organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Nitro-N′-(3-nitro­benzyl­­idene)­benzohydrazide

aZibo Vocational Institute, Zibo 255314, People's Republic of China
*Correspondence e-mail: lixiaoyan_zb@126.com

(Received 2 February 2012; accepted 7 February 2012; online 17 February 2012)

In the title compound, C14H10N4O5, the mol­ecule exists in a trans conformation with respect to the methyl­idene unit. The dihedral angle between the benzene rings is 9.8 (2)°. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds to form chains along the c axis.

Related literature

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Lei (2011[Lei, Y. (2011). Acta Cryst. E67, o162.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]). For the crystal structures of similar compounds reported recently by the author, see: Li (2011a[Li, X.-Y. (2011a). Acta Cryst. E67, o1798.],b[Li, X.-Y. (2011b). Acta Cryst. E67, o2511.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N4O5

  • Mr = 314.26

  • Monoclinic, P 21 /c

  • a = 11.990 (2) Å

  • b = 13.558 (3) Å

  • c = 8.5800 (17) Å

  • β = 96.752 (3)°

  • V = 1385.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.17 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.985

  • 9991 measured reflections

  • 2549 independent reflections

  • 1489 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.151

  • S = 1.03

  • 2549 reflections

  • 211 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.89 (1) 2.03 (2) 2.876 (4) 159 (4)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, hydrazone compounds have attracted much attention due to their syntheses and crystal structures (Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010). As a continuation of our work on such compounds (Li, 2011a,b), the author reports herein on the crystal structure of the new title hydrazone compound.

The title compound (Fig. 1) exists in a trans configuration with respect to the methylidene unit. The dihedral angle between the C1–C6 and C9–C14 benzene rings of the molecule is 9.8 (2)°. The N1/O1/O2 and N4/O4/O5 nitro groups are tilted by 11.0 (2) and 15.5 (2)° with respect to the attached benzene rings. In the crystal, molecules are linked through N–H···O hydrogen bonds (Table 1) to form chains along the c axis (Fig. 2).

Related literature top

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011); Lei (2011); Shalash et al. (2010). For the crystal structures of similar compounds reported recently by the author, see: Li (2011a,b).

Experimental top

A mixture of 3-nitrobenzaldehyde (0.151 g, 1 mmol) and 3-nitrobenzohydrazide (0.181 g, 1 mmol) in 30 ml of ethanol containing few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Yellow crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solvent.

Refinement top

The amino H atom was located from a difference Fourier map and refined isotropically with the N—H distance restrained to 0.90 (1) Å. The remaining H-atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å, and with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing diagram of the title compound, viewed along the b axis. Hydrogen bonds are indicated by dashed lines. The C-bound H-atoms have been omitted for clarity.
(E)-3-Nitro-N'-(3-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H10N4O5F(000) = 648
Mr = 314.26Dx = 1.507 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 500 reflections
a = 11.990 (2) Åθ = 2.7–24.5°
b = 13.558 (3) ŵ = 0.12 mm1
c = 8.5800 (17) ÅT = 298 K
β = 96.752 (3)°Block, yellow
V = 1385.1 (5) Å30.17 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2549 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.980, Tmax = 0.985k = 1616
9991 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0101P)2 + 0.8537P]
where P = (Fo2 + 2Fc2)/3
2549 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C14H10N4O5V = 1385.1 (5) Å3
Mr = 314.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.990 (2) ŵ = 0.12 mm1
b = 13.558 (3) ÅT = 298 K
c = 8.5800 (17) Å0.17 × 0.17 × 0.13 mm
β = 96.752 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2549 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1489 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.094
9991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0781 restraint
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
2549 reflectionsΔρmin = 0.21 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8246 (4)1.2678 (3)0.8515 (5)0.0664 (11)
N20.8191 (3)0.8283 (2)0.9318 (3)0.0395 (8)
N30.7696 (3)0.7597 (2)1.0230 (3)0.0406 (8)
N40.4731 (3)0.6122 (3)1.3512 (4)0.0570 (10)
O10.8698 (3)1.3372 (2)0.7988 (5)0.1044 (14)
O20.7442 (4)1.2775 (2)0.9211 (6)0.1224 (18)
O30.7514 (2)0.65035 (18)0.8226 (3)0.0499 (8)
O40.4850 (3)0.6965 (3)1.3969 (4)0.0972 (14)
O50.4032 (3)0.5562 (2)1.3942 (4)0.0755 (10)
C10.8687 (3)1.1684 (3)0.8334 (5)0.0452 (10)
C20.8264 (3)1.0930 (3)0.9150 (4)0.0410 (10)
H20.77451.10600.98470.049*
C30.8614 (3)0.9976 (3)0.8931 (4)0.0350 (9)
C40.9389 (3)0.9806 (3)0.7874 (4)0.0455 (10)
H40.96170.91640.76940.055*
C50.9824 (3)1.0578 (3)0.7092 (5)0.0522 (11)
H51.03531.04540.64060.063*
C60.9481 (3)1.1527 (3)0.7317 (5)0.0526 (11)
H60.97771.20510.68000.063*
C70.8141 (3)0.9163 (3)0.9779 (4)0.0407 (10)
H70.77990.93011.06730.049*
C80.7364 (3)0.6733 (3)0.9574 (4)0.0342 (9)
C90.6758 (3)0.6059 (2)1.0562 (4)0.0304 (8)
C100.6077 (3)0.6410 (3)1.1635 (4)0.0356 (9)
H100.60230.70831.18220.043*
C110.5486 (3)0.5746 (3)1.2414 (4)0.0399 (10)
C120.5539 (3)0.4742 (3)1.2183 (4)0.0425 (10)
H120.51250.43091.27290.051*
C130.6222 (3)0.4398 (3)1.1121 (4)0.0407 (10)
H130.62800.37231.09510.049*
C140.6824 (3)0.5053 (3)1.0302 (4)0.0359 (9)
H140.72740.48170.95740.043*
H30.759 (3)0.772 (3)1.1226 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.085 (3)0.043 (2)0.076 (3)0.010 (2)0.030 (2)0.001 (2)
N20.047 (2)0.0364 (19)0.0361 (18)0.0021 (16)0.0085 (16)0.0011 (15)
N30.054 (2)0.0386 (19)0.0323 (18)0.0114 (16)0.0186 (17)0.0019 (16)
N40.058 (2)0.067 (3)0.050 (2)0.010 (2)0.022 (2)0.008 (2)
O10.134 (3)0.042 (2)0.150 (4)0.017 (2)0.069 (3)0.013 (2)
O20.149 (4)0.048 (2)0.192 (5)0.016 (2)0.114 (4)0.008 (2)
O30.079 (2)0.0418 (16)0.0322 (15)0.0013 (14)0.0225 (14)0.0069 (12)
O40.117 (3)0.080 (3)0.109 (3)0.023 (2)0.073 (2)0.043 (2)
O50.067 (2)0.084 (2)0.083 (2)0.0112 (19)0.0412 (19)0.0048 (19)
C10.049 (3)0.039 (2)0.049 (3)0.005 (2)0.012 (2)0.005 (2)
C20.041 (2)0.041 (2)0.044 (2)0.0053 (19)0.0150 (19)0.0011 (19)
C30.032 (2)0.040 (2)0.032 (2)0.0038 (18)0.0041 (18)0.0009 (17)
C40.047 (3)0.045 (3)0.046 (2)0.001 (2)0.010 (2)0.002 (2)
C50.044 (3)0.065 (3)0.051 (3)0.008 (2)0.021 (2)0.002 (2)
C60.058 (3)0.053 (3)0.049 (3)0.012 (2)0.015 (2)0.006 (2)
C70.042 (2)0.050 (3)0.032 (2)0.005 (2)0.0124 (18)0.0008 (19)
C80.038 (2)0.034 (2)0.032 (2)0.0040 (18)0.0119 (18)0.0011 (18)
C90.031 (2)0.035 (2)0.0251 (19)0.0016 (17)0.0025 (16)0.0007 (16)
C100.040 (2)0.032 (2)0.035 (2)0.0057 (17)0.0045 (18)0.0054 (17)
C110.037 (2)0.054 (3)0.029 (2)0.001 (2)0.0058 (18)0.0064 (19)
C120.043 (3)0.050 (3)0.035 (2)0.009 (2)0.0052 (19)0.0112 (19)
C130.046 (2)0.036 (2)0.040 (2)0.0009 (19)0.0027 (19)0.0016 (18)
C140.037 (2)0.040 (2)0.030 (2)0.0010 (18)0.0031 (18)0.0014 (17)
Geometric parameters (Å, º) top
N1—O21.199 (4)C4—C51.378 (5)
N1—O11.201 (4)C4—H40.9300
N1—C11.463 (5)C5—C61.372 (5)
N2—C71.261 (4)C5—H50.9300
N2—N31.393 (4)C6—H60.9300
N3—C81.340 (4)C7—H70.9300
N3—H30.893 (10)C8—C91.493 (5)
N4—O41.212 (4)C9—C141.385 (5)
N4—O51.219 (4)C9—C101.385 (4)
N4—C111.472 (5)C10—C111.369 (5)
O3—C81.231 (4)C10—H100.9300
C1—C21.370 (5)C11—C121.378 (5)
C1—C61.382 (5)C12—C131.376 (5)
C2—C31.379 (5)C12—H120.9300
C2—H20.9300C13—C141.387 (5)
C3—C41.391 (5)C13—H130.9300
C3—C71.471 (5)C14—H140.9300
O2—N1—O1121.8 (4)C5—C6—H6120.9
O2—N1—C1118.4 (4)C1—C6—H6120.9
O1—N1—C1119.8 (4)N2—C7—C3121.2 (3)
C7—N2—N3114.6 (3)N2—C7—H7119.4
C8—N3—N2118.2 (3)C3—C7—H7119.4
C8—N3—H3120 (3)O3—C8—N3123.1 (3)
N2—N3—H3122 (3)O3—C8—C9120.9 (3)
O4—N4—O5123.3 (4)N3—C8—C9115.9 (3)
O4—N4—C11118.4 (4)C14—C9—C10119.7 (3)
O5—N4—C11118.3 (4)C14—C9—C8118.0 (3)
C2—C1—C6122.1 (4)C10—C9—C8122.1 (3)
C2—C1—N1118.2 (4)C11—C10—C9118.5 (3)
C6—C1—N1119.6 (4)C11—C10—H10120.7
C1—C2—C3119.6 (3)C9—C10—H10120.7
C1—C2—H2120.2C10—C11—C12123.0 (3)
C3—C2—H2120.2C10—C11—N4118.5 (4)
C2—C3—C4118.8 (3)C12—C11—N4118.5 (3)
C2—C3—C7119.6 (3)C13—C12—C11118.1 (3)
C4—C3—C7121.6 (3)C13—C12—H12120.9
C5—C4—C3120.7 (4)C11—C12—H12120.9
C5—C4—H4119.6C12—C13—C14120.2 (4)
C3—C4—H4119.6C12—C13—H13119.9
C6—C5—C4120.5 (4)C14—C13—H13119.9
C6—C5—H5119.8C9—C14—C13120.4 (3)
C4—C5—H5119.8C9—C14—H14119.8
C5—C6—C1118.3 (4)C13—C14—H14119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.89 (1)2.03 (2)2.876 (4)159 (4)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10N4O5
Mr314.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.990 (2), 13.558 (3), 8.5800 (17)
β (°) 96.752 (3)
V3)1385.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.17 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
9991, 2549, 1489
Rint0.094
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.151, 1.03
No. of reflections2549
No. of parameters211
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.893 (10)2.026 (18)2.876 (4)159 (4)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The author is grateful to the Zibo Vocational Institute for supporting this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, Y. (2011). Acta Cryst. E67, o162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011a). Acta Cryst. E67, o1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011b). Acta Cryst. E67, o2511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds