organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o641-o642

4-Methyl-2-oxo-2H-chromen-7-yl 4-fluoro­benzene­sulfonate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 January 2012; accepted 2 February 2012; online 10 February 2012)

In the asymmetric unit of the title compound, C16H11FO5S, the 2H-chromene ring is essentially planar, with a maximum deviation of 0.040 (2) Å. The dihedral angle between the 2H-chromene ring and the 4-fluoro­phenyl ring is 2.17 (8)°. One of the sulfonamide O atoms is approximately coplanar with the benzene ring [C—C—S—O torsion angle = 166.00 (14)°], whereas the other O atom lies well below the plane [C—C—S—O = −61.35 (17)°]. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds, forming two-dimensional networks parallel to the ac plane.

Related literature

For details and applications of coumarines, see: Gu et al. (2007[Gu, Y., Ogawa, C. & Kobayashi, S. (2007). Org. Lett. 9, 175-178.]); Wrobel et al. (2002[Wrobel, J., Green, D., Jetter, J., Kao, W., Rogers, J., Pérez, M. C., Hardenburg, J., Deecher, D. C., López, F. J., Arey, J. B. & Shen, S. E. (2002). Bioorg. Med. Chem. 10, 639-656.]); Kostova (2005[Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29-46.]). For related structures, see: Sinha et al. (2011a[Sinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, o3457.],b[Sinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, o3275.]); Al-Najjar et al. (2012[Al-Najjar, B. O., Tengku Muhammad, T. S., Wahab, H. A., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o258.]). For the synthetic procedure, see: Sinha et al. (2011a[Sinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, o3457.],b[Sinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, o3275.]); Fusegi et al. (2009[Fusegi, K., Kumamoto, T., Nakanishi, W. & Ishikawa, T. (2009). Heterocycles, 77, 503-610.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11FO5S

  • Mr = 334.31

  • Monoclinic, P 21 /c

  • a = 17.2983 (4) Å

  • b = 5.3397 (1) Å

  • c = 17.1669 (4) Å

  • β = 118.195 (1)°

  • V = 1397.52 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.36 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.959

  • 26795 measured reflections

  • 4303 independent reflections

  • 3494 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.156

  • S = 1.04

  • 4303 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.95 2.48 3.314 (2) 147
C4—H4A⋯O5ii 0.95 2.57 3.214 (3) 126
C8—H8A⋯O4ii 0.95 2.37 3.288 (3) 162
C11—H11A⋯O5iii 0.95 2.45 3.349 (3) 158
C15—H15A⋯O3iv 0.95 2.59 3.502 (3) 160
C16—H16A⋯O5iii 0.98 2.60 3.522 (3) 157
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

This work is to further explore the structural features of sulphur- containing small molecule derivatives which are being recently published from our laboratory (Sinha et al., 2011a,b; Al-Najjar et al., 2012). Recently, the O–SO2 group have attracted attention in organic chemistry (Gu et al., 2007) and medicinal chemistry (Wrobel et al., 2002). Coumarines are also proven to be cytotoxic agents (Kostova, 2005). In this paper, we report the crystal structure of the title compound, which belongs to this class of compounds.

The asymmetric unit of the title compound is shown in Fig. 1. The 2H-chromene (O2/C7–C15) ring is essentially planar, with a maximum deviation of 0.040 (2) Å for atom C12. The dihedral angle between the 2H-chromene (O2/C7–C15) ring and fluoro-substituted phenyl (C1–C6) ring is 2.17 (8)°. The S atom adopts a distorted tetrahedral geometry. The sulfonamide O4 atom is approximately co-planar with the benzene ring [the O4-S1-C1-C6 torsion angle is 166.00 (14)°] whereas the O3 atom lies well below the plane [O3-S1-C1-C6 = -61.35 (17)°].

In the crystal, (Fig. 2), the molecules are connected via weak intermolecular C—H···O hydrogen bonds (Table 1) to form two-dimensional networks parallel to the ac plane.

Related literature top

For details and applications of coumarines, see: Gu et al. (2007); Wrobel et al. (2002); Kostova (2005). For related structures, see: Sinha et al. (2011a,b); Al-Najjar et al. (2012). For the synthetic procedure, see: Sinha et al. (2011a,b); Fusegi et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Detailed synthetic procedure has been described in Sinha et al. (2011a,b) and Fusegi et al. (2009).

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.95 or 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
4-Methyl-2-oxo-2H-chromen-7-yl 4-fluorobenzenesulfonate top
Crystal data top
C16H11FO5SF(000) = 688
Mr = 334.31Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9952 reflections
a = 17.2983 (4) Åθ = 2.4–30.6°
b = 5.3397 (1) ŵ = 0.27 mm1
c = 17.1669 (4) ÅT = 100 K
β = 118.195 (1)°Block, colourless
V = 1397.52 (5) Å30.36 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4303 independent reflections
Radiation source: fine-focus sealed tube3494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.911, Tmax = 0.959k = 77
26795 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0914P)2 + 0.9651P]
where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C16H11FO5SV = 1397.52 (5) Å3
Mr = 334.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.2983 (4) ŵ = 0.27 mm1
b = 5.3397 (1) ÅT = 100 K
c = 17.1669 (4) Å0.36 × 0.19 × 0.16 mm
β = 118.195 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3494 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.959Rint = 0.047
26795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.04Δρmax = 1.14 e Å3
4303 reflectionsΔρmin = 0.72 e Å3
209 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05985 (3)0.71221 (8)0.40375 (3)0.01356 (13)
F10.39345 (8)0.2691 (3)0.47175 (9)0.0276 (3)
O10.00823 (8)0.4700 (3)0.40935 (9)0.0161 (3)
O20.26376 (8)0.8084 (3)0.36579 (9)0.0161 (3)
O30.01710 (9)0.8017 (3)0.31455 (9)0.0187 (3)
O40.07250 (9)0.8822 (3)0.47276 (9)0.0207 (3)
O50.38605 (9)0.9692 (3)0.35461 (9)0.0222 (3)
C10.15987 (12)0.3544 (4)0.38064 (12)0.0163 (4)
H1A0.10640.28160.33800.020*
C20.23997 (13)0.2524 (4)0.39694 (13)0.0182 (4)
H2A0.24240.10610.36670.022*
C30.31602 (12)0.3684 (4)0.45807 (13)0.0187 (4)
C40.31704 (12)0.5773 (4)0.50573 (13)0.0188 (4)
H4A0.37080.65040.54760.023*
C50.23669 (12)0.6784 (4)0.49075 (12)0.0163 (4)
H5A0.23460.82140.52270.020*
C60.15971 (11)0.5657 (3)0.42815 (12)0.0140 (3)
C70.08408 (11)0.4728 (3)0.36472 (12)0.0139 (3)
C80.12939 (11)0.6500 (4)0.38628 (12)0.0147 (3)
H8A0.09980.77710.42880.018*
C90.22037 (11)0.6323 (3)0.34251 (12)0.0139 (3)
C100.35402 (12)0.8098 (4)0.32803 (13)0.0169 (4)
C110.40187 (12)0.6269 (4)0.25971 (12)0.0177 (4)
H11A0.46420.62910.23150.021*
C120.36115 (12)0.4529 (4)0.23449 (12)0.0156 (3)
C130.26579 (12)0.4483 (4)0.27933 (12)0.0146 (3)
C140.21569 (12)0.2714 (4)0.26141 (12)0.0160 (4)
H14A0.24470.14230.21960.019*
C150.12520 (12)0.2829 (4)0.30367 (12)0.0157 (3)
H15A0.09180.16340.29120.019*
C160.41273 (13)0.2751 (4)0.16052 (14)0.0209 (4)
H16A0.47550.29790.14080.031*
H16B0.39590.10270.18110.031*
H16C0.40060.30840.11120.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0139 (2)0.0141 (2)0.0135 (2)0.00107 (14)0.00718 (18)0.00011 (15)
F10.0170 (6)0.0382 (8)0.0280 (7)0.0093 (5)0.0110 (5)0.0014 (6)
O10.0137 (6)0.0158 (6)0.0191 (7)0.0007 (5)0.0079 (5)0.0029 (5)
O20.0129 (6)0.0189 (7)0.0170 (6)0.0011 (5)0.0075 (5)0.0029 (5)
O30.0185 (7)0.0217 (7)0.0162 (7)0.0037 (5)0.0085 (6)0.0058 (5)
O40.0216 (7)0.0206 (7)0.0213 (7)0.0000 (5)0.0111 (6)0.0068 (6)
O50.0172 (6)0.0259 (8)0.0236 (7)0.0024 (5)0.0098 (6)0.0048 (6)
C10.0182 (9)0.0188 (9)0.0127 (8)0.0001 (7)0.0079 (7)0.0002 (7)
C20.0211 (9)0.0192 (9)0.0170 (9)0.0033 (7)0.0112 (8)0.0010 (7)
C30.0140 (8)0.0264 (10)0.0171 (9)0.0053 (7)0.0085 (7)0.0041 (8)
C40.0139 (8)0.0240 (10)0.0172 (9)0.0004 (7)0.0063 (7)0.0011 (7)
C50.0167 (8)0.0182 (9)0.0141 (8)0.0005 (6)0.0074 (7)0.0002 (7)
C60.0134 (8)0.0170 (8)0.0119 (8)0.0012 (6)0.0063 (7)0.0005 (6)
C70.0135 (8)0.0158 (8)0.0126 (8)0.0012 (6)0.0064 (7)0.0032 (6)
C80.0154 (8)0.0165 (8)0.0131 (8)0.0004 (6)0.0073 (7)0.0007 (7)
C90.0147 (8)0.0152 (8)0.0134 (8)0.0006 (6)0.0080 (7)0.0006 (6)
C100.0142 (8)0.0213 (9)0.0161 (9)0.0014 (6)0.0079 (7)0.0011 (7)
C110.0130 (8)0.0225 (9)0.0162 (9)0.0020 (7)0.0059 (7)0.0015 (7)
C120.0163 (8)0.0192 (9)0.0118 (8)0.0023 (6)0.0069 (7)0.0003 (7)
C130.0168 (8)0.0161 (8)0.0123 (8)0.0004 (6)0.0079 (7)0.0005 (6)
C140.0196 (9)0.0157 (8)0.0134 (8)0.0007 (6)0.0084 (7)0.0014 (6)
C150.0201 (9)0.0152 (8)0.0141 (8)0.0011 (6)0.0101 (7)0.0004 (6)
C160.0186 (9)0.0232 (10)0.0189 (9)0.0044 (7)0.0071 (8)0.0046 (7)
Geometric parameters (Å, º) top
S1—O41.4249 (14)C5—H5A0.9500
S1—O31.4318 (14)C7—C81.386 (2)
S1—O11.6003 (14)C7—C151.389 (3)
S1—C61.7572 (18)C8—C91.390 (2)
F1—C31.354 (2)C8—H8A0.9500
O1—C71.407 (2)C9—C131.398 (3)
O2—C91.375 (2)C10—C111.448 (3)
O2—C101.379 (2)C11—C121.355 (3)
O5—C101.216 (2)C11—H11A0.9500
C1—C21.389 (3)C12—C131.454 (2)
C1—C61.393 (3)C12—C161.496 (3)
C1—H1A0.9500C13—C141.411 (2)
C2—C31.382 (3)C14—C151.381 (3)
C2—H2A0.9500C14—H14A0.9500
C3—C41.379 (3)C15—H15A0.9500
C4—C51.397 (3)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.392 (3)C16—H16C0.9800
O4—S1—O3118.38 (9)C7—C8—H8A121.7
O4—S1—O1109.63 (8)C9—C8—H8A121.7
O3—S1—O1108.24 (8)O2—C9—C8115.48 (16)
O4—S1—C6109.75 (9)O2—C9—C13121.48 (15)
O3—S1—C6110.88 (8)C8—C9—C13123.03 (16)
O1—S1—C698.01 (8)O5—C10—O2116.29 (17)
C7—O1—S1118.71 (11)O5—C10—C11126.04 (17)
C9—O2—C10121.29 (15)O2—C10—C11117.66 (16)
C2—C1—C6118.51 (18)C12—C11—C10122.46 (17)
C2—C1—H1A120.7C12—C11—H11A118.8
C6—C1—H1A120.7C10—C11—H11A118.8
C3—C2—C1118.60 (18)C11—C12—C13118.27 (17)
C3—C2—H2A120.7C11—C12—C16120.97 (17)
C1—C2—H2A120.7C13—C12—C16120.73 (16)
F1—C3—C4118.67 (18)C9—C13—C14117.50 (16)
F1—C3—C2117.72 (18)C9—C13—C12118.70 (16)
C4—C3—C2123.61 (17)C14—C13—C12123.79 (17)
C3—C4—C5118.10 (18)C15—C14—C13121.10 (17)
C3—C4—H4A121.0C15—C14—H14A119.4
C5—C4—H4A120.9C13—C14—H14A119.4
C6—C5—C4118.71 (18)C14—C15—C7118.56 (16)
C6—C5—H5A120.6C14—C15—H15A120.7
C4—C5—H5A120.6C7—C15—H15A120.7
C5—C6—C1122.44 (16)C12—C16—H16A109.5
C5—C6—S1117.74 (14)C12—C16—H16B109.5
C1—C6—S1119.65 (14)H16A—C16—H16B109.5
C8—C7—C15123.20 (16)C12—C16—H16C109.5
C8—C7—O1120.08 (16)H16A—C16—H16C109.5
C15—C7—O1116.60 (15)H16B—C16—H16C109.5
C7—C8—C9116.60 (17)
O4—S1—O1—C788.16 (14)C10—O2—C9—C8179.26 (16)
O3—S1—O1—C742.30 (14)C10—O2—C9—C130.4 (3)
C6—S1—O1—C7157.48 (13)C7—C8—C9—O2179.28 (15)
C6—C1—C2—C31.5 (3)C7—C8—C9—C130.3 (3)
C1—C2—C3—F1178.69 (17)C9—O2—C10—O5178.24 (17)
C1—C2—C3—C41.7 (3)C9—O2—C10—C113.0 (2)
F1—C3—C4—C5179.75 (17)O5—C10—C11—C12179.18 (19)
C2—C3—C4—C50.6 (3)O2—C10—C11—C122.2 (3)
C3—C4—C5—C60.6 (3)C10—C11—C12—C131.2 (3)
C4—C5—C6—C10.7 (3)C10—C11—C12—C16176.90 (18)
C4—C5—C6—S1174.62 (14)O2—C9—C13—C14178.34 (16)
C2—C1—C6—C50.4 (3)C8—C9—C13—C141.3 (3)
C2—C1—C6—S1175.59 (14)O2—C9—C13—C123.1 (3)
O4—S1—C6—C518.55 (17)C8—C9—C13—C12177.28 (17)
O3—S1—C6—C5114.09 (15)C11—C12—C13—C93.8 (3)
O1—S1—C6—C5132.82 (15)C16—C12—C13—C9174.28 (17)
O4—S1—C6—C1166.00 (14)C11—C12—C13—C14177.74 (18)
O3—S1—C6—C161.35 (17)C16—C12—C13—C144.2 (3)
O1—S1—C6—C151.73 (16)C9—C13—C14—C151.1 (3)
S1—O1—C7—C860.4 (2)C12—C13—C14—C15177.33 (17)
S1—O1—C7—C15123.36 (15)C13—C14—C15—C70.1 (3)
C15—C7—C8—C90.8 (3)C8—C7—C15—C140.9 (3)
O1—C7—C8—C9176.72 (15)O1—C7—C15—C14176.96 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.952.483.314 (2)147
C4—H4A···O5ii0.952.573.214 (3)126
C8—H8A···O4ii0.952.373.288 (3)162
C11—H11A···O5iii0.952.453.349 (3)158
C15—H15A···O3iv0.952.593.502 (3)160
C16—H16A···O5iii0.982.603.522 (3)157
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z+1; (iii) x1, y1/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H11FO5S
Mr334.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.2983 (4), 5.3397 (1), 17.1669 (4)
β (°) 118.195 (1)
V3)1397.52 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.911, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
26795, 4303, 3494
Rint0.047
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.156, 1.04
No. of reflections4303
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.72

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.95002.48003.314 (2)147.00
C4—H4A···O5ii0.95002.57003.214 (3)126.00
C8—H8A···O4ii0.95002.37003.288 (3)162.00
C11—H11A···O5iii0.95002.45003.349 (3)158.00
C15—H15A···O3iv0.95002.59003.502 (3)160.00
C16—H16A···O5iii0.98002.60003.522 (3)157.00
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z+1; (iii) x1, y1/2, z+1/2; (iv) x, y1, z.
 

Footnotes

Additional correspondence author, email: habibahw@usm.my

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SS, HO and HAW gratefully acknowledge the Malaysian Ministry of Science, Technology and Innovation for the synthesis work funded by grant Nos. 09-05-lfn-meb-004 and 304/PFARMASI/650545/I121. MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAl-Najjar, B. O., Tengku Muhammad, T. S., Wahab, H. A., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFusegi, K., Kumamoto, T., Nakanishi, W. & Ishikawa, T. (2009). Heterocycles, 77, 503–610.  Google Scholar
First citationGu, Y., Ogawa, C. & Kobayashi, S. (2007). Org. Lett. 9, 175–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, o3457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, o3275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWrobel, J., Green, D., Jetter, J., Kao, W., Rogers, J., Pérez, M. C., Hardenburg, J., Deecher, D. C., López, F. J., Arey, J. B. & Shen, S. E. (2002). Bioorg. Med. Chem. 10, 639–656.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o641-o642
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds