organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-3-cyano-7-(4-meth­­oxy­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromen-2-aminium methano­late

aShandong Academy of Chinese Medicine, Jinan 250355, People's Republic of China, bPostdoctoral Research Station of Shandong University of TCM, Jinan 250355, People's Republic of China, cKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China, and dShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
*Correspondence e-mail: sunrong107@163.com

(Received 8 February 2012; accepted 16 February 2012; online 24 February 2012)

In the cation of the title organic ion pair compound, C23H20ClN2O3+·CH3O, the cyclo­hexyl ring shows a half-boat conformation and the dihedral angles between two benzene rings and the pyran ring are 83.14 (7) and 73.18 (9)°. In the crystal, centrosymmetrically related cations are linked into a dimer by pairs of N—H⋯N hydrogen bonds, generating an R22(12) ring motif. The anion inter­acts with the dimer through an N—H⋯O hydrogen bond. ππ inter­actions between pyran rings of adjacent dimers, with a centroid–centroid distance of 3.861 (2) Å, are also observed.

Related literature

For background to chromene and its derivatives, see: Geen et al. (1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 469-500. New York: Pergamon.]); Ercole et al. (2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]); Takakazu et al. (2001[Takakazu, N., Nobuyuki, N. & Hirochika, S. (2001). Sci. Prog. 84, 137-156.]). For the synthesis, see: Wen et al. (2006[Wen, X. M., Wang, H. Y. & Li, S. L. (2006). J. Chem. Res. 12, 776-778.]); Kidwai et al. (2005[Kidwai, M., Saxena, S., Rahman Khan, M. K. & Thukral, S. S. (2005). Bioorg. Med. Chem. Lett. 15, 4295-4298.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20ClN2O3+·CH3O

  • Mr = 438.89

  • Monoclinic, P 21 /n

  • a = 8.4408 (12) Å

  • b = 26.844 (4) Å

  • c = 10.4615 (13) Å

  • β = 100.398 (3)°

  • V = 2331.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.963

  • 12431 measured reflections

  • 4566 independent reflections

  • 3554 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.132

  • S = 1.07

  • 4566 reflections

  • 283 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 2.12 2.698 (4) 122
N1—H1B⋯N2ii 0.89 2.26 3.014 (5) 142
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+3, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chromenes and their benzo-derivatives are very important heterocyclic compounds, in particular due to their application in a variety of industrial, biological and chemical syntheses (Geen et al., 1996; Ercole et al., 2009; Takakazu et al., 2001). Herein, we report the synthesis and crystal structure of a new chromene derivative.

The molecular structure of the title compound is shown in Figure 1. In the cation of this novel organic ion pair compound, the cyclohexyl ring shows in a half-boat conformation. The dihedral angles between the C1–C6 and C16–C21 benzene rings and the pyran ring are 83.14 (7) and 73.18 (9)°, respectively. In the crystal structure (Fig. 2), centrosymmetrically related cations form a dimer by two intermolecular N—H···N hydrogen bonds (Table 1). Between neighbouring dimers, ππ interactions between pyran rings (centroid-centroid distance = 3.861 (2) Å) are observed. Furthermore, the organic cations and the methanolate anion are linked by intermolecular N—H···O hydrogen bonds.

Related literature top

For background to chromene and its derivatives, see: Geen et al. (1996); Ercole et al. (2009); Takakazu et al. (2001). For the synthesis, see: Wen et al. (2006); Kidwai et al. (2005).

Experimental top

The title compound were synthesized by the reaction of 4-chlorobenzaldehyde (10 mmol), malononitrile (10 mmol) and 5-(4-methoxyphenyl)-1,3-cyclo-hexane-dione (10 mmol) according to the similar synthesis route reported in the literature (Wen et al., 2006; Kidwai et al., 2005). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature for one week.

Refinement top

The aminium H atoms were located in a difference Fourier map ans refined with N—H fixed to 0.89 Å and Uiso(H) = 1.5Ueq(N). All other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N) for methyl H atoms. Rigid bond restraints were applied to the Uij values of atoms O1, C4, C5, C10, C14, C15, C17, C18, C20 and C21 with the DELU command in SHELXL97.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
4-(4-Chlorophenyl)-3-cyano-7-(4-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydro- 4H-chromen-2-aminium methanolate top
Crystal data top
C23H20ClN2O3+·CH3OF(000) = 920
Mr = 438.89Dx = 1.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1476 reflections
a = 8.4408 (12) Åθ = 2.6–19.7°
b = 26.844 (4) ŵ = 0.20 mm1
c = 10.4615 (13) ÅT = 291 K
β = 100.398 (3)°Block, colourless
V = 2331.5 (5) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4566 independent reflections
Radiation source: sealed tube3554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.949, Tmax = 0.963k = 2633
12431 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0457P)2 + 1.6707P]
where P = (Fo2 + 2Fc2)/3
4566 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.18 e Å3
9 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H20ClN2O3+·CH3OV = 2331.5 (5) Å3
Mr = 438.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4408 (12) ŵ = 0.20 mm1
b = 26.844 (4) ÅT = 291 K
c = 10.4615 (13) Å0.28 × 0.24 × 0.20 mm
β = 100.398 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4566 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3554 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.963Rint = 0.042
12431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0569 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
4566 reflectionsΔρmin = 0.19 e Å3
283 parameters
Special details top

Experimental. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.1912 (0.0049) x + 12.2668 (0.0260) y - 4.2393 (0.0113) z = 8.2055 (0.0187)

* -0.0076 (0.0019) C1 * -0.0037 (0.0019) C2 * 0.0134 (0.0020) C3 * -0.0120 (0.0019) C4 * 0.0003 (0.0019) C5 * 0.0095 (0.0020) C6

Rms deviation of fitted atoms = 0.0090

- 4.4632 (0.0075) x + 22.2337 (0.0159) y + 2.9074 (0.0097) z = 7.7773 (0.0151)

Angle to previous plane (with approximate e.s.d.) = 83.14 (7)

* -0.0358 (0.0017) C7 * 0.0190 (0.0018) C8 * 0.0065 (0.0017) C9 * -0.0138 (0.0016) O1 * -0.0093 (0.0017) C10 * 0.0334 (0.0018) C11

Rms deviation of fitted atoms = 0.0227

- 4.8454 (0.0082) x - 5.2426 (0.0307) y + 9.2662 (0.0059) z = 3.3249 (0.0131)

Angle to previous plane (with approximate e.s.d.) = 73.18 (9)

* -0.0166 (0.0021) C16 * 0.0117 (0.0020) C17 * 0.0054 (0.0019) C18 * -0.0182 (0.0020) C19 * 0.0126 (0.0020) C20 * 0.0050 (0.0021) C21

Rms deviation of fitted atoms = 0.0126

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1955 (3)0.37698 (10)1.1850 (2)0.0370 (6)
C21.2679 (3)0.38035 (10)1.3165 (3)0.0414 (6)
H21.24910.40781.36610.050*
C31.3696 (3)0.34133 (10)1.3721 (3)0.0420 (6)
H31.42150.34301.45840.050*
C41.3903 (3)0.30112 (10)1.2970 (3)0.0397 (6)
C51.3237 (3)0.29740 (10)1.1703 (3)0.0404 (6)
H51.34290.26971.12200.048*
C61.2232 (3)0.33683 (10)1.1117 (3)0.0422 (6)
H61.17670.33531.02420.051*
C71.0925 (3)0.42032 (10)1.1254 (2)0.0348 (5)
H71.06770.44141.19570.042*
C81.1785 (3)0.45122 (9)1.0401 (2)0.0335 (5)
C91.1299 (3)0.45753 (9)0.9128 (2)0.0357 (5)
C100.8945 (3)0.40928 (10)0.9150 (2)0.0371 (5)
C110.9333 (3)0.40222 (10)1.0433 (2)0.0349 (5)
C120.8178 (3)0.37688 (10)1.1067 (3)0.0395 (6)
C130.6618 (3)0.35784 (12)1.0346 (3)0.0461 (7)
H13A0.64270.32481.06590.055*
H13B0.57550.37931.05120.055*
C140.6599 (4)0.35575 (12)0.8962 (3)0.0492 (7)
H140.72590.32590.89360.059*
C150.7507 (3)0.39052 (10)0.8273 (2)0.0384 (5)
H15A0.78310.37360.75430.046*
H15B0.68210.41830.79380.046*
C160.5059 (3)0.33767 (11)0.8126 (3)0.0454 (7)
C170.3746 (3)0.37013 (10)0.7654 (3)0.0420 (6)
H170.38150.40340.79030.050*
C180.2351 (3)0.35330 (10)0.6822 (3)0.0422 (6)
H180.15020.37470.65120.051*
C190.2300 (3)0.30415 (9)0.6492 (3)0.0382 (6)
C200.3501 (3)0.27166 (10)0.6969 (3)0.0409 (6)
H200.33930.23810.67510.049*
C210.4885 (3)0.28832 (11)0.7779 (3)0.0475 (7)
H210.57040.26590.80900.057*
C221.3256 (3)0.47351 (9)1.0965 (2)0.0336 (5)
C230.0285 (3)0.31490 (11)0.5070 (3)0.0453 (7)
H23A0.06930.33240.57420.068*
H23B0.11290.29510.45810.068*
H23C0.00940.33840.45030.068*
C240.7601 (4)0.45139 (11)0.4691 (3)0.0514 (7)
H24A0.66160.44300.41180.077*
H24B0.74190.47920.52240.077*
H24C0.79640.42330.52340.077*
Cl11.51263 (8)0.25245 (3)1.36958 (7)0.04615 (19)
N11.2003 (3)0.48469 (10)0.8308 (3)0.0576 (7)
H1A1.15080.47910.74960.086*
H1B1.30350.47610.83930.086*
H1C1.19320.51690.84940.086*
N21.4468 (3)0.49159 (8)1.1468 (2)0.0406 (5)
O10.9900 (2)0.43720 (7)0.84663 (16)0.0390 (4)
O20.8398 (2)0.37310 (7)1.22654 (17)0.0427 (5)
O30.1011 (2)0.28334 (7)0.56417 (18)0.0450 (5)
O40.8804 (2)0.46438 (8)0.3939 (2)0.0527 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (13)0.0411 (14)0.0363 (13)0.0051 (11)0.0073 (11)0.0039 (11)
C20.0393 (14)0.0445 (15)0.0361 (14)0.0022 (12)0.0043 (11)0.0039 (11)
C30.0450 (15)0.0428 (15)0.0342 (13)0.0036 (12)0.0037 (11)0.0025 (11)
C40.0350 (13)0.0454 (15)0.0416 (12)0.0154 (12)0.0149 (10)0.0110 (11)
C50.0438 (14)0.0379 (14)0.0395 (12)0.0075 (12)0.0075 (11)0.0056 (11)
C60.0412 (14)0.0376 (14)0.0425 (14)0.0144 (12)0.0063 (11)0.0016 (11)
C70.0243 (11)0.0400 (14)0.0390 (13)0.0040 (10)0.0023 (10)0.0052 (11)
C80.0336 (12)0.0288 (12)0.0365 (13)0.0003 (10)0.0022 (10)0.0025 (10)
C90.0287 (12)0.0336 (13)0.0423 (14)0.0044 (10)0.0005 (10)0.0013 (11)
C100.0327 (12)0.0427 (14)0.0348 (13)0.0024 (10)0.0032 (9)0.0024 (10)
C110.0294 (12)0.0444 (14)0.0324 (12)0.0032 (11)0.0091 (10)0.0027 (11)
C120.0320 (13)0.0447 (15)0.0429 (15)0.0038 (11)0.0095 (11)0.0070 (12)
C130.0394 (15)0.0538 (17)0.0440 (15)0.0005 (13)0.0042 (12)0.0026 (13)
C140.0443 (15)0.0549 (17)0.0443 (16)0.0075 (12)0.0028 (12)0.0041 (13)
C150.0368 (12)0.0387 (14)0.0363 (13)0.0032 (10)0.0020 (10)0.0004 (10)
C160.0443 (15)0.0448 (16)0.0416 (15)0.0130 (12)0.0069 (12)0.0059 (12)
C170.0387 (13)0.0426 (15)0.0444 (15)0.0020 (11)0.0067 (11)0.0074 (12)
C180.0410 (14)0.0388 (14)0.0446 (15)0.0056 (11)0.0023 (11)0.0068 (11)
C190.0335 (13)0.0352 (13)0.0418 (14)0.0139 (11)0.0038 (11)0.0037 (11)
C200.0331 (13)0.0365 (14)0.0500 (15)0.0051 (11)0.0009 (11)0.0061 (11)
C210.0398 (14)0.0450 (16)0.0517 (16)0.0135 (12)0.0074 (12)0.0141 (13)
C220.0317 (13)0.0297 (12)0.0410 (13)0.0070 (10)0.0106 (11)0.0027 (10)
C230.0370 (14)0.0477 (16)0.0441 (15)0.0007 (12)0.0122 (11)0.0103 (12)
C240.0565 (18)0.0480 (17)0.0529 (17)0.0150 (14)0.0186 (14)0.0118 (14)
Cl10.0419 (4)0.0492 (4)0.0497 (4)0.0160 (3)0.0148 (3)0.0153 (3)
N10.0484 (14)0.0671 (17)0.0570 (15)0.0033 (13)0.0080 (12)0.0131 (13)
N20.0376 (12)0.0419 (12)0.0391 (12)0.0072 (10)0.0020 (9)0.0002 (10)
O10.0356 (9)0.0435 (10)0.0372 (10)0.0063 (8)0.0046 (7)0.0024 (8)
O20.0417 (10)0.0461 (11)0.0390 (10)0.0109 (8)0.0037 (8)0.0156 (8)
O30.0397 (10)0.0438 (11)0.0458 (11)0.0018 (8)0.0075 (8)0.0069 (8)
O40.0561 (12)0.0491 (12)0.0532 (12)0.0147 (10)0.0108 (10)0.0063 (9)
Geometric parameters (Å, º) top
C1—C61.367 (4)C14—C151.476 (4)
C1—C21.404 (4)C14—C161.509 (4)
C1—C71.518 (4)C14—H140.9800
C2—C31.411 (4)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.365 (4)C16—C211.375 (4)
C3—H30.9300C16—C171.426 (4)
C4—C51.347 (4)C17—C181.407 (4)
C4—Cl11.751 (3)C17—H170.9300
C5—C61.424 (3)C18—C191.363 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.362 (3)
C7—C81.499 (3)C19—O31.392 (3)
C7—C111.537 (3)C20—C211.388 (4)
C7—H70.9800C20—H200.9300
C8—C91.331 (3)C21—H210.9300
C8—C221.408 (3)C22—N21.168 (3)
C9—N11.343 (3)C23—O31.427 (3)
C9—O11.370 (3)C23—H23A0.9600
C10—C111.336 (3)C23—H23B0.9600
C10—O11.390 (3)C23—H23C0.9600
C10—C151.472 (3)C24—O41.435 (3)
C11—C121.445 (3)C24—H24A0.9600
C12—O21.238 (3)C24—H24B0.9600
C12—C131.485 (4)C24—H24C0.9600
C13—C141.446 (4)N1—H1A0.8900
C13—H13A0.9700N1—H1B0.8900
C13—H13B0.9700N1—H1C0.8900
C6—C1—C2120.8 (2)C13—C14—H1498.9
C6—C1—C7121.2 (2)C15—C14—H1498.9
C2—C1—C7118.0 (2)C16—C14—H1498.9
C1—C2—C3118.7 (3)C10—C15—C14110.8 (2)
C1—C2—H2120.6C10—C15—H15A109.5
C3—C2—H2120.6C14—C15—H15A109.5
C4—C3—C2118.8 (2)C10—C15—H15B109.5
C4—C3—H3120.6C14—C15—H15B109.5
C2—C3—H3120.6H15A—C15—H15B108.1
C5—C4—C3123.4 (2)C21—C16—C17117.3 (3)
C5—C4—Cl1118.7 (2)C21—C16—C14120.2 (3)
C3—C4—Cl1117.8 (2)C17—C16—C14122.6 (3)
C4—C5—C6118.6 (3)C18—C17—C16122.0 (3)
C4—C5—H5120.7C18—C17—H17119.0
C6—C5—H5120.7C16—C17—H17119.0
C1—C6—C5119.6 (2)C19—C18—C17116.9 (3)
C1—C6—H6120.2C19—C18—H18121.6
C5—C6—H6120.2C17—C18—H18121.6
C8—C7—C1111.4 (2)C20—C19—C18122.7 (3)
C8—C7—C11108.1 (2)C20—C19—O3114.9 (2)
C1—C7—C11111.4 (2)C18—C19—O3122.4 (2)
C8—C7—H7108.6C19—C20—C21120.4 (3)
C1—C7—H7108.6C19—C20—H20119.8
C11—C7—H7108.6C21—C20—H20119.8
C9—C8—C22117.0 (2)C16—C21—C20120.7 (3)
C9—C8—C7124.8 (2)C16—C21—H21119.7
C22—C8—C7118.1 (2)C20—C21—H21119.7
C8—C9—N1128.0 (2)N2—C22—C8178.0 (3)
C8—C9—O1122.5 (2)O3—C23—H23A109.5
N1—C9—O1109.5 (2)O3—C23—H23B109.5
C11—C10—O1122.2 (2)H23A—C23—H23B109.5
C11—C10—C15127.1 (2)O3—C23—H23C109.5
O1—C10—C15110.7 (2)H23A—C23—H23C109.5
C10—C11—C12117.7 (2)H23B—C23—H23C109.5
C10—C11—C7123.2 (2)O4—C24—H24A109.5
C12—C11—C7119.1 (2)O4—C24—H24B109.5
O2—C12—C11120.9 (2)H24A—C24—H24B109.5
O2—C12—C13116.3 (2)O4—C24—H24C109.5
C11—C12—C13122.6 (2)H24A—C24—H24C109.5
C14—C13—C12111.8 (2)H24B—C24—H24C109.5
C14—C13—H13A109.3C9—N1—H1A109.5
C12—C13—H13A109.3C9—N1—H1B109.5
C14—C13—H13B109.3H1A—N1—H1B109.5
C12—C13—H13B109.3C9—N1—H1C109.5
H13A—C13—H13B107.9H1A—N1—H1C109.5
C13—C14—C15123.5 (3)H1B—N1—H1C109.5
C13—C14—C16116.5 (3)C9—O1—C10118.80 (19)
C15—C14—C16112.9 (2)C19—O3—C23118.8 (2)
C6—C1—C2—C30.2 (4)C7—C11—C12—O25.7 (4)
C7—C1—C2—C3177.4 (2)C10—C11—C12—C131.3 (4)
C1—C2—C3—C41.8 (4)C7—C11—C12—C13179.5 (2)
C2—C3—C4—C52.7 (4)O2—C12—C13—C14169.7 (3)
C2—C3—C4—Cl1178.2 (2)C11—C12—C13—C1415.3 (4)
C3—C4—C5—C61.5 (4)C12—C13—C14—C1530.8 (4)
Cl1—C4—C5—C6179.5 (2)C12—C13—C14—C16179.1 (2)
C2—C1—C6—C51.4 (4)C11—C10—C15—C147.9 (4)
C7—C1—C6—C5178.5 (2)O1—C10—C15—C14172.8 (2)
C4—C5—C6—C10.6 (4)C13—C14—C15—C1027.5 (4)
C6—C1—C7—C872.7 (3)C16—C14—C15—C10176.7 (2)
C2—C1—C7—C8104.4 (3)C13—C14—C16—C2194.4 (4)
C6—C1—C7—C1148.2 (3)C15—C14—C16—C21114.1 (3)
C2—C1—C7—C11134.7 (2)C13—C14—C16—C1786.3 (4)
C1—C7—C8—C9117.3 (3)C15—C14—C16—C1765.2 (4)
C11—C7—C8—C95.5 (3)C21—C16—C17—C182.6 (4)
C1—C7—C8—C2259.6 (3)C14—C16—C17—C18176.7 (3)
C11—C7—C8—C22177.6 (2)C16—C17—C18—C190.5 (4)
C22—C8—C9—N13.3 (4)C17—C18—C19—C202.4 (4)
C7—C8—C9—N1179.7 (3)C17—C18—C19—O3177.8 (2)
C22—C8—C9—O1179.2 (2)C18—C19—C20—C213.1 (4)
C7—C8—C9—O12.3 (4)O3—C19—C20—C21177.0 (3)
O1—C10—C11—C12173.9 (2)C17—C16—C21—C201.9 (4)
C15—C10—C11—C125.3 (4)C14—C16—C21—C20177.4 (3)
O1—C10—C11—C75.2 (4)C19—C20—C21—C160.8 (4)
C15—C10—C11—C7175.6 (2)C8—C9—O1—C100.6 (4)
C8—C7—C11—C106.9 (3)N1—C9—O1—C10177.3 (2)
C1—C7—C11—C10115.9 (3)C11—C10—O1—C91.0 (4)
C8—C7—C11—C12172.2 (2)C15—C10—O1—C9179.7 (2)
C1—C7—C11—C1265.0 (3)C20—C19—O3—C23178.5 (2)
C10—C11—C12—O2173.5 (3)C18—C19—O3—C231.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.122.698 (4)122
N1—H1B···N2ii0.892.263.014 (5)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H20ClN2O3+·CH3O
Mr438.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)8.4408 (12), 26.844 (4), 10.4615 (13)
β (°) 100.398 (3)
V3)2331.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.949, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
12431, 4566, 3554
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.132, 1.07
No. of reflections4566
No. of parameters283
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.122.698 (4)122.2
N1—H1B···N2ii0.892.263.014 (5)142.4
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+2.
 

Acknowledgements

This work was supported by the National Major Fundamental Research Program of China (grant No. 2009CB522802), the Major Program of National Natural Significant Drug Discovery (grant No. 2009ZX09502–015), the National Key Technologies Program of China during the 11th Five-Year Plan Period, the Postdoctoral Innovative Projects of Shandong (grant No. 200801002) and the National TCM Project Application in the 11th Five-Year Period (grant No. 2008BAI51B02).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS Google Scholar
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 469–500. New York: Pergamon.  Google Scholar
First citationKidwai, M., Saxena, S., Rahman Khan, M. K. & Thukral, S. S. (2005). Bioorg. Med. Chem. Lett. 15, 4295–4298.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakakazu, N., Nobuyuki, N. & Hirochika, S. (2001). Sci. Prog. 84, 137–156.  Google Scholar
First citationWen, X. M., Wang, H. Y. & Li, S. L. (2006). J. Chem. Res. 12, 776–778.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds