organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triclinic polymorph of bis­­(tri­phenyl­sil­yl) oxide toluene disolvate

aNaval Research Laboratory, Chemistry Division, Code 6100, 4555 Overlook Avenue SW, Washington, DC 20375, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cGeorge Washington University, Chemistry Department, Washington, DC, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

(Received 23 November 2011; accepted 26 January 2012; online 4 February 2012)

A new polymorph of the title compound, C36H30OSi2·2C7H8, is reported, which is triclinic (P-1) instead of possessing the previously reported rhombohedral symmetry [Hönle et al. (1990). Acta Cryst. C46, 1982–1984]. Each of the –SiPh3 units are related by the inversion center. The Si—O—Si moiety is linear with the O atom sitting on an inversion center, and the O—Si—(toluene ring centroid) angle is 3.69 (15)°. Each toluene mol­ecule is 5.622 (2) Å from the Si atom and has its closest contacts with the phenyl rings outside of the van der Waals radii.

Related literature

For the rhombohedral polymorph of the title compound and its benzene analog, see: Hönle et al. (1990[Hönle, W., Manríquez, V. & von Schnering, H. G. (1990). Acta Cryst. C46, 1982-1984.]). For the structures of related compounds, see: Glidewell & Liles (1978[Glidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 124-128.]); Morosin & Harrah (1981[Morosin, B. & Harrah, L. A. (1981). Acta Cryst. B37, 579-586.]); Suwińska et al. (1986[Suwińska, K., Palenik, G. J. & Gerdil, R. (1986). Acta Cryst. C42, 615-620.]). For the determination by IR spectroscopy of silylcarbonate in the reaction product, see: Yildirimyan & Gattow (1984[Yildirimyan, H. & Gattow, G. (1984). Z. Anorg. Allg. Chem. 519, 204-212.]).

[Scheme 1]

Experimental

Crystal data
  • C36H30OSi2·2C7H8

  • Mr = 719.05

  • Triclinic, [P \overline 1]

  • a = 10.756 (3) Å

  • b = 11.062 (3) Å

  • c = 11.156 (3) Å

  • α = 62.638 (4)°

  • β = 61.356 (4)°

  • γ = 61.795 (4)°

  • V = 978.8 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 123 K

  • 0.33 × 0.25 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.605, Tmax = 0.746

  • 16663 measured reflections

  • 4819 independent reflections

  • 3344 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.259

  • S = 1.06

  • 4819 reflections

  • 242 parameters

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3 (near atom Si1)

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Si1—O1 1.6251 (9)
Si1—C7 1.863 (4)
Si1—C1 1.865 (4)
Si1—C13 1.867 (4)
O1—Si1—C7 107.86 (11)
O1—Si1—C1 108.74 (12)
C7—Si1—C1 110.50 (16)
O1—Si1—C13 108.28 (11)
C7—Si1—C13 111.99 (16)
C1—Si1—C13 109.38 (16)
Si1—O1—Si1i 180
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A rhombohedral polymorph of the title compound and its benzene analog have been reported by Hönle et al. (1990). The triclinic unsolvated molecule was reported by Glidewell & Liles (1978) and repeated by Morosin & Harrah (1981), who also determined the entire series of Ge and Sn analogs. A benzene and a piperidine adduct of (Ph3Si)2O were also determined by Suwińska et al. (1986).

The core geometry (Table 1) of the title compound is almost identical to the previously reported rhombohedral polymorph. The main difference is the rhombohedral form was collected at room temperature, and has rotational disorder in the toluene. Our structure was collected at -150°C, and the toluene is not disordered. This difference could account for the lower symmetry of our structure. In our structure, the centroid of the toluene is slightly offset (3.69 (15)° versus 0°) from the linear Si—O—Si axis, and slightly closer (5.622 (5) versus 5.672 (2) Å) than it is in the rhombohedral form.

Related literature top

For the rhombohedral polymorph of the title compound and its benzene analog, see: Hönle et al. (1990). For the structures of related compounds, see: Glidewell & Liles (1978); Morosin & Harrah (1981); Suwińska et al. (1986). For the determination by IR spectroscopy of silylcarbonate in the reaction product, see: Yildirimyan & Gattow (1984).

Experimental top

All chemicals were handled inside a dry box under Ar or N2. A Ph3SiOK solution was prepared by dissolving KH (0.28 g) with Ph3SiOH (2.0 g) in 30 g of dry ether, and filtering to remove the small amount of undissolved solids. The solution was put in a 1" diameter test tube which was inserted into a Newport Scientific 2" OD pressure vessel and pressurized with CO2 at tank pressure. After 1 day, the pressure was released and the resulting voluminous white solid (presumably Ph3SiOCO2K) was isolated by filtration and washing with ether, and pumped dry under vacuum. An infrared spectrum of the white solid shows a broad peak at 1660 cm-1 and is consistent (Yildirimyan & Gattow, 1984) with the presence of silylcarbonate. Attempts were made to crystallize the silylcarbonate from numerous solvents. In one attempt, a portion of the white solid was mixed in a vial with toluene and 18-crown-6. Over several weeks small crystals formed on the walls of the vial. One crystal was mounted in Cargill #2 oil and frozen in the diffractometer.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 and 0.98 Å Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for CH3]. During data collection it was found that the previous crystal (a completely unrelated material) was still present on the MiTiGen mount. However since its cell constants were different from those of the current compound, there was very little overlap of the reflections. The unit cell for the title compound was determined using the twinning routine cell_now and integration proceeded smoothly.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structural diagram of the title compound. Atomic displacement parameters are at the 30% probability level. Unlabelled atoms are related to the labelled atoms by the symmetry operation 1-x, 1-y, 1-z.
triphenyl[(triphenylsilyl)oxy]silane toluene disolvate top
Crystal data top
C36H30OSi2·2C7H8Z = 1
Mr = 719.05F(000) = 382
Triclinic, P1Dx = 1.220 Mg m3
a = 10.756 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.062 (3) ÅCell parameters from 8183 reflections
c = 11.156 (3) Åθ = 2.3–28.3°
α = 62.638 (4)°µ = 0.13 mm1
β = 61.356 (4)°T = 123 K
γ = 61.795 (4)°Prism, colorless
V = 978.8 (4) Å30.33 × 0.25 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4819 independent reflections
Radiation source: fine-focus sealed tube3344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.605, Tmax = 0.746k = 1414
16663 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.259H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1084P)2 + 2.5305P]
where P = (Fo2 + 2Fc2)/3
4819 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C36H30OSi2·2C7H8γ = 61.795 (4)°
Mr = 719.05V = 978.8 (4) Å3
Triclinic, P1Z = 1
a = 10.756 (3) ÅMo Kα radiation
b = 11.062 (3) ŵ = 0.13 mm1
c = 11.156 (3) ÅT = 123 K
α = 62.638 (4)°0.33 × 0.25 × 0.12 mm
β = 61.356 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3344 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.746Rint = 0.057
16663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.259H-atom parameters constrained
S = 1.06Δρmax = 1.38 e Å3
4819 reflectionsΔρmin = 0.52 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.43554 (11)0.43924 (10)0.44133 (11)0.0247 (3)
O10.50000.50000.50000.0275 (8)
C10.5919 (4)0.3631 (4)0.2956 (4)0.0269 (7)
C20.5652 (4)0.3559 (4)0.1875 (4)0.0294 (8)
H20.46540.39010.18880.035*
C30.6820 (5)0.2998 (4)0.0797 (4)0.0316 (8)
H30.66190.29600.00760.038*
C40.8287 (5)0.2491 (4)0.0760 (4)0.0323 (8)
H40.90850.21100.00140.039*
C50.8585 (5)0.2541 (4)0.1816 (4)0.0332 (8)
H50.95870.21870.17990.040*
C60.7411 (4)0.3110 (4)0.2898 (4)0.0294 (8)
H60.76230.31480.36130.035*
C70.3593 (4)0.2968 (4)0.5940 (4)0.0262 (7)
C80.3663 (4)0.1750 (4)0.5763 (4)0.0285 (7)
H80.40730.16640.48270.034*
C90.3140 (4)0.0672 (4)0.6935 (4)0.0325 (8)
H90.32010.01400.67920.039*
C100.2535 (4)0.0779 (4)0.8303 (4)0.0309 (8)
H100.21920.00360.91010.037*
C110.2428 (4)0.1985 (4)0.8507 (4)0.0319 (8)
H110.19960.20740.94430.038*
C120.2958 (4)0.3052 (4)0.7335 (4)0.0301 (8)
H120.28870.38640.74870.036*
C130.2885 (4)0.5928 (4)0.3676 (4)0.0266 (7)
C140.1678 (4)0.5759 (4)0.3677 (4)0.0302 (8)
H140.15610.48360.41050.036*
C150.0640 (4)0.6927 (4)0.3057 (4)0.0325 (8)
H150.01710.67930.30600.039*
C160.0790 (4)0.8284 (4)0.2436 (4)0.0316 (8)
H160.00740.90810.20280.038*
C170.1988 (5)0.8474 (4)0.2413 (4)0.0330 (8)
H170.21030.93990.19740.040*
C180.3021 (4)0.7311 (4)0.3031 (4)0.0296 (8)
H180.38330.74530.30170.035*
C190.2596 (7)0.3594 (5)0.0656 (6)0.0559 (14)
H190.27250.43530.02170.067*
C200.1304 (7)0.3834 (6)0.1816 (6)0.0571 (14)
H200.05500.47500.17350.068*
C210.1120 (6)0.2751 (5)0.3072 (5)0.0450 (11)
H210.02390.29220.38690.054*
C220.2219 (5)0.1381 (5)0.3207 (5)0.0378 (9)
C230.3501 (5)0.1166 (5)0.2024 (5)0.0437 (10)
H230.42550.02490.20910.052*
C240.3695 (6)0.2270 (6)0.0751 (6)0.0528 (13)
H240.45780.21160.00500.063*
C250.2010 (6)0.0204 (5)0.4542 (5)0.0469 (11)
H25A0.13300.06000.53450.070*
H25B0.29790.04030.46820.070*
H25C0.15820.03750.44920.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0311 (5)0.0208 (4)0.0317 (5)0.0106 (4)0.0141 (4)0.0089 (4)
O10.0334 (19)0.0253 (17)0.036 (2)0.0116 (14)0.0158 (17)0.0114 (14)
C10.0346 (18)0.0219 (15)0.0316 (19)0.0113 (13)0.0137 (16)0.0087 (13)
C20.0345 (19)0.0269 (17)0.035 (2)0.0122 (14)0.0147 (17)0.0102 (14)
C30.042 (2)0.0286 (17)0.035 (2)0.0145 (15)0.0152 (18)0.0118 (15)
C40.039 (2)0.0276 (17)0.033 (2)0.0119 (15)0.0097 (17)0.0131 (15)
C50.0340 (19)0.0305 (18)0.041 (2)0.0106 (15)0.0154 (18)0.0121 (16)
C60.0358 (19)0.0255 (16)0.035 (2)0.0111 (14)0.0159 (17)0.0100 (14)
C70.0297 (17)0.0244 (16)0.0332 (19)0.0098 (13)0.0155 (16)0.0089 (13)
C80.0347 (19)0.0236 (16)0.035 (2)0.0106 (14)0.0147 (17)0.0106 (14)
C90.037 (2)0.0214 (16)0.045 (2)0.0112 (14)0.0167 (19)0.0103 (15)
C100.0355 (19)0.0235 (16)0.038 (2)0.0135 (14)0.0174 (18)0.0033 (14)
C110.037 (2)0.0336 (19)0.031 (2)0.0172 (16)0.0101 (17)0.0103 (15)
C120.0354 (19)0.0262 (17)0.037 (2)0.0128 (14)0.0130 (17)0.0124 (14)
C130.0323 (18)0.0230 (16)0.0314 (19)0.0098 (13)0.0130 (16)0.0102 (13)
C140.0360 (19)0.0242 (16)0.038 (2)0.0115 (14)0.0164 (17)0.0091 (14)
C150.036 (2)0.0335 (19)0.039 (2)0.0138 (16)0.0182 (18)0.0100 (16)
C160.0348 (19)0.0298 (18)0.035 (2)0.0072 (15)0.0169 (17)0.0115 (15)
C170.043 (2)0.0244 (17)0.039 (2)0.0115 (15)0.0210 (19)0.0079 (15)
C180.0347 (19)0.0245 (16)0.039 (2)0.0123 (14)0.0170 (17)0.0089 (14)
C190.099 (4)0.046 (3)0.052 (3)0.044 (3)0.036 (3)0.005 (2)
C200.086 (4)0.043 (3)0.061 (3)0.023 (3)0.037 (3)0.015 (2)
C210.050 (3)0.045 (2)0.055 (3)0.011 (2)0.022 (2)0.026 (2)
C220.049 (2)0.043 (2)0.039 (2)0.0232 (19)0.016 (2)0.0157 (17)
C230.040 (2)0.052 (3)0.054 (3)0.0162 (19)0.018 (2)0.024 (2)
C240.060 (3)0.072 (3)0.050 (3)0.044 (3)0.009 (3)0.022 (2)
C250.059 (3)0.044 (2)0.044 (3)0.017 (2)0.020 (2)0.016 (2)
Geometric parameters (Å, º) top
Si1—O11.6251 (9)C13—C141.396 (5)
Si1—C71.863 (4)C13—C181.407 (5)
Si1—C11.865 (4)C14—C151.396 (5)
Si1—C131.867 (4)C14—H140.9500
O1—Si1i1.6251 (9)C15—C161.387 (5)
C1—C61.404 (5)C15—H150.9500
C1—C21.409 (5)C16—C171.387 (5)
C2—C31.382 (5)C16—H160.9500
C2—H20.9500C17—C181.390 (5)
C3—C41.388 (6)C17—H170.9500
C3—H30.9500C18—H180.9500
C4—C51.391 (5)C19—C241.376 (8)
C4—H40.9500C19—C201.385 (8)
C5—C61.391 (5)C19—H190.9500
C5—H50.9500C20—C211.361 (7)
C6—H60.9500C20—H200.9500
C7—C121.397 (5)C21—C221.409 (6)
C7—C81.413 (4)C21—H210.9500
C8—C91.394 (5)C22—C231.391 (6)
C8—H80.9500C22—C251.462 (6)
C9—C101.381 (6)C23—C241.384 (7)
C9—H90.9500C23—H230.9500
C10—C111.398 (5)C24—H240.9500
C10—H100.9500C25—H25A0.9800
C11—C121.390 (5)C25—H25B0.9800
C11—H110.9500C25—H25C0.9800
C12—H120.9500
O1—Si1—C7107.86 (11)C14—C13—C18117.9 (3)
O1—Si1—C1108.74 (12)C14—C13—Si1122.9 (3)
C7—Si1—C1110.50 (16)C18—C13—Si1119.2 (3)
O1—Si1—C13108.28 (11)C15—C14—C13121.0 (3)
C7—Si1—C13111.99 (16)C15—C14—H14119.5
C1—Si1—C13109.38 (16)C13—C14—H14119.5
Si1—O1—Si1i180C16—C15—C14120.2 (3)
C6—C1—C2117.6 (3)C16—C15—H15119.9
C6—C1—Si1120.9 (3)C14—C15—H15119.9
C2—C1—Si1121.5 (3)C15—C16—C17119.8 (3)
C3—C2—C1121.0 (3)C15—C16—H16120.1
C3—C2—H2119.5C17—C16—H16120.1
C1—C2—H2119.5C16—C17—C18120.0 (3)
C2—C3—C4120.5 (3)C16—C17—H17120.0
C2—C3—H3119.8C18—C17—H17120.0
C4—C3—H3119.8C17—C18—C13121.2 (3)
C3—C4—C5119.9 (4)C17—C18—H18119.4
C3—C4—H4120.1C13—C18—H18119.4
C5—C4—H4120.1C24—C19—C20121.0 (5)
C4—C5—C6119.7 (4)C24—C19—H19119.5
C4—C5—H5120.1C20—C19—H19119.5
C6—C5—H5120.1C21—C20—C19119.7 (5)
C5—C6—C1121.3 (3)C21—C20—H20120.2
C5—C6—H6119.3C19—C20—H20120.2
C1—C6—H6119.3C20—C21—C22121.0 (5)
C12—C7—C8117.0 (3)C20—C21—H21119.5
C12—C7—Si1120.3 (2)C22—C21—H21119.5
C8—C7—Si1122.6 (3)C23—C22—C21118.2 (4)
C9—C8—C7121.2 (3)C23—C22—C25120.6 (4)
C9—C8—H8119.4C21—C22—C25121.2 (4)
C7—C8—H8119.4C24—C23—C22120.9 (5)
C10—C9—C8120.3 (3)C24—C23—H23119.6
C10—C9—H9119.8C22—C23—H23119.6
C8—C9—H9119.8C19—C24—C23119.3 (5)
C9—C10—C11119.7 (3)C19—C24—H24120.3
C9—C10—H10120.2C23—C24—H24120.3
C11—C10—H10120.2C22—C25—H25A109.5
C12—C11—C10119.7 (4)C22—C25—H25B109.5
C12—C11—H11120.1H25A—C25—H25B109.5
C10—C11—H11120.1C22—C25—H25C109.5
C11—C12—C7122.0 (3)H25A—C25—H25C109.5
C11—C12—H12119.0H25B—C25—H25C109.5
C7—C12—H12119.0
O1—Si1—C1—C625.8 (3)C10—C11—C12—C70.5 (6)
C7—Si1—C1—C692.4 (3)C8—C7—C12—C110.6 (5)
C13—Si1—C1—C6143.9 (3)Si1—C7—C12—C11177.6 (3)
O1—Si1—C1—C2154.1 (3)O1—Si1—C13—C14150.6 (3)
C7—Si1—C1—C287.7 (3)C7—Si1—C13—C1431.8 (4)
C13—Si1—C1—C236.0 (3)C1—Si1—C13—C1491.1 (3)
C6—C1—C2—C30.2 (5)O1—Si1—C13—C1832.4 (3)
Si1—C1—C2—C3179.7 (3)C7—Si1—C13—C18151.2 (3)
C1—C2—C3—C40.1 (5)C1—Si1—C13—C1886.0 (3)
C2—C3—C4—C50.2 (6)C18—C13—C14—C150.1 (6)
C3—C4—C5—C60.5 (6)Si1—C13—C14—C15177.1 (3)
C4—C5—C6—C10.5 (6)C13—C14—C15—C160.4 (6)
C2—C1—C6—C50.1 (5)C14—C15—C16—C171.0 (6)
Si1—C1—C6—C5180.0 (3)C15—C16—C17—C181.1 (6)
O1—Si1—C7—C1231.8 (3)C16—C17—C18—C130.6 (6)
C1—Si1—C7—C12150.6 (3)C14—C13—C18—C170.0 (6)
C13—Si1—C7—C1287.2 (3)Si1—C13—C18—C17177.2 (3)
O1—Si1—C7—C8146.2 (3)C24—C19—C20—C210.5 (7)
C1—Si1—C7—C827.5 (3)C19—C20—C21—C220.7 (7)
C13—Si1—C7—C894.7 (3)C20—C21—C22—C230.4 (6)
C12—C7—C8—C91.0 (5)C20—C21—C22—C25178.5 (4)
Si1—C7—C8—C9177.2 (3)C21—C22—C23—C240.2 (6)
C7—C8—C9—C100.2 (6)C25—C22—C23—C24179.0 (4)
C8—C9—C10—C110.9 (6)C20—C19—C24—C230.1 (7)
C9—C10—C11—C121.2 (6)C22—C23—C24—C190.4 (6)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC36H30OSi2·2C7H8
Mr719.05
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)10.756 (3), 11.062 (3), 11.156 (3)
α, β, γ (°)62.638 (4), 61.356 (4), 61.795 (4)
V3)978.8 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.33 × 0.25 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.605, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16663, 4819, 3344
Rint0.057
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.259, 1.06
No. of reflections4819
No. of parameters242
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.38, 0.52

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Si1—O11.6251 (9)Si1—C11.865 (4)
Si1—C71.863 (4)Si1—C131.867 (4)
O1—Si1—C7107.86 (11)C7—Si1—C13111.99 (16)
O1—Si1—C1108.74 (12)C1—Si1—C13109.38 (16)
C7—Si1—C1110.50 (16)Si1—O1—Si1i180
O1—Si1—C13108.28 (11)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

SEAP student at NRL.

Acknowledgements

We thank the Office of Naval Research for financial support.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 124–128.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHönle, W., Manríquez, V. & von Schnering, H. G. (1990). Acta Cryst. C46, 1982–1984.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMorosin, B. & Harrah, L. A. (1981). Acta Cryst. B37, 579–586.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwińska, K., Palenik, G. J. & Gerdil, R. (1986). Acta Cryst. C42, 615–620.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationYildirimyan, H. & Gattow, G. (1984). Z. Anorg. Allg. Chem. 519, 204–212.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds