organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o802-o803

(3E,5E)-3,5-Bis(naphthalen-1-yl­methyl­­idene)piperidin-4-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 8 February 2012; accepted 13 February 2012; online 24 February 2012)

In the title compound, C27H21NO, the piperidine ring adopts a chair conformation. The mean plane through the piperidine ring makes dihedral angles of 49.27 (5) and 63.07 (5)° with the naphthalene ring systems. In the crystal, mol­ecules are linked into dimers via pairs of inter­molecular C—H⋯O inter­actions, generating ten-membered R22(10) ring motifs. C—H⋯π inter­actions further stabilize the crystal structure.

Related literature

For the biological activities of α,β-unsaturated ketones, see: Lee et al. (1971[Lee, K.-H., Huang, E.-S. & Piantadosi, C. (1971). Cancer Res. 31, 1649-1654.]); Anke et al. (1981[Anke, T., Watson, W., Giannetti, B. & Steglich, W. (1981). J. Antibiot. 34, 1271-1277.]); Khodair et al. (1997[Khodair, A. I., El-Subbagh, H. I. & El-Emam, A. A. (1997). Bull. Chim. Farm. 136, 561-567.]); Murakami et al. (2002[Murakami, A., Takahashi, D. & Kinoshita, T. (2002). Carcinogesis, 23, 795-802.]); El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); El-Barbary et al. (1994[El-Barbary, A. A., Khodair, A. I., Pederson, E. B. & Nielsen, C. (1994). J. Med. Chem. 37, 73-77.]); Dimmock et al. (1983[Dimmock, J. R., Raghavan, S. K., Logan, B. M. & Bigam, G. E. (1983). Eur. J. Med. Chem. 18, 248-254.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Basiri et al. (2011[Basiri, A., Murugaiyah, V., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1228-o1229.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For experimental preparation, see: Das et al. (2007[Das, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71-80.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H21NO

  • Mr = 375.45

  • Monoclinic, P 21 /c

  • a = 9.4833 (2) Å

  • b = 10.0838 (2) Å

  • c = 20.3885 (4) Å

  • β = 101.513 (1)°

  • V = 1910.48 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.28 × 0.21 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.992

  • 21618 measured reflections

  • 5644 independent reflections

  • 4138 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.125

  • S = 1.02

  • 5644 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O1i 0.99 2.48 3.3758 (17) 150
C26—H26ACg1ii 0.95 2.92 3.7532 (15) 147
C25—H25ACg2ii 0.95 2.70 3.4923 (16) 141
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Reaction of aldehydes and ketones through Claisen-Schmidt condensation leads to α,β-unsaturated ketones which shown diverse biological activities such as cytotoxic (Lee et al., 1971; Anke et al., 1981; Khodair et al., 1997), antitumor (Murakami et al., 2002; El-Subbagh et al., 2000) and antiviral activities (El-Barbary et al., 1994). The conjugated OCH—CHCH2 system is the moiety which promotes the bioactivities in the title compound (Lee et al., 1971). As reported by Dimmock et al. (1983), these class of compounds show cytotoxic activity without any subsidiary mutagenic and carcinogenic activities in human body.

The molecular structure is shown in Fig. 1. The piperidine ring (N1/C12–C16) adopts a chair conformation with puckering amplitude Q = 0.4308 (14) Å, θ = 40.80 (19)° and ϕ = 350.7 (3)° (Cremer & Pople, 1975). In addition, the mean plane through the piperidine ring makes dihedral angles of 49.27 (5) and 63.07 (5)° with the terminal naphthalene ring systems (C1–C10 and C18–C27), respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those found in a the related structure (Basiri et al., 2011).

In the crystal packing (Fig. 2), molecules are linked into dimers via pairs of intermolecular C13—H13B···O1 interactions (Table 1), generating ten-membered R22(10) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by the intermolecular C26—H26A···Cg1 and C25—H25A···Cg2 (Table 1) interactions (Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C10 rings, respectively).

Related literature top

For the biological activities of α,β-unsaturated ketones, see: Lee et al. (1971); Anke et al. (1981); Khodair et al. (1997); Murakami et al. (2002); El-Subbagh et al. (2000); El-Barbary et al. (1994); Dimmock et al. (1983). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For a related structure, see: Basiri et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For experimental preparation, see: Das et al. (2007). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

(3E,5E)-3,5-Bis(naphthalen-1-ylmethylene)piperidin-4-one was synthesized by the method described in the literature (Das et al., 2007). Briefly, the title compound was prepared by dropwise addition of 1-naphtaldehyde (1 mmol) to a stirred mixture of 4-piperidone (1 mmol) and acetic acid (50 ml) in the presence of HCl (g) as catalyst at room temperature. After 24 h, a yellow precipitate formed and the completion of the reaction was monitored by TLC. The precipitate was filtered and washed with water. The pure solid was then recrystallized from ethanol to afford the title compound as yellow crystals.

Refinement top

The N-bound H atom was located in a difference Fourier map and refined freely [N–H = 0.928 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. H atoms not involved in intermolecular hydrogen interactions (dashed lines) have been omitted for clarity.
(3E,5E)-3,5-Bis(naphthalen-1-ylmethylidene)piperidin-4-one top
Crystal data top
C27H21NOF(000) = 792
Mr = 375.45Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5698 reflections
a = 9.4833 (2) Åθ = 2.7–29.9°
b = 10.0838 (2) ŵ = 0.08 mm1
c = 20.3885 (4) ÅT = 100 K
β = 101.513 (1)°Plate, yellow
V = 1910.48 (7) Å30.28 × 0.21 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5644 independent reflections
Radiation source: fine-focus sealed tube4138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 138
Tmin = 0.979, Tmax = 0.992k = 1314
21618 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.7137P]
where P = (Fo2 + 2Fc2)/3
5644 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C27H21NOV = 1910.48 (7) Å3
Mr = 375.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4833 (2) ŵ = 0.08 mm1
b = 10.0838 (2) ÅT = 100 K
c = 20.3885 (4) Å0.28 × 0.21 × 0.10 mm
β = 101.513 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5644 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4138 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.992Rint = 0.037
21618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.41 e Å3
5644 reflectionsΔρmin = 0.19 e Å3
266 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20055 (10)0.98893 (10)0.10917 (5)0.0220 (2)
N10.17776 (13)0.77264 (12)0.07711 (6)0.0221 (3)
C10.17882 (15)1.32180 (13)0.12377 (7)0.0184 (3)
C20.06600 (16)1.34358 (14)0.18022 (7)0.0222 (3)
H2A0.01711.28870.18680.027*
C30.07534 (17)1.44260 (15)0.22535 (8)0.0274 (3)
H3A0.00201.45670.26220.033*
C40.19864 (18)1.52344 (16)0.21750 (8)0.0310 (4)
H4A0.20531.59050.24950.037*
C50.30899 (17)1.50529 (15)0.16367 (8)0.0274 (3)
H5A0.39171.56040.15860.033*
C60.30191 (15)1.40587 (14)0.11546 (7)0.0209 (3)
C70.41645 (16)1.38733 (14)0.05993 (7)0.0233 (3)
H7A0.49821.44380.05440.028*
C80.41112 (16)1.28894 (14)0.01388 (7)0.0234 (3)
H8A0.48801.27850.02350.028*
C90.29140 (15)1.20365 (14)0.02233 (7)0.0206 (3)
H9A0.28901.13570.00970.025*
C100.17705 (14)1.21611 (13)0.07607 (6)0.0174 (3)
C110.05484 (15)1.12471 (13)0.08701 (6)0.0181 (3)
H11A0.03651.16350.10390.022*
C120.05458 (14)0.99261 (13)0.07631 (6)0.0168 (3)
C130.18459 (14)0.90730 (13)0.04956 (7)0.0188 (3)
H13A0.27120.95190.05930.023*
H13B0.19620.90120.00030.023*
C140.04589 (15)0.70382 (14)0.07028 (7)0.0217 (3)
H14A0.04590.69130.02210.026*
H14B0.04490.61490.09090.026*
C150.08935 (14)0.77746 (13)0.10247 (6)0.0173 (3)
C160.08796 (14)0.92523 (13)0.09686 (6)0.0171 (3)
C170.20833 (15)0.72198 (13)0.13867 (6)0.0185 (3)
H17A0.27980.78110.16130.022*
C180.23999 (14)0.57973 (13)0.14716 (7)0.0178 (3)
C190.21653 (15)0.49547 (14)0.09261 (7)0.0211 (3)
H19A0.17340.52910.04980.025*
C200.25547 (15)0.36044 (14)0.09939 (7)0.0236 (3)
H20A0.23890.30450.06110.028*
C210.31695 (15)0.30915 (14)0.16068 (7)0.0221 (3)
H21A0.34110.21770.16480.027*
C220.34447 (14)0.39198 (14)0.21777 (7)0.0189 (3)
C230.41211 (15)0.34198 (14)0.28155 (7)0.0228 (3)
H23A0.43730.25080.28620.027*
C240.44152 (16)0.42307 (15)0.33632 (7)0.0252 (3)
H24A0.48910.38860.37830.030*
C250.40119 (15)0.55807 (15)0.33047 (7)0.0238 (3)
H25A0.42070.61380.36880.029*
C260.33416 (15)0.60925 (14)0.26995 (7)0.0200 (3)
H26A0.30620.69990.26700.024*
C270.30600 (14)0.52860 (13)0.21164 (7)0.0171 (3)
H1N10.1808 (18)0.7776 (18)0.1223 (9)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (5)0.0162 (5)0.0274 (5)0.0004 (4)0.0013 (4)0.0002 (4)
N10.0224 (6)0.0159 (6)0.0273 (6)0.0011 (5)0.0037 (5)0.0041 (5)
C10.0233 (7)0.0136 (6)0.0194 (6)0.0007 (5)0.0072 (5)0.0015 (5)
C20.0239 (7)0.0189 (7)0.0244 (7)0.0014 (6)0.0064 (5)0.0019 (5)
C30.0323 (8)0.0254 (8)0.0243 (7)0.0021 (6)0.0052 (6)0.0050 (6)
C40.0409 (9)0.0239 (8)0.0301 (8)0.0032 (7)0.0116 (7)0.0085 (6)
C50.0323 (8)0.0211 (7)0.0309 (8)0.0076 (6)0.0113 (6)0.0015 (6)
C60.0257 (7)0.0151 (6)0.0236 (7)0.0026 (5)0.0089 (5)0.0023 (5)
C70.0254 (7)0.0195 (7)0.0257 (7)0.0082 (6)0.0071 (6)0.0049 (5)
C80.0245 (7)0.0229 (7)0.0220 (7)0.0048 (6)0.0029 (5)0.0036 (5)
C90.0264 (7)0.0166 (7)0.0191 (6)0.0028 (5)0.0053 (5)0.0008 (5)
C100.0209 (6)0.0128 (6)0.0193 (6)0.0014 (5)0.0059 (5)0.0013 (5)
C110.0203 (6)0.0165 (6)0.0176 (6)0.0019 (5)0.0039 (5)0.0007 (5)
C120.0203 (6)0.0148 (6)0.0151 (6)0.0026 (5)0.0032 (5)0.0014 (4)
C130.0200 (6)0.0135 (6)0.0222 (6)0.0029 (5)0.0024 (5)0.0010 (5)
C140.0229 (7)0.0139 (6)0.0259 (7)0.0020 (5)0.0010 (5)0.0002 (5)
C150.0205 (6)0.0128 (6)0.0186 (6)0.0016 (5)0.0036 (5)0.0000 (5)
C160.0216 (6)0.0138 (6)0.0155 (6)0.0026 (5)0.0028 (5)0.0005 (4)
C170.0206 (6)0.0153 (6)0.0190 (6)0.0006 (5)0.0022 (5)0.0002 (5)
C180.0166 (6)0.0146 (6)0.0217 (6)0.0016 (5)0.0026 (5)0.0004 (5)
C190.0215 (7)0.0186 (7)0.0215 (7)0.0026 (5)0.0004 (5)0.0006 (5)
C200.0215 (7)0.0184 (7)0.0294 (7)0.0016 (6)0.0013 (6)0.0070 (5)
C210.0185 (7)0.0137 (6)0.0331 (7)0.0012 (5)0.0025 (5)0.0001 (5)
C220.0146 (6)0.0159 (6)0.0260 (7)0.0003 (5)0.0036 (5)0.0026 (5)
C230.0204 (7)0.0176 (7)0.0301 (7)0.0015 (5)0.0046 (6)0.0078 (5)
C240.0226 (7)0.0287 (8)0.0233 (7)0.0015 (6)0.0023 (5)0.0079 (6)
C250.0236 (7)0.0273 (8)0.0207 (7)0.0002 (6)0.0049 (5)0.0004 (5)
C260.0210 (7)0.0161 (6)0.0231 (7)0.0017 (5)0.0049 (5)0.0002 (5)
C270.0152 (6)0.0149 (6)0.0211 (6)0.0001 (5)0.0032 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C161.2283 (16)C13—H13A0.9900
N1—C141.4610 (18)C13—H13B0.9900
N1—C131.4660 (17)C14—C151.5136 (19)
N1—H1N10.928 (18)C14—H14A0.9900
C1—C21.4235 (19)C14—H14B0.9900
C1—C61.4251 (19)C15—C171.3411 (18)
C1—C101.4451 (18)C15—C161.4943 (18)
C2—C31.372 (2)C17—C181.4686 (18)
C2—H2A0.9500C17—H17A0.9500
C3—C41.408 (2)C18—C191.3819 (18)
C3—H3A0.9500C18—C271.4344 (18)
C4—C51.369 (2)C19—C201.410 (2)
C4—H4A0.9500C19—H19A0.9500
C5—C61.415 (2)C20—C211.371 (2)
C5—H5A0.9500C20—H20A0.9500
C6—C71.416 (2)C21—C221.414 (2)
C7—C81.374 (2)C21—H21A0.9500
C7—H7A0.9500C22—C231.4226 (19)
C8—C91.407 (2)C22—C271.4242 (18)
C8—H8A0.9500C23—C241.367 (2)
C9—C101.3848 (19)C23—H23A0.9500
C9—H9A0.9500C24—C251.413 (2)
C10—C111.4626 (18)C24—H24A0.9500
C11—C121.3499 (18)C25—C261.3711 (19)
C11—H11A0.9500C25—H25A0.9500
C12—C161.4961 (18)C26—C271.4210 (19)
C12—C131.5130 (18)C26—H26A0.9500
C14—N1—C13112.12 (11)N1—C14—C15113.13 (11)
C14—N1—H1N1108.5 (11)N1—C14—H14A109.0
C13—N1—H1N1108.8 (11)C15—C14—H14A109.0
C2—C1—C6118.03 (12)N1—C14—H14B109.0
C2—C1—C10123.38 (12)C15—C14—H14B109.0
C6—C1—C10118.55 (12)H14A—C14—H14B107.8
C3—C2—C1121.04 (14)C17—C15—C16116.85 (12)
C3—C2—H2A119.5C17—C15—C14125.52 (12)
C1—C2—H2A119.5C16—C15—C14117.53 (11)
C2—C3—C4120.54 (14)O1—C16—C15120.79 (12)
C2—C3—H3A119.7O1—C16—C12121.31 (12)
C4—C3—H3A119.7C15—C16—C12117.90 (12)
C5—C4—C3119.88 (14)C15—C17—C18127.02 (12)
C5—C4—H4A120.1C15—C17—H17A116.5
C3—C4—H4A120.1C18—C17—H17A116.5
C4—C5—C6121.12 (14)C19—C18—C27119.17 (12)
C4—C5—H5A119.4C19—C18—C17120.63 (12)
C6—C5—H5A119.4C27—C18—C17120.04 (12)
C5—C6—C7120.91 (13)C18—C19—C20121.18 (13)
C5—C6—C1119.36 (13)C18—C19—H19A119.4
C7—C6—C1119.72 (13)C20—C19—H19A119.4
C8—C7—C6120.98 (13)C21—C20—C19120.60 (13)
C8—C7—H7A119.5C21—C20—H20A119.7
C6—C7—H7A119.5C19—C20—H20A119.7
C7—C8—C9119.77 (13)C20—C21—C22120.18 (13)
C7—C8—H8A120.1C20—C21—H21A119.9
C9—C8—H8A120.1C22—C21—H21A119.9
C10—C9—C8121.78 (13)C21—C22—C23121.24 (13)
C10—C9—H9A119.1C21—C22—C27119.81 (12)
C8—C9—H9A119.1C23—C22—C27118.95 (13)
C9—C10—C1119.13 (12)C24—C23—C22121.06 (13)
C9—C10—C11122.35 (12)C24—C23—H23A119.5
C1—C10—C11118.51 (12)C22—C23—H23A119.5
C12—C11—C10128.62 (13)C23—C24—C25119.99 (13)
C12—C11—H11A115.7C23—C24—H24A120.0
C10—C11—H11A115.7C25—C24—H24A120.0
C11—C12—C16115.70 (12)C26—C25—C24120.51 (14)
C11—C12—C13126.27 (12)C26—C25—H25A119.7
C16—C12—C13117.94 (11)C24—C25—H25A119.7
N1—C13—C12114.71 (11)C25—C26—C27120.90 (13)
N1—C13—H13A108.6C25—C26—H26A119.6
C12—C13—H13A108.6C27—C26—H26A119.6
N1—C13—H13B108.6C26—C27—C22118.56 (12)
C12—C13—H13B108.6C26—C27—C18122.40 (12)
H13A—C13—H13B107.6C22—C27—C18119.04 (12)
C6—C1—C2—C30.0 (2)C14—C15—C16—O1164.86 (12)
C10—C1—C2—C3177.67 (14)C17—C15—C16—C12161.14 (12)
C1—C2—C3—C41.3 (2)C14—C15—C16—C1215.56 (17)
C2—C3—C4—C51.4 (2)C11—C12—C16—O114.65 (19)
C3—C4—C5—C60.2 (2)C13—C12—C16—O1168.69 (12)
C4—C5—C6—C7179.89 (15)C11—C12—C16—C15164.93 (12)
C4—C5—C6—C11.1 (2)C13—C12—C16—C1511.73 (17)
C2—C1—C6—C51.2 (2)C16—C15—C17—C18174.83 (13)
C10—C1—C6—C5176.59 (13)C14—C15—C17—C188.8 (2)
C2—C1—C6—C7179.99 (13)C15—C17—C18—C1946.2 (2)
C10—C1—C6—C72.2 (2)C15—C17—C18—C27138.58 (14)
C5—C6—C7—C8178.55 (14)C27—C18—C19—C200.4 (2)
C1—C6—C7—C80.2 (2)C17—C18—C19—C20175.69 (13)
C6—C7—C8—C91.0 (2)C18—C19—C20—C210.5 (2)
C7—C8—C9—C100.3 (2)C19—C20—C21—C221.2 (2)
C8—C9—C10—C11.7 (2)C20—C21—C22—C23178.09 (13)
C8—C9—C10—C11177.34 (13)C20—C21—C22—C271.0 (2)
C2—C1—C10—C9179.42 (13)C21—C22—C23—C24178.48 (14)
C6—C1—C10—C92.94 (19)C27—C22—C23—C240.6 (2)
C2—C1—C10—C111.5 (2)C22—C23—C24—C251.7 (2)
C6—C1—C10—C11176.17 (12)C23—C24—C25—C260.8 (2)
C9—C10—C11—C1237.3 (2)C24—C25—C26—C271.1 (2)
C1—C10—C11—C12141.76 (14)C25—C26—C27—C222.1 (2)
C10—C11—C12—C16176.09 (12)C25—C26—C27—C18178.11 (13)
C10—C11—C12—C130.3 (2)C21—C22—C27—C26179.62 (13)
C14—N1—C13—C1253.18 (15)C23—C22—C27—C261.27 (19)
C11—C12—C13—N1145.86 (13)C21—C22—C27—C180.15 (19)
C16—C12—C13—N130.42 (17)C23—C22—C27—C18178.96 (12)
C13—N1—C14—C1556.73 (15)C19—C18—C27—C26179.70 (13)
N1—C14—C15—C17138.38 (14)C17—C18—C27—C264.4 (2)
N1—C14—C15—C1638.00 (17)C19—C18—C27—C220.54 (19)
C17—C15—C16—O118.44 (19)C17—C18—C27—C22175.85 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.992.483.3758 (17)150
C26—H26A···Cg1ii0.952.923.7532 (15)147
C25—H25A···Cg2ii0.952.703.4923 (16)141
Symmetry codes: (i) x, y+2, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H21NO
Mr375.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4833 (2), 10.0838 (2), 20.3885 (4)
β (°) 101.513 (1)
V3)1910.48 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.21 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.979, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
21618, 5644, 4138
Rint0.037
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.125, 1.02
No. of reflections5644
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.99002.48003.3758 (17)150.00
C26—H26A···Cg1ii0.95002.92003.7532 (15)147.00
C25—H25A···Cg2ii0.95002.70003.4923 (16)141.00
Symmetry codes: (i) x, y+2, z; (ii) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the FRGS grant No. 203/PKIMIA/6711179 and the Research University grant No. 1001/PFIZIK/811151 to conduct this work. YK thanks USM for providing research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnke, T., Watson, W., Giannetti, B. & Steglich, W. (1981). J. Antibiot. 34, 1271–1277.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBasiri, A., Murugaiyah, V., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1228–o1229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDas, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Raghavan, S. K., Logan, B. M. & Bigam, G. E. (1983). Eur. J. Med. Chem. 18, 248–254.  CAS Google Scholar
First citationEl-Barbary, A. A., Khodair, A. I., Pederson, E. B. & Nielsen, C. (1994). J. Med. Chem. 37, 73–77.  CAS PubMed Web of Science Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhodair, A. I., El-Subbagh, H. I. & El-Emam, A. A. (1997). Bull. Chim. Farm. 136, 561–567.  CAS Google Scholar
First citationLee, K.-H., Huang, E.-S. & Piantadosi, C. (1971). Cancer Res. 31, 1649–1654.  CAS PubMed Web of Science Google Scholar
First citationMurakami, A., Takahashi, D. & Kinoshita, T. (2002). Carcinogesis, 23, 795–802.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o802-o803
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds