organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzyl-4-ethyl­morpholin-1-ium hexa­fluoro­phosphate

aDepartment of Enviromental and Chemistry Engineering, Tianjin Polytechnic University, State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin 300160, People's Republic of China
*Correspondence e-mail: chemhong@126.com

(Received 19 December 2011; accepted 9 January 2012; online 24 February 2012)

The asymmetric unit of the title compound, C13H20NO+·PF6, contains two cations, one complete anion and two half hexa­fluoro­phosphate anions having crystallographically imposed twofold rotation symmetry. In the cations, the morpholine rings are in a chair conformation. In the crystal, ions are linked by weak C—H⋯F hydrogen bonds into a three-dimensional network.

Related literature

For background to the properties and applications of quaternary ammonium-based compounds as room temperature ionic liquids (RTILs), see: Abedin et al. (2004[Abedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510-514.], 2005[Abedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333-2339.]); Kim et al. (2006[Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315-1317.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20NO+·PF6

  • Mr = 351.27

  • Orthorhombic, F d d 2

  • a = 26.054 (3) Å

  • b = 28.528 (3) Å

  • c = 16.2950 (15) Å

  • V = 12111 (2) Å3

  • Z = 32

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.948, Tmax = 0.957

  • 39690 measured reflections

  • 8072 independent reflections

  • 7799 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.078

  • S = 1.11

  • 8072 reflections

  • 402 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3877 Friedel pairs

  • Flack parameter: −0.06 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F4 0.99 2.41 3.211 (2) 138
C3—H3B⋯F2i 0.99 2.47 3.389 (2) 155
C5—H5B⋯F11ii 0.99 2.48 3.365 (2) 150
C10—H10⋯F10iii 0.95 2.50 3.288 (2) 141
C17—H17A⋯F8iv 0.99 2.37 3.329 (2) 162
C17—H17B⋯F1 0.99 2.46 3.357 (2) 150
C25—H25B⋯F1 0.99 2.53 3.388 (2) 145
Symmetry codes: (i) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (iii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan.]).

Supporting information


Comment top

The seemingly ever growing interest on room temperature ionic liquids (RTILs) has turned the spotlight, along with many others, to quaternary ammonium-based compounds. The excellent conductivity, broad electrochemical window, thermal stability, and low volatility of ILs have made them promising media for electrochemical processes (Abedin et al., 2004; Abedin et al., 2005). RTILs based on the morpholinium cation are favored because of their low cost, easy synthesis, and electrochemical stability (Kim et al., 2006). We report here a new example structure of this class of compounds.

The asymmetric unit of the title compound (Fig. 1) consists of two cations, one PF6- anion and two half of PF6- anion having crystallographically imposed twofold rotation symmetry. In the cations, the morpholine rings adopt a chair conformation, with puckering parameters Q, θ and ϕ (Cremer & Pople, 1975) of 0.5757 (17) Å, 4.07 (14)°, 169 (2)° and 0.5607 (15) Å, 4.15 (14)°, 177 (3)° for N1/C1/C2/O1/C3/C4 and N2/C14/C15/O2/C16/C17, respectively. All bond distances and angles in the cation are normal within experimental error (Allen et al., 1987). In the crystal packing, cations and anions are involved in weak C—H···F hydrogen bonds (Table 1) linking ions into a three-dimensional network (Fig. 2).

Related literature top

For background to the properties and applications of quaternary ammonium-based compounds as room temperature ionic liquids (RTILs), see: Abedin et al. (2004, 2005); Kim et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975) For bond-length data, see: Allen et al. (1987).

Experimental top

N-Benzyl-N-ethylmorpholinium hexafluorophosphate was synthesized by dissolving the N-benzyl-N-ethylmorpholinium chloride (12.1 g, 0.05 mol) in a minimum volume of deionized water and adding the stoichiomeric amount (1:1) of 60% HPF6 solution. The mixture was stirred for about 5 min at 0°C causing the precipitation of a quaternary ammonium hexafluorophosphate from the solution. The raw product was filtered and washed with water until the solution was neutral. The product was recrystallized from the methanol/ethyl acetate solvent (1:1 v/v) and dried in vacuo.

Refinement top

All H atoms were positioned geometrically and included in the refinement in the riding model approximation, with C–H = 0.95–0.99 Å and Uiso (H) = 1.2 Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing displacement ellipsoids drawn at the 30% probability level. Symmetry code: (A) -x, -y, z.
[Figure 2] Fig. 2. Crystal packing of the title compound. Interionic hydrogen bonds are shown as dashed lines.
4-Benzyl-4-ethylmorpholin-1-ium hexafluorophosphate top
Crystal data top
C13H20NO+·PF6F(000) = 5824
Mr = 351.27Dx = 1.541 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71070 Å
Hall symbol: F 2 -2dCell parameters from 11300 reflections
a = 26.054 (3) Åθ = 2.1–29.1°
b = 28.528 (3) ŵ = 0.25 mm1
c = 16.2950 (15) ÅT = 113 K
V = 12111 (2) Å3Block, colourless
Z = 320.22 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn
diffractometer
8072 independent reflections
Radiation source: rotating anode7799 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
Detector resolution: 14.63 pixels mm-1θmax = 29.1°, θmin = 2.1°
ω and ϕ scansh = 3535
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 3838
Tmin = 0.948, Tmax = 0.957l = 2222
39690 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0336P)2 + 3.6844P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.31 e Å3
8072 reflectionsΔρmin = 0.24 e Å3
402 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00044 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3877 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (5)
Crystal data top
C13H20NO+·PF6V = 12111 (2) Å3
Mr = 351.27Z = 32
Orthorhombic, Fdd2Mo Kα radiation
a = 26.054 (3) ŵ = 0.25 mm1
b = 28.528 (3) ÅT = 113 K
c = 16.2950 (15) Å0.22 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn
diffractometer
8072 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
7799 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.957Rint = 0.042
39690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.31 e Å3
S = 1.11Δρmin = 0.24 e Å3
8072 reflectionsAbsolute structure: Flack (1983), 3877 Friedel pairs
402 parametersAbsolute structure parameter: 0.06 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.243907 (17)0.017672 (16)0.61924 (3)0.02020 (9)
P20.00000.00000.43883 (4)0.02273 (14)
P30.00000.00000.04698 (4)0.02275 (14)
F10.30299 (4)0.02779 (4)0.64111 (7)0.0343 (3)
F20.23883 (5)0.01213 (5)0.70168 (8)0.0478 (4)
F30.22767 (5)0.06362 (5)0.66893 (8)0.0449 (3)
F40.24903 (4)0.04840 (4)0.53785 (8)0.0396 (3)
F50.26089 (5)0.02761 (4)0.56973 (9)0.0432 (3)
F60.18516 (4)0.00756 (4)0.59767 (7)0.0275 (2)
F70.00000.00000.34159 (10)0.0413 (4)
F80.06135 (4)0.00085 (4)0.43940 (9)0.0401 (3)
F90.00157 (5)0.05575 (4)0.43761 (11)0.0507 (4)
F100.00000.00000.53569 (11)0.0735 (8)
F110.01702 (5)0.05392 (4)0.04710 (8)0.0372 (3)
F120.04163 (6)0.01103 (5)0.02151 (9)0.0525 (4)
F130.04128 (6)0.01141 (5)0.11579 (9)0.0555 (4)
N10.35571 (5)0.11940 (5)0.37982 (8)0.0178 (3)
N20.35425 (5)0.08706 (5)0.82302 (8)0.0171 (3)
O10.36473 (5)0.17498 (5)0.52911 (8)0.0294 (3)
O20.41528 (5)0.12098 (4)0.68472 (8)0.0272 (3)
C10.31222 (6)0.12724 (6)0.43997 (11)0.0220 (3)
H1A0.28930.09960.43950.026*
H1B0.29190.15480.42230.026*
C20.33174 (7)0.13527 (7)0.52658 (11)0.0266 (4)
H2A0.30230.14030.56400.032*
H2B0.35060.10720.54550.032*
C30.40842 (7)0.16670 (7)0.47901 (11)0.0281 (4)
H3A0.42670.13850.49890.034*
H3B0.43220.19370.48310.034*
C40.39294 (6)0.15971 (6)0.39020 (11)0.0211 (3)
H4A0.37690.18880.36940.025*
H4B0.42400.15360.35690.025*
C50.33253 (6)0.12094 (6)0.29343 (10)0.0197 (3)
H5A0.30720.09520.28830.024*
H5B0.31380.15090.28680.024*
C60.37087 (6)0.11662 (6)0.22510 (10)0.0189 (3)
C70.39250 (7)0.15721 (6)0.19202 (11)0.0229 (3)
H70.38390.18700.21430.027*
C80.42658 (7)0.15427 (6)0.12656 (11)0.0254 (4)
H80.44080.18200.10380.030*
C90.43974 (7)0.11101 (7)0.09459 (11)0.0262 (4)
H90.46360.10900.05070.031*
C100.41805 (7)0.07058 (6)0.12674 (11)0.0265 (4)
H100.42690.04090.10460.032*
C110.38354 (7)0.07350 (6)0.19097 (11)0.0223 (3)
H110.36830.04570.21200.027*
C120.38380 (7)0.07356 (6)0.39370 (11)0.0231 (4)
H12A0.40180.07520.44710.028*
H12B0.41020.07000.35050.028*
C130.34997 (8)0.03033 (6)0.39328 (13)0.0326 (4)
H13A0.32930.02960.44350.049*
H13B0.37150.00220.39070.049*
H13C0.32720.03120.34540.049*
C140.33713 (7)0.12568 (6)0.76530 (10)0.0206 (3)
H14A0.31620.11180.72080.025*
H14B0.31520.14800.79580.025*
C150.38179 (7)0.15194 (6)0.72795 (11)0.0242 (4)
H15A0.36860.17610.68970.029*
H15B0.40120.16800.77190.029*
C160.43546 (7)0.08706 (6)0.73984 (11)0.0248 (4)
H16A0.45490.10320.78380.030*
H16B0.45960.06640.71000.030*
C170.39362 (6)0.05763 (6)0.77790 (11)0.0198 (3)
H17A0.40920.03510.81670.024*
H17B0.37620.03950.73430.024*
C180.37772 (6)0.10664 (6)0.90207 (10)0.0182 (3)
H18A0.39090.08020.93530.022*
H18B0.40730.12670.88750.022*
C190.34089 (6)0.13489 (6)0.95395 (10)0.0187 (3)
C200.31333 (6)0.11352 (6)1.01675 (10)0.0196 (3)
H200.31660.08071.02550.024*
C210.28113 (7)0.13974 (6)1.06672 (10)0.0223 (3)
H210.26260.12491.10960.027*
C220.27592 (7)0.18765 (6)1.05420 (11)0.0246 (4)
H220.25360.20561.08800.030*
C230.30346 (7)0.20911 (6)0.99205 (12)0.0272 (4)
H230.30000.24190.98320.033*
C240.33603 (7)0.18308 (6)0.94274 (11)0.0229 (3)
H240.35520.19820.90090.028*
C250.30729 (6)0.05742 (6)0.84234 (11)0.0207 (3)
H25A0.28310.07660.87500.025*
H25B0.29000.04940.79010.025*
C260.31801 (7)0.01251 (6)0.88864 (11)0.0250 (4)
H26A0.33970.00800.85510.038*
H26B0.28550.00340.90060.038*
H26C0.33570.01980.94020.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0186 (2)0.0212 (2)0.0208 (2)0.00042 (16)0.00207 (16)0.00038 (16)
P20.0198 (3)0.0267 (3)0.0217 (3)0.0065 (2)0.0000.000
P30.0247 (3)0.0216 (3)0.0219 (3)0.0064 (2)0.0000.000
F10.0223 (6)0.0433 (7)0.0375 (6)0.0046 (5)0.0076 (5)0.0078 (5)
F20.0369 (7)0.0659 (9)0.0406 (8)0.0026 (6)0.0068 (6)0.0292 (7)
F30.0397 (7)0.0450 (7)0.0500 (8)0.0113 (6)0.0102 (6)0.0243 (6)
F40.0343 (7)0.0502 (8)0.0343 (6)0.0143 (5)0.0025 (5)0.0163 (6)
F50.0315 (7)0.0360 (7)0.0622 (9)0.0067 (5)0.0092 (6)0.0241 (6)
F60.0186 (5)0.0324 (6)0.0316 (6)0.0028 (4)0.0041 (4)0.0049 (5)
F70.0446 (11)0.0559 (12)0.0235 (8)0.0184 (8)0.0000.000
F80.0218 (6)0.0471 (7)0.0514 (8)0.0068 (5)0.0020 (6)0.0154 (6)
F90.0415 (8)0.0288 (6)0.0818 (10)0.0086 (6)0.0038 (7)0.0173 (7)
F100.0552 (13)0.144 (2)0.0211 (9)0.0621 (14)0.0000.000
F110.0377 (7)0.0230 (6)0.0508 (7)0.0025 (5)0.0003 (6)0.0017 (5)
F120.0502 (9)0.0517 (8)0.0555 (9)0.0037 (6)0.0270 (7)0.0160 (7)
F130.0732 (10)0.0366 (7)0.0566 (9)0.0148 (7)0.0391 (8)0.0050 (6)
N10.0151 (7)0.0175 (6)0.0206 (7)0.0008 (5)0.0011 (5)0.0029 (5)
N20.0155 (7)0.0187 (6)0.0170 (6)0.0003 (5)0.0012 (5)0.0007 (5)
O10.0327 (7)0.0309 (7)0.0245 (6)0.0063 (6)0.0037 (5)0.0049 (5)
O20.0326 (7)0.0279 (6)0.0211 (6)0.0026 (5)0.0076 (5)0.0003 (5)
C10.0187 (8)0.0264 (9)0.0209 (8)0.0005 (7)0.0049 (7)0.0020 (7)
C20.0266 (9)0.0325 (10)0.0206 (8)0.0047 (7)0.0011 (7)0.0040 (7)
C30.0274 (10)0.0311 (10)0.0259 (9)0.0083 (8)0.0015 (7)0.0039 (7)
C40.0200 (9)0.0191 (8)0.0242 (8)0.0039 (6)0.0023 (6)0.0005 (6)
C50.0178 (8)0.0205 (8)0.0208 (8)0.0020 (6)0.0018 (6)0.0030 (6)
C60.0170 (8)0.0214 (8)0.0182 (8)0.0016 (6)0.0015 (6)0.0015 (6)
C70.0241 (9)0.0188 (8)0.0259 (8)0.0002 (7)0.0025 (7)0.0007 (7)
C80.0234 (9)0.0279 (9)0.0249 (8)0.0044 (7)0.0037 (7)0.0029 (7)
C90.0171 (8)0.0392 (10)0.0224 (8)0.0034 (7)0.0018 (7)0.0016 (8)
C100.0278 (9)0.0290 (9)0.0228 (9)0.0075 (7)0.0021 (7)0.0074 (7)
C110.0252 (9)0.0192 (8)0.0224 (8)0.0008 (6)0.0026 (7)0.0005 (7)
C120.0254 (9)0.0194 (8)0.0247 (8)0.0052 (7)0.0026 (7)0.0046 (7)
C130.0406 (12)0.0191 (9)0.0382 (11)0.0002 (8)0.0001 (9)0.0063 (8)
C140.0238 (9)0.0201 (8)0.0180 (7)0.0033 (7)0.0025 (6)0.0010 (6)
C150.0290 (10)0.0209 (8)0.0227 (8)0.0016 (7)0.0010 (7)0.0013 (7)
C160.0201 (9)0.0308 (9)0.0234 (8)0.0002 (7)0.0031 (7)0.0026 (7)
C170.0180 (8)0.0205 (8)0.0208 (8)0.0024 (6)0.0006 (6)0.0025 (6)
C180.0156 (8)0.0220 (8)0.0169 (7)0.0000 (6)0.0009 (6)0.0016 (6)
C190.0155 (8)0.0224 (8)0.0181 (7)0.0001 (6)0.0023 (6)0.0016 (6)
C200.0197 (8)0.0196 (8)0.0195 (7)0.0009 (6)0.0023 (6)0.0003 (6)
C210.0205 (9)0.0271 (9)0.0193 (8)0.0023 (7)0.0026 (6)0.0008 (7)
C220.0214 (9)0.0265 (9)0.0259 (9)0.0004 (7)0.0045 (7)0.0056 (7)
C230.0294 (10)0.0184 (8)0.0339 (9)0.0012 (7)0.0042 (8)0.0027 (7)
C240.0255 (9)0.0188 (8)0.0245 (8)0.0036 (7)0.0043 (7)0.0020 (7)
C250.0170 (8)0.0227 (8)0.0223 (8)0.0043 (6)0.0012 (6)0.0010 (6)
C260.0289 (10)0.0228 (8)0.0234 (9)0.0042 (7)0.0030 (7)0.0002 (7)
Geometric parameters (Å, º) top
P1—F51.5860 (12)C7—C81.391 (2)
P1—F41.5953 (12)C7—H70.9500
P1—F21.5953 (13)C8—C91.383 (2)
P1—F61.5966 (11)C8—H80.9500
P1—F31.5977 (12)C9—C101.387 (3)
P1—F11.6062 (12)C9—H90.9500
P2—F101.578 (2)C10—C111.382 (2)
P2—F71.5846 (18)C10—H100.9500
P2—F91.5910 (12)C11—H110.9500
P2—F9i1.5910 (12)C12—C131.516 (3)
P2—F81.5985 (11)C12—H12A0.9900
P2—F8i1.5985 (11)C12—H12B0.9900
P3—F131.5875 (13)C13—H13A0.9800
P3—F13i1.5875 (13)C13—H13B0.9800
P3—F12i1.5877 (14)C13—H13C0.9800
P3—F121.5877 (14)C14—C151.512 (2)
P3—F11i1.6009 (11)C14—H14A0.9900
P3—F111.6009 (11)C14—H14B0.9900
N1—C41.514 (2)C15—H15A0.9900
N1—C11.515 (2)C15—H15B0.9900
N1—C121.515 (2)C16—C171.509 (2)
N1—C51.532 (2)C16—H16A0.9900
N2—C141.516 (2)C16—H16B0.9900
N2—C171.516 (2)C17—H17A0.9900
N2—C251.520 (2)C17—H17B0.9900
N2—C181.531 (2)C18—C191.511 (2)
O1—C31.421 (2)C18—H18A0.9900
O1—C21.423 (2)C18—H18B0.9900
O2—C161.421 (2)C19—C201.391 (2)
O2—C151.427 (2)C19—C241.393 (2)
C1—C21.517 (2)C20—C211.388 (2)
C1—H1A0.9900C20—H200.9500
C1—H1B0.9900C21—C221.389 (2)
C2—H2A0.9900C21—H210.9500
C2—H2B0.9900C22—C231.384 (3)
C3—C41.515 (2)C22—H220.9500
C3—H3A0.9900C23—C241.384 (3)
C3—H3B0.9900C23—H230.9500
C4—H4A0.9900C24—H240.9500
C4—H4B0.9900C25—C261.513 (2)
C5—C61.501 (2)C25—H25A0.9900
C5—H5A0.9900C25—H25B0.9900
C5—H5B0.9900C26—H26A0.9800
C6—C111.390 (2)C26—H26B0.9800
C6—C71.396 (2)C26—H26C0.9800
F5—P1—F490.08 (8)C11—C6—C5121.85 (15)
F5—P1—F291.00 (8)C7—C6—C5119.14 (15)
F4—P1—F2178.87 (8)C8—C7—C6120.26 (16)
F5—P1—F690.47 (6)C8—C7—H7119.9
F4—P1—F689.80 (6)C6—C7—H7119.9
F2—P1—F690.54 (6)C9—C8—C7120.09 (16)
F5—P1—F3179.12 (8)C9—C8—H8120.0
F4—P1—F389.58 (8)C7—C8—H8120.0
F2—P1—F389.34 (8)C8—C9—C10119.92 (16)
F6—P1—F390.34 (6)C8—C9—H9120.0
F5—P1—F189.54 (6)C10—C9—H9120.0
F4—P1—F190.32 (7)C11—C10—C9120.04 (16)
F2—P1—F189.33 (7)C11—C10—H10120.0
F6—P1—F1179.88 (9)C9—C10—H10120.0
F3—P1—F189.65 (6)C10—C11—C6120.73 (16)
F10—P2—F7180.0C10—C11—H11119.6
F10—P2—F990.71 (7)C6—C11—H11119.6
F7—P2—F989.29 (7)N1—C12—C13114.87 (15)
F10—P2—F9i90.72 (7)N1—C12—H12A108.6
F7—P2—F9i89.29 (7)C13—C12—H12A108.6
F9—P2—F9i178.57 (13)N1—C12—H12B108.6
F10—P2—F889.67 (6)C13—C12—H12B108.6
F7—P2—F890.33 (6)H12A—C12—H12B107.5
F9—P2—F890.61 (6)C12—C13—H13A109.5
F9i—P2—F889.40 (6)C12—C13—H13B109.5
F10—P2—F8i89.67 (6)H13A—C13—H13B109.5
F7—P2—F8i90.33 (6)C12—C13—H13C109.5
F9—P2—F8i89.40 (6)H13A—C13—H13C109.5
F9i—P2—F8i90.61 (6)H13B—C13—H13C109.5
F8—P2—F8i179.33 (11)C15—C14—N2112.56 (14)
F13—P3—F13i90.13 (13)C15—C14—H14A109.1
F13—P3—F12i179.46 (9)N2—C14—H14A109.1
F13i—P3—F12i89.60 (8)C15—C14—H14B109.1
F13—P3—F1289.60 (8)N2—C14—H14B109.1
F13i—P3—F12179.46 (9)H14A—C14—H14B107.8
F12i—P3—F1290.67 (13)O2—C15—C14111.26 (14)
F13—P3—F11i90.49 (7)O2—C15—H15A109.4
F13i—P3—F11i89.41 (7)C14—C15—H15A109.4
F12i—P3—F11i89.97 (7)O2—C15—H15B109.4
F12—P3—F11i90.12 (7)C14—C15—H15B109.4
F13—P3—F1189.41 (7)H15A—C15—H15B108.0
F13i—P3—F1190.49 (7)O2—C16—C17111.80 (15)
F12i—P3—F1190.12 (7)O2—C16—H16A109.3
F12—P3—F1189.97 (7)C17—C16—H16A109.3
F11i—P3—F11179.86 (12)O2—C16—H16B109.3
C4—N1—C1107.14 (12)C17—C16—H16B109.3
C4—N1—C12109.23 (13)H16A—C16—H16B107.9
C1—N1—C12113.09 (13)C16—C17—N2112.34 (14)
C4—N1—C5109.47 (12)C16—C17—H17A109.1
C1—N1—C5107.19 (12)N2—C17—H17A109.1
C12—N1—C5110.62 (13)C16—C17—H17B109.1
C14—N2—C17107.49 (12)N2—C17—H17B109.1
C14—N2—C25107.22 (12)H17A—C17—H17B107.9
C17—N2—C25109.71 (12)C19—C18—N2114.29 (13)
C14—N2—C18111.97 (12)C19—C18—H18A108.7
C17—N2—C18109.86 (12)N2—C18—H18A108.7
C25—N2—C18110.49 (12)C19—C18—H18B108.7
C3—O1—C2109.58 (13)N2—C18—H18B108.7
C16—O2—C15109.60 (13)H18A—C18—H18B107.6
N1—C1—C2111.93 (14)C20—C19—C24118.82 (15)
N1—C1—H1A109.2C20—C19—C18120.37 (15)
C2—C1—H1A109.2C24—C19—C18120.71 (15)
N1—C1—H1B109.2C21—C20—C19120.50 (16)
C2—C1—H1B109.2C21—C20—H20119.7
H1A—C1—H1B107.9C19—C20—H20119.7
O1—C2—C1110.46 (14)C20—C21—C22120.23 (16)
O1—C2—H2A109.6C20—C21—H21119.9
C1—C2—H2A109.6C22—C21—H21119.9
O1—C2—H2B109.6C23—C22—C21119.48 (16)
C1—C2—H2B109.6C23—C22—H22120.3
H2A—C2—H2B108.1C21—C22—H22120.3
O1—C3—C4110.93 (15)C22—C23—C24120.36 (16)
O1—C3—H3A109.5C22—C23—H23119.8
C4—C3—H3A109.5C24—C23—H23119.8
O1—C3—H3B109.5C23—C24—C19120.60 (16)
C4—C3—H3B109.5C23—C24—H24119.7
H3A—C3—H3B108.0C19—C24—H24119.7
N1—C4—C3112.16 (14)C26—C25—N2115.19 (14)
N1—C4—H4A109.2C26—C25—H25A108.5
C3—C4—H4A109.2N2—C25—H25A108.5
N1—C4—H4B109.2C26—C25—H25B108.5
C3—C4—H4B109.2N2—C25—H25B108.5
H4A—C4—H4B107.9H25A—C25—H25B107.5
C6—C5—N1114.64 (13)C25—C26—H26A109.5
C6—C5—H5A108.6C25—C26—H26B109.5
N1—C5—H5A108.6H26A—C26—H26B109.5
C6—C5—H5B108.6C25—C26—H26C109.5
N1—C5—H5B108.6H26A—C26—H26C109.5
H5A—C5—H5B107.6H26B—C26—H26C109.5
C11—C6—C7118.93 (15)
C4—N1—C1—C252.21 (17)C17—N2—C14—C1550.76 (17)
C12—N1—C1—C268.20 (18)C25—N2—C14—C15168.65 (13)
C5—N1—C1—C2169.62 (13)C18—N2—C14—C1569.99 (17)
C3—O1—C2—C162.46 (19)C16—O2—C15—C1460.77 (18)
N1—C1—C2—O159.13 (19)N2—C14—C15—O257.50 (18)
C2—O1—C3—C462.01 (19)C15—O2—C16—C1760.96 (18)
C1—N1—C4—C351.63 (18)O2—C16—C17—N257.46 (18)
C12—N1—C4—C371.20 (17)C14—N2—C17—C1650.49 (17)
C5—N1—C4—C3167.54 (14)C25—N2—C17—C16166.76 (13)
O1—C3—C4—N158.05 (19)C18—N2—C17—C1671.58 (17)
C4—N1—C5—C660.64 (17)C14—N2—C18—C1963.20 (17)
C1—N1—C5—C6176.52 (13)C17—N2—C18—C19177.44 (14)
C12—N1—C5—C659.77 (17)C25—N2—C18—C1956.25 (17)
N1—C5—C6—C1192.12 (18)N2—C18—C19—C2093.27 (18)
N1—C5—C6—C791.19 (18)N2—C18—C19—C2490.25 (19)
C11—C6—C7—C80.7 (3)C24—C19—C20—C210.7 (2)
C5—C6—C7—C8177.49 (16)C18—C19—C20—C21177.26 (15)
C6—C7—C8—C90.9 (3)C19—C20—C21—C220.3 (3)
C7—C8—C9—C101.4 (3)C20—C21—C22—C230.6 (3)
C8—C9—C10—C110.4 (3)C21—C22—C23—C240.1 (3)
C9—C10—C11—C61.2 (3)C22—C23—C24—C191.1 (3)
C7—C6—C11—C101.7 (3)C20—C19—C24—C231.4 (3)
C5—C6—C11—C10178.43 (16)C18—C19—C24—C23177.96 (17)
C4—N1—C12—C13174.38 (15)C14—N2—C25—C26170.87 (14)
C1—N1—C12—C1355.17 (19)C17—N2—C25—C2654.43 (18)
C5—N1—C12—C1365.07 (19)C18—N2—C25—C2666.85 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F40.992.413.211 (2)138
C3—H3B···F2ii0.992.473.389 (2)155
C5—H5B···F11iii0.992.483.365 (2)150
C10—H10···F10iv0.952.503.288 (2)141
C17—H17A···F8v0.992.373.329 (2)162
C17—H17B···F10.992.463.357 (2)150
C25—H25B···F10.992.533.388 (2)145
Symmetry codes: (ii) x+3/4, y+1/4, z1/4; (iii) x+1/4, y+1/4, z+1/4; (iv) x+1/2, y, z1/2; (v) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H20NO+·PF6
Mr351.27
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)113
a, b, c (Å)26.054 (3), 28.528 (3), 16.2950 (15)
V3)12111 (2)
Z32
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.948, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
39690, 8072, 7799
Rint0.042
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 1.11
No. of reflections8072
No. of parameters402
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24
Absolute structureFlack (1983), 3877 Friedel pairs
Absolute structure parameter0.06 (5)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F40.992.413.211 (2)138
C3—H3B···F2i0.992.473.389 (2)155
C5—H5B···F11ii0.992.483.365 (2)150
C10—H10···F10iii0.952.503.288 (2)141
C17—H17A···F8iv0.992.373.329 (2)162
C17—H17B···F10.992.463.357 (2)150
C25—H25B···F10.992.533.388 (2)145
Symmetry codes: (i) x+3/4, y+1/4, z1/4; (ii) x+1/4, y+1/4, z+1/4; (iii) x+1/2, y, z1/2; (iv) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Tianjin Natural Science Foundation (11JCZDJC21300 and 10JCZDJC22200) for financial support.

References

First citationAbedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510–514.  Web of Science CrossRef Google Scholar
First citationAbedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333–2339.  Web of Science PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315–1317.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds