
Ce2xii—Ce4—Ce1xxvi121.134 (3)Ce3v—O9—Ce3xxiv180.000 (5)
Ce1xvi—Ce4—Ce1xxvi105.122 (4)Mo4v—O10—Mo5xiv81.78 (6)
Ce1xxi—Ce4—Ce1xxvi74.878 (4)Mo4v—O10—Mo278.26 (6)
Ce1xxiv—Ce4—Ce1xxvi180.000 (3)Mo5xiv—O10—Mo282.62 (6)
O2—Mo1—O2ii92.35 (10)Mo4v—O10—Li162.57 (9)
O2—Mo1—O4ii167.83 (8)Mo5xiv—O10—Li100.44 (7)
O2ii—Mo1—O4ii88.28 (7)Mo2—O10—Li84.86 (6)
O2—Mo1—O488.28 (7)Mo4v—O10—Ce1vi100.54 (7)
O2ii—Mo1—O4167.83 (8)Mo5xiv—O10—Ce1vi111.85 (7)
O4ii—Mo1—O488.58 (10)Mo2—O10—Ce1vi165.29 (8)
O2—Mo1—O183.18 (7)Li—O10—Ce1vi94.68 (6)
O2ii—Mo1—O183.18 (7)Mo5—O11—Mo382.47 (8)
O4ii—Mo1—O184.83 (7)Mo5—O11—Mo3ii82.47 (8)
O4—Mo1—O184.83 (7)Mo3—O11—Mo3ii82.19 (8)
O2—Mo1—Mo3ii142.09 (6)Mo5—O11—Ce1ii100.65 (7)
O2ii—Mo1—Mo3ii93.36 (5)Mo3—O11—Ce1ii176.28 (11)
O4ii—Mo1—Mo3ii49.89 (5)Mo3ii—O11—Ce1ii96.162 (13)
O4—Mo1—Mo3ii93.59 (5)Mo5—O11—Ce1100.65 (7)
O1—Mo1—Mo3ii134.71 (5)Mo3—O11—Ce196.162 (13)
O2—Mo1—Mo393.36 (5)Mo3ii—O11—Ce1176.28 (11)
O2ii—Mo1—Mo3142.09 (6)Ce1ii—O11—Ce185.28 (6)
O4ii—Mo1—Mo393.59 (5)Mo5—O11—Ce3v179.63 (10)
O4—Mo1—Mo349.89 (5)Mo3—O11—Ce3v97.25 (8)
O1—Mo1—Mo3134.71 (5)Mo3ii—O11—Ce3v97.25 (8)
Mo3ii—Mo1—Mo360.821 (10)Ce1ii—O11—Ce3v79.62 (6)
O2—Mo1—Mo2ii95.29 (6)Ce1—O11—Ce3v79.62 (6)
O2ii—Mo1—Mo2ii49.58 (6)Ce2—O12—Ce3v113.01 (11)
O4ii—Mo1—Mo2ii94.36 (5)Ce2—O12—Ce1ii109.67 (6)
O4—Mo1—Mo2ii142.46 (6)Ce3v—O12—Ce1ii107.36 (6)
O1—Mo1—Mo2ii132.72 (5)Ce2—O12—Ce1109.67 (6)
Mo3ii—Mo1—Mo2ii61.651 (7)Ce3v—O12—Ce1107.36 (6)
Mo3—Mo1—Mo2ii92.568 (10)Ce1ii—O12—Ce1109.69 (11)
O2—Mo1—Mo249.58 (6)
Symmetry codes: (i) x1, y1, z+2; (ii) x, y1, z; (iii) x1, y, z+2; (iv) x1/2, y+1/2, z; (v) x1/2, y1/2, z+1; (vi) x1, y, z+1; (vii) x, y, z1; (viii) x, y1, z1; (ix) x1/2, y1/2, z+1; (x) x, y, z; (xi) x1/2, y+1/2, z+1; (xii) x, y1, z; (xiii) x, y, z; (xiv) x1, y1, z+1; (xv) x1/2, y1/2, z; (xvi) x+1/2, y1/2, z; (xvii) x+1/2, y+1/2, z; (xviii) x, y, z+1; (xix) x1/2, y1/2, z; (xx) x, y, z+1; (xxi) x1/2, y1/2, z; (xxii) x, y1, z+1; (xxiii) x, y1, z+1; (xxiv) x+1/2, y1/2, z; (xxv) x1/2, y+1/2, z; (xxvi) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaLiCe9Mo16O35
Mr3363.06
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)18.3000 (2), 8.6326 (1), 9.8172 (1)
β (°) 102.0953 (7)
V3)1516.46 (3)
Z2
Radiation typeMo Kα
µ (mm1)19.66
Crystal size (mm)0.15 × 0.12 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(PLATON; Spek, 2009)
Tmin, Tmax0.190, 0.418
No. of measured, independent and
observed [I > 2σ(I)] reflections
21270, 3511, 3383
Rint0.027
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.033, 1.29
No. of reflections3511
No. of parameters158
Δρmax, Δρmin (e Å3)1.13, 1.33

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Bergerhoff, 1996).

Selected bond lengths (Å) top
Li—O71.861 (3)Mo1—O21.9759 (16)
Li—O102.4135 (16)Mo1—O2v1.9759 (16)
Ce1—O3i2.3603 (16)Mo1—O4v2.0332 (17)
Ce1—O122.3916 (16)Mo1—O42.0332 (17)
Ce1—O1ii2.4055 (5)Mo1—O12.045 (3)
Ce1—O82.4159 (16)Mo1—Mo32.7003 (3)
Ce1—O10iii2.5499 (19)Mo1—Mo22.7129 (3)
Ce1—O4ii2.7161 (18)Mo2—O3ix2.0277 (16)
Ce1—O2ii2.874 (2)Mo2—O22.077 (2)
Ce1—O112.8865 (16)Mo2—O72.0773 (16)
Ce1—O7iv2.8959 (17)Mo2—O52.0985 (16)
Ce2—O122.337 (3)Mo2—O102.0997 (19)
Ce2—O3v2.3829 (19)Mo2—Mo4ii2.6412 (3)
Ce2—O32.3829 (19)Mo2—Mo5xii2.7691 (3)
Ce2—O1iv2.622 (2)Mo2—Mo32.7739 (2)
Ce2—O2vi2.6352 (17)Mo2—Mo2v2.7851 (4)
Ce2—O2iv2.6352 (17)Mo3—O82.0315 (16)
Ce2—O5ii2.8054 (16)Mo3—O52.0688 (16)
Ce2—O5vii2.8054 (16)Mo3—O112.0795 (16)
Ce2—O2vii2.9625 (17)Mo3—O42.0860 (19)
Ce2—O2ii2.9625 (17)Mo3—Mo3v2.7338 (4)
Ce3—O82.3670 (17)Mo3—Mo4ii2.7375 (3)
Ce3—O8viii2.3670 (17)Mo3—Mo52.7405 (3)
Ce3—O4ii2.5309 (18)Mo3—Mo4xiii2.8391 (3)
Ce3—O4ix2.5309 (18)Mo3—Mo5xii2.8928 (3)
Ce3—O5viii2.7980 (17)Mo4—O62.0145 (14)
Ce3—O52.7980 (17)Mo4—O8xiv2.0758 (19)
Ce3—O4viii3.0001 (17)Mo4—O5ii2.0797 (19)
Ce3—O43.0001 (17)Mo4—O10ii2.0857 (16)
Ce3—O11ii3.089 (3)Mo4—O92.1141 (2)
Ce4—O6x2.280 (2)Mo4—Mo4xv2.7958 (3)
Ce4—O62.280 (2)Mo5—O112.078 (3)
Ce4—O32.4244 (19)Mo5—O10xii2.0950 (16)
Ce4—O3x2.4244 (19)Mo5—O10iii2.0950 (16)
Ce4—O3v2.4244 (19)Mo5—Mo5xii2.9030 (5)
Ce4—O3xi2.4244 (19)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z+1; (iii) x1, y, z+1; (iv) x, y, z1; (v) x, y1, z; (vi) x, y1, z1; (vii) x1/2, y1/2, z+1; (viii) x, y, z; (ix) x1/2, y+1/2, z+1; (x) x, y1, z; (xi) x, y, z; (xii) x1, y1, z+1; (xiii) x1/2, y1/2, z; (xiv) x+1/2, y1/2, z; (xv) x, y, z+1.
 

Acknowledgements

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the `Centre de diffractométrie de l'Université de Rennes I'.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957–1959.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDronskowski, R. & Simon, A. (1989). Angew. Chem. Int. Ed. Engl. 28, 758–760.  CrossRef Web of Science Google Scholar
First citationDronskowski, R., Simon, A. & Mertin, W. (1991). Z. Anorg. Allg. Chem. 602, 49–63.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGall, P., Gautier, R., Halet, J.-F. & Gougeon, P. (1999). Inorg. Chem. 38, 4455–4461.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGall, P. & Gougeon, P. (1993). Acta Cryst. C49, 659–663.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGall, P. & Gougeon, P. (1994a). Acta Cryst. C50, 7–9.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGall, P. & Gougeon, P. (1994b). Acta Cryst. C50, 1183–1185.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGall, P. & Gougeon, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 1–2.  CrossRef CAS Google Scholar
First citationGall, P., Gougeon, P., Greenblatt, M., Jones, E. B., Mc Carroll, W. H. & Ramanujachary, K. V. (1995). Croat. Chem. Acta, 68, 849–860.  CAS Google Scholar
First citationGall, P., Noel, H. & Gougeon, P. (1993). Mater. Res. Bull. 28, 1225–1231.  CrossRef CAS Web of Science Google Scholar
First citationGougeon, P. & Gall, P. (2002). Acta Cryst. E58, i65–i67.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGougeon, P., Gall, P., Cuny, J., Gautier, R., Le Polles, L., Delevoye, L. & Trebosc, J. (2011). Chem. Eur. J. 17, 13806–13813.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGougeon, P., Gall, P., Halet, J.-F. & Gautier, R. (2003). Acta Cryst. B59, 472–478.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGougeon, P., Gall, P. & McCarroll, W. H. (2007). Acta Cryst. E63, i119–i121.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGougeon, P., Gall, P. & Sergent, M. (1991). Acta Cryst. C47, 421–423.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGougeon, P., Potel, M. & Sergent, M. (1990). Acta Cryst. C46, 1188–1190.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHibble, S. J., Cheetham, A. K., Bogle, A. R. L., Wakerley, H. R. & Cox, D. E. (1988). J. Am. Chem. Soc. 110, 3295–3296.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSchäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833–845.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages i21-i22
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds