metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tri­phenyl­phosphane-κP)copper(I)]-di-μ-bromido-[(tri­phenyl­phos­phane-κP)copper(I)]-μ-1,3-bis­(pyridin-4-yl)­propane-κ2N:N′]

aInstitute of Molecular Engineering and Advanced Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China, and bInstitute of Science and Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: chizhang@mail.njust.edu.cn

(Received 16 January 2012; accepted 31 January 2012; online 4 February 2012)

Through a diffusion reaction, cuprous bromide, triphenyl­phosphane and 1,3-bis­(pyridin-4-yl)propane (bpp) were self-assembled to form the one-dimensional title compound, [Cu2Br2(C13H14N2)(C18H15P)2]n. Each CuI atom is coordinated by two Br atoms, one P atom from a triphenyl­phosphane ligand and one N atom from a bpp mol­ecule in a distorted tetra­hedral geometry. Two μ2-Br bridges connect two [Cu(PPh3)]+ units to form neutral [CuBr(PPh3)]2 dimers, which are linked by the flexible bridging bpp ligands to form a one-dimensional chain structure parallel to the c axis. The dihedral angle between the pyridine rings of the bpp ligand is 34.59 (14)°.

Related literature

For background to architectures, topologies and applications of metal–organic compounds, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Banerjee et al. (2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939-943.]); Zhang et al. (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]). For the structures of metal-organic compounds constructed by flexible bridging ligands, see: Zhang (2009a[Zhang, J. (2009a). Acta Cryst. E65, m1044.],b[Zhang, J. (2009b). Acta Cryst. E65, m1550.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Br2(C13H14N2)(C18H15P)2]

  • Mr = 1009.70

  • Monoclinic, C 2/c

  • a = 25.703 (5) Å

  • b = 9.3679 (19) Å

  • c = 20.005 (4) Å

  • β = 111.58 (3)°

  • V = 4479.2 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 293 K

  • 0.2 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn 724+ (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.572, Tmax = 0.711

  • 10689 measured reflections

  • 4450 independent reflections

  • 3522 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.100

  • S = 1.08

  • 4450 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and syntheses of metal-organic compounds have attracted great attention in recent years because of not only their intriguing architectures and topologies (Eddaoudi et al., 2001) but also their potential applications (Banerjee et al., 2008; Zhang et al., 2007). Flexible bridging ligands can construct metal-organic compounds with various structures (Zhang, 2009a; Zhang, 2009b). The title compound {[CuBrP(Ph)3]2(bpp)}n was constructed by the flexible bridging ligand 1,3-bis(pyridin-4-yl)propane (bpp) through diffusion reaction.

As illustrated in Fig. 1, each copper(I) atom is coordinated by two Br atoms, one P atom from a P(Ph)3 ligand and one N atom from a bpp molecule forming a distorted tetrahedral geometry. The dihedral angle formed by the pyridine rings of the bpp molecule is 34.59 (14)°. In the structure, two µ2-Br bridges connect two [CuP(Ph)3]+ units to form a neutral dimer [CuBrP(Ph)3]2; these dimers are then linked each other by the flexible bridging ligands bpp into one-dimensional chains parallel to the c axis.

Related literature top

For background to architectures, topologies and applications of metal–organic compounds, see: Eddaoudi et al. (2001); Banerjee et al. (2008); Zhang et al. (2007). For the structures of metal-organic compounds constructed by flexible bridging ligands, see: Zhang (2009a,b).

Experimental top

A mixture of CuBr (1 mmol), P(Ph)3 (2 mmol) and N,N-dimethylformamide (dmf; 6 ml) was stirred for 5 minutes. After filtration, the colourless filtrate was carefully laid on the surface with dmf (1 ml) and a solution of bpp 0.5 (mmol) in i-PrOH (10 ml), in turn. Colourless block crystals were obtained after about five days.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with 30% probability displacement ellipsoids. H atoms have been omitted. Symmetry codes: (i) -x, -y, -z; (ii) -x, y, -z+1/2.
catena-Poly[[(triphenylphosphane-κP)copper(I)]-di-µ-bromido- [(triphenylphosphane-κP)copper(I)]-µ-1,3-bis(pyridin-4-yl)propane- κ2N:N'] top
Crystal data top
[Cu2Br2(C13H14N2)(C18H15P)2]F(000) = 2040
Mr = 1009.70Dx = 1.497 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9037 reflections
a = 25.703 (5) Åθ = 2.7–29.1°
b = 9.3679 (19) ŵ = 2.84 mm1
c = 20.005 (4) ÅT = 293 K
β = 111.58 (3)°Block, colourless
V = 4479.2 (18) Å30.2 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn 724+ (2x2 bin mode)
diffractometer
4450 independent reflections
Radiation source: fine-focus sealed tube3522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
dtprofit.ref scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 2131
Tmin = 0.572, Tmax = 0.711k = 1110
10689 measured reflectionsl = 2420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.040P)2 + 1.5813P]
where P = (Fo2 + 2Fc2)/3
4450 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2Br2(C13H14N2)(C18H15P)2]V = 4479.2 (18) Å3
Mr = 1009.70Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.703 (5) ŵ = 2.84 mm1
b = 9.3679 (19) ÅT = 293 K
c = 20.005 (4) Å0.2 × 0.18 × 0.12 mm
β = 111.58 (3)°
Data collection top
Rigaku Saturn 724+ (2x2 bin mode)
diffractometer
4450 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
3522 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.711Rint = 0.031
10689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.08Δρmax = 0.50 e Å3
4450 reflectionsΔρmin = 0.40 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.037465 (15)0.13108 (4)0.085054 (19)0.05206 (14)
Cu10.045283 (18)0.10762 (4)0.03058 (2)0.05009 (16)
P10.12847 (4)0.14974 (9)0.02434 (5)0.0420 (2)
N10.02809 (12)0.2487 (3)0.09919 (15)0.0480 (7)
C10.05533 (18)0.2313 (4)0.16946 (19)0.0646 (11)
H1A0.07060.14200.18570.078*
C20.00515 (15)0.3770 (4)0.0794 (2)0.0516 (9)
H2A0.01540.39210.03080.062*
C30.06232 (18)0.3374 (4)0.2197 (2)0.0646 (11)
H3A0.08200.31860.26810.078*
C40.00981 (15)0.4879 (4)0.12585 (18)0.0540 (9)
H4A0.00750.57460.10850.065*
C50.04018 (15)0.4712 (4)0.19846 (18)0.0481 (8)
C60.05047 (16)0.5895 (4)0.2525 (2)0.0595 (10)
H6A0.07780.65410.24620.071*
H6B0.06720.54820.30020.071*
C70.00000.6766 (5)0.25000.0598 (14)
H7A0.01090.73780.29200.072*0.50
H7B0.01090.73780.20800.072*0.50
C80.13901 (13)0.3398 (3)0.01233 (18)0.0431 (8)
C90.15024 (16)0.3953 (4)0.0452 (2)0.0564 (10)
H9A0.15470.33400.07930.068*
C100.13194 (15)0.4350 (4)0.0618 (2)0.0560 (9)
H10A0.12420.40000.10070.067*
C110.15479 (18)0.5417 (4)0.0523 (2)0.0718 (12)
H11A0.16300.57770.09060.086*
C120.13618 (17)0.5808 (4)0.0539 (3)0.0719 (12)
H12A0.13150.64310.08750.086*
C130.14731 (18)0.6335 (4)0.0035 (3)0.0767 (14)
H13A0.14980.73160.00910.092*
C140.19053 (15)0.1027 (4)0.10280 (18)0.0468 (8)
C150.23762 (16)0.1870 (4)0.1286 (2)0.0644 (10)
H15A0.23800.27470.10700.077*
C160.19065 (18)0.0256 (5)0.1358 (2)0.0791 (13)
H16A0.15900.08330.11960.095*
C170.28428 (18)0.1441 (5)0.1858 (2)0.0786 (13)
H17A0.31580.20210.20230.094*
C180.2374 (2)0.0702 (6)0.1931 (3)0.1048 (18)
H18A0.23730.15820.21450.126*
C190.2840 (2)0.0159 (7)0.2183 (2)0.0931 (16)
H19A0.31520.01310.25720.112*
C200.14205 (14)0.0655 (3)0.04961 (17)0.0440 (8)
C210.19394 (16)0.0172 (4)0.0453 (2)0.0603 (10)
H21A0.22420.02360.00200.072*
C220.09837 (18)0.0530 (5)0.1144 (2)0.0756 (13)
H22A0.06270.08090.11800.091*
C230.20140 (18)0.0412 (5)0.1054 (2)0.0744 (12)
H23A0.23640.07530.10160.089*
C240.1062 (2)0.0002 (6)0.1743 (2)0.1008 (18)
H24A0.07640.00250.21820.121*
C250.1577 (2)0.0482 (5)0.1693 (2)0.0817 (14)
H25A0.16280.08580.20950.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0493 (2)0.0439 (2)0.0592 (3)0.00242 (15)0.01535 (18)0.00777 (16)
Cu10.0479 (3)0.0470 (3)0.0577 (3)0.00363 (19)0.0221 (2)0.0010 (2)
P10.0399 (5)0.0390 (5)0.0458 (5)0.0023 (4)0.0142 (4)0.0011 (4)
N10.0500 (18)0.0442 (17)0.0510 (17)0.0021 (13)0.0199 (14)0.0027 (14)
C10.093 (3)0.046 (2)0.052 (2)0.019 (2)0.023 (2)0.011 (2)
C20.051 (2)0.053 (2)0.047 (2)0.0040 (17)0.0133 (17)0.0068 (18)
C30.083 (3)0.060 (2)0.045 (2)0.016 (2)0.017 (2)0.004 (2)
C40.059 (2)0.041 (2)0.059 (2)0.0082 (17)0.0188 (18)0.0035 (19)
C50.046 (2)0.049 (2)0.052 (2)0.0021 (16)0.0211 (16)0.0025 (18)
C60.060 (3)0.055 (2)0.064 (2)0.0078 (19)0.023 (2)0.0077 (19)
C70.081 (4)0.044 (3)0.056 (3)0.0000.026 (3)0.000
C80.0358 (19)0.0414 (18)0.0485 (19)0.0005 (14)0.0115 (15)0.0021 (16)
C90.056 (2)0.051 (2)0.058 (2)0.0036 (17)0.0167 (19)0.0050 (18)
C100.056 (2)0.048 (2)0.068 (2)0.0072 (17)0.0279 (19)0.0071 (19)
C110.073 (3)0.056 (3)0.077 (3)0.007 (2)0.016 (2)0.020 (2)
C120.061 (3)0.045 (2)0.108 (4)0.0040 (19)0.029 (3)0.018 (2)
C130.068 (3)0.037 (2)0.113 (4)0.0019 (19)0.018 (3)0.011 (3)
C140.045 (2)0.048 (2)0.050 (2)0.0023 (16)0.0201 (17)0.0030 (17)
C150.056 (3)0.061 (2)0.065 (2)0.003 (2)0.010 (2)0.003 (2)
C160.060 (3)0.077 (3)0.092 (3)0.003 (2)0.018 (2)0.030 (3)
C170.051 (3)0.104 (4)0.064 (3)0.003 (2)0.002 (2)0.011 (3)
C180.082 (4)0.119 (4)0.104 (4)0.017 (3)0.023 (3)0.066 (4)
C190.066 (3)0.139 (5)0.063 (3)0.029 (3)0.010 (2)0.024 (3)
C200.045 (2)0.0386 (18)0.0489 (19)0.0027 (15)0.0177 (16)0.0034 (16)
C210.049 (2)0.068 (3)0.066 (2)0.0080 (19)0.0240 (19)0.014 (2)
C220.056 (3)0.096 (3)0.065 (2)0.016 (2)0.010 (2)0.032 (2)
C230.056 (3)0.085 (3)0.092 (3)0.006 (2)0.040 (3)0.022 (3)
C240.073 (4)0.142 (5)0.073 (3)0.012 (3)0.011 (3)0.052 (3)
C250.076 (3)0.101 (4)0.073 (3)0.008 (3)0.033 (3)0.038 (3)
Geometric parameters (Å, º) top
Br1—Cu1i2.5108 (12)C10—C121.384 (5)
Br1—Cu12.5276 (7)C10—H10A0.9300
Cu1—N12.067 (3)C11—C131.368 (6)
Cu1—P12.2226 (11)C11—H11A0.9300
Cu1—Br1i2.5108 (12)C12—C131.373 (6)
Cu1—Cu1i2.9810 (10)C12—H12A0.9300
P1—C201.820 (3)C13—H13A0.9300
P1—C81.830 (3)C14—C161.371 (5)
P1—C141.833 (4)C14—C151.377 (5)
N1—C11.330 (4)C15—C171.378 (5)
N1—C21.333 (4)C15—H15A0.9300
C1—C31.378 (5)C16—C181.385 (6)
C1—H1A0.9300C16—H16A0.9300
C2—C41.370 (5)C17—C191.365 (7)
C2—H2A0.9300C17—H17A0.9300
C3—C51.377 (5)C18—C191.377 (7)
C3—H3A0.9300C18—H18A0.9300
C4—C51.382 (5)C19—H19A0.9300
C4—H4A0.9300C20—C221.373 (5)
C5—C61.502 (5)C20—C211.381 (5)
C6—C71.518 (5)C21—C231.396 (5)
C6—H6A0.9700C21—H21A0.9300
C6—H6B0.9700C22—C241.378 (5)
C7—C6ii1.518 (5)C22—H22A0.9300
C7—H7A0.9700C23—C251.358 (6)
C7—H7B0.9700C23—H23A0.9300
C8—C91.387 (5)C24—C251.369 (6)
C8—C101.393 (5)C24—H24A0.9300
C9—C111.389 (5)C25—H25A0.9300
C9—H9A0.9300
Cu1i—Br1—Cu172.547 (19)C8—C9—H9A119.8
N1—Cu1—P1111.65 (8)C11—C9—H9A119.8
N1—Cu1—Br1i103.91 (8)C12—C10—C8121.1 (4)
P1—Cu1—Br1i116.05 (4)C12—C10—H10A119.5
N1—Cu1—Br1102.07 (8)C8—C10—H10A119.5
P1—Cu1—Br1114.33 (3)C13—C11—C9120.6 (4)
Br1i—Cu1—Br1107.453 (19)C13—C11—H11A119.7
N1—Cu1—Cu1i112.31 (8)C9—C11—H11A119.7
P1—Cu1—Cu1i135.99 (4)C13—C12—C10119.9 (4)
Br1i—Cu1—Cu1i53.99 (2)C13—C12—H12A120.0
Br1—Cu1—Cu1i53.47 (2)C10—C12—H12A120.0
C20—P1—C8103.50 (16)C11—C13—C12119.9 (4)
C20—P1—C14103.00 (16)C11—C13—H13A120.0
C8—P1—C14102.83 (15)C12—C13—H13A120.0
C20—P1—Cu1116.40 (12)C16—C14—C15118.4 (3)
C8—P1—Cu1111.84 (11)C16—C14—P1118.1 (3)
C14—P1—Cu1117.48 (12)C15—C14—P1123.5 (3)
C1—N1—C2115.3 (3)C14—C15—C17121.4 (4)
C1—N1—Cu1117.7 (2)C14—C15—H15A119.3
C2—N1—Cu1123.9 (2)C17—C15—H15A119.3
N1—C1—C3124.0 (3)C14—C16—C18120.7 (4)
N1—C1—H1A118.0C14—C16—H16A119.7
C3—C1—H1A118.0C18—C16—H16A119.7
N1—C2—C4124.3 (3)C19—C17—C15119.7 (4)
N1—C2—H2A117.8C19—C17—H17A120.1
C4—C2—H2A117.8C15—C17—H17A120.1
C5—C3—C1120.2 (3)C19—C18—C16120.0 (5)
C5—C3—H3A119.9C19—C18—H18A120.0
C1—C3—H3A119.9C16—C18—H18A120.0
C2—C4—C5120.1 (3)C17—C19—C18119.8 (4)
C2—C4—H4A119.9C17—C19—H19A120.1
C5—C4—H4A119.9C18—C19—H19A120.1
C3—C5—C4115.9 (3)C22—C20—C21117.8 (3)
C3—C5—C6120.4 (3)C22—C20—P1118.0 (3)
C4—C5—C6123.7 (3)C21—C20—P1124.1 (3)
C5—C6—C7116.8 (3)C20—C21—C23120.7 (4)
C5—C6—H6A108.1C20—C21—H21A119.7
C7—C6—H6A108.1C23—C21—H21A119.7
C5—C6—H6B108.1C20—C22—C24121.4 (4)
C7—C6—H6B108.1C20—C22—H22A119.3
H6A—C6—H6B107.3C24—C22—H22A119.3
C6ii—C7—C6114.9 (4)C25—C23—C21120.2 (4)
C6ii—C7—H7A108.5C25—C23—H23A119.9
C6—C7—H7A108.5C21—C23—H23A119.9
C6ii—C7—H7B108.5C25—C24—C22120.2 (4)
C6—C7—H7B108.5C25—C24—H24A119.9
H7A—C7—H7B107.5C22—C24—H24A119.9
C9—C8—C10118.1 (3)C23—C25—C24119.6 (4)
C9—C8—P1124.0 (3)C23—C25—H25A120.2
C10—C8—P1117.8 (3)C24—C25—H25A120.2
C8—C9—C11120.4 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2Br2(C13H14N2)(C18H15P)2]
Mr1009.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.703 (5), 9.3679 (19), 20.005 (4)
β (°) 111.58 (3)
V3)4479.2 (18)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.2 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn 724+ (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.572, 0.711
No. of measured, independent and
observed [I > 2σ(I)] reflections
10689, 4450, 3522
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.100, 1.08
No. of reflections4450
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.40

Computer programs: CrystalClear (Rigaku, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 50472048) and the Program for New Century Excellent Talents in Universities (grant No. NCET-05–0499).

References

First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. (2009a). Acta Cryst. E65, m1044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J. (2009b). Acta Cryst. E65, m1550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds