organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-N-(3-Meth­­oxy­phen­yl)-tert-butane­sulfinamide

aInstitute of Green Catalysis and Synthesis, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: qinglezeng@hotmail.com

(Received 9 February 2012; accepted 14 February 2012; online 17 February 2012)

The title compound, C11H17NO2S, was obtained by the reaction of (R)-tert-butane­sulfinamide with 3-meth­oxy­phenyl bromide in toluene. In the crystal, mol­ecules inter­act head-to-tail through N—H⋯O and C—H⋯O hydrogen bonds, forming one-dimensional chains parallel to the a axis.

Related literature

For the structure of the racemic title compound, see: Datta et al. (2010[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2010). Acta Cryst. E66, o109.]). For the structures of related N-aryl­alkanesulfinamides, see: Datta et al. (2008[Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.], 2009a[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009a). Acta Cryst. E65, o2823.],b[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009b). Acta Cryst. E65, o2034.]). For the structures of related N-alkyl­alkanesulfinamides, see: Sato et al. (1975[Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385-1392.]); Schuckmann et al. (1978[Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516-1520.]); Ferreira et al. (2005[Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17NO2S

  • Mr = 227.33

  • Orthorhombic, P 21 21 21

  • a = 7.4418 (9) Å

  • b = 9.7027 (12) Å

  • c = 16.862 (2) Å

  • V = 1217.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.990, Tmax = 1.0

  • 7010 measured reflections

  • 2481 independent reflections

  • 2062 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.092

  • S = 1.10

  • 2481 reflections

  • 204 parameters

  • All H-atom parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1029 Friedel pairs

  • Flack parameter: −0.02 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.80 (2) 2.28 (3) 3.031 (3) 157 (2)
C10—H10A⋯O2i 1.02 (3) 2.47 (3) 3.487 (4) 171 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Sulfinamides, especially chiral sulfinamides, are an important class of organic compounds in modern organic chemistry, and a great number of such compounds have been synthesized. In our study on sulfinamides, we have prepared the title compound and report its crystal structure herein.

In the molecule of the title compound (Fig. 1), the N–Caryl bond length [1.416 (3) Å] is quite similar to that found in the racemic 3-MeO-N-phenyl-tert-butanesulfinamide (1.418 (2) Å; Datta et al., 2010), and could be compared with those reported for 4-MeO-N-phenyl-tert-butanesulfinamide (1.4225 (14) Å; Datta et al., 2009a), N-phenyl-tert-butanesulfinamide (1.4083 (12) Å; Datta et al., 2009b) and other N-alkylalkanesulfinamides (1.470–1.530 Å; Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). The crystal packing shows an intermolecular interaction through N-H···O=S hydrogen bond, forming a chain structure parallel to the a axis (Fig. 2; Table 1). In addition, the chain is enforced by an intermolecular C-H···O=S hydrogen bond as observed in the crystal packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008).

Related literature top

For the structure of the racemic title compound, see: Datta et al. (2010). For the structures of related N-arylalkanesulfinamides, see: Datta et al. (2008, 2009a,b). For the structures of related N-alkylalkanesulfinamides, see: Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005).

Experimental top

A oven-dried ground test tube, which was equipped with a magnetic stir bar and fitted with a rubber septum, was charged with (R)-tert-butanesulfinamide (0.121 g, 1.0 mmol), Pd2(dba)3 (0.018 g, 0.02 mmol; dba is dibenzylideneacetone), 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl (0.0212 g, 0.05 mmol) and NaOH (0.08 g, 2 mmol). The vessel was evacuated and backfilled with argon three times, then 3-methoxyphenyl bromide (1.3 mmol), toluene (10 ml) and degassed water (0.3 mL) were added via syringe. The solution was stirred at 90°C for 20 h. The reaction mixture was then cooled to room temperature, quenched by water, and extracted with ethyl acetate (20 mL) for twice. The organic layer was combined, and dried over anhydrous sodium sulfate and filtrated. The filterate was condensed under vacuum. The residual was purified with silica gel column chromatography with a solution of petroleum ether and ethyl acetate (5:1 v:v) as eluent. A test tube containing the eluate was covered with a piece of filter paper and placed motionless at room temperature, and a single crystal was cultured in the bottom of the test tube. Yield: 0.186 g, 82%. Spectroscopic analysis: ESI-MS (negative mode), m/z = 226 [M-H]-. FTIR (KBr) (cm-1): 3456, 3273, 3112, 3076, 2966, 1584, 1519, 1246, 1186, 1113, 1068, 875, 795, 751. 1H NMR (300 MHz, CDCl3), δ (ppm): 7.16 (t, J = 8.2 Hz, 1H), 5.60-5.55 (m, 3H), 5.34 (s, 1H), 3.78(s, 3H), 1.33 (s, 9H). 13C NMR (300 MHz, CD3OD), δ (ppm): 160.2, 143.5, 129.8, 110.1, 107.9, 103.5, 56.3, 54.9, 22.3. [α]D = -2.6 (c 0.05, ethyl acetate).

Refinement top

All H atoms were located in a difference Fourier map and refined freely (N—H = 0.80 (2) Å; C—H = 0.90 (3)–1.03 (3) Å). The absolute configuration was assigned by reference to the unchanging chiral centre in the synthetic procedure.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The chain structure of the title compound formed by intermolecular N—H···O hydrogen bonds (dashed lines).
(R)-N-(3-Methoxyphenyl)-tert-butanesulfinamide top
Crystal data top
C11H17NO2SDx = 1.246 Mg m3
Mr = 227.33Melting point: 375 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 2411 reflections
a = 7.4418 (9) Åθ = 3.0–29.1°
b = 9.7027 (12) ŵ = 0.25 mm1
c = 16.862 (2) ÅT = 293 K
V = 1217.5 (3) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 488
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2481 independent reflections
Radiation source: fine-focus sealed tube2062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 96
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.990, Tmax = 1.0l = 1821
7010 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2481 reflectionsΔρmax = 0.22 e Å3
204 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1029 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (9)
Crystal data top
C11H17NO2SV = 1217.5 (3) Å3
Mr = 227.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4418 (9) ŵ = 0.25 mm1
b = 9.7027 (12) ÅT = 293 K
c = 16.862 (2) Å0.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2481 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2062 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 1.0Rint = 0.031
7010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.092Δρmax = 0.22 e Å3
S = 1.10Δρmin = 0.29 e Å3
2481 reflectionsAbsolute structure: Flack (1983), 1029 Friedel pairs
204 parametersAbsolute structure parameter: 0.02 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84124 (9)0.41552 (6)0.07783 (3)0.04091 (18)
O10.6725 (4)0.18196 (19)0.18439 (11)0.0691 (6)
O21.0171 (2)0.39294 (19)0.03812 (10)0.0543 (5)
N10.7259 (3)0.2699 (2)0.08452 (13)0.0464 (5)
C10.7230 (3)0.0498 (3)0.20153 (15)0.0468 (7)
C20.7075 (3)0.0421 (3)0.13905 (15)0.0416 (6)
C30.7532 (3)0.1789 (3)0.14907 (14)0.0390 (6)
C40.8154 (4)0.2233 (3)0.22198 (15)0.0540 (7)
C50.8331 (5)0.1298 (3)0.28284 (17)0.0627 (8)
C60.7857 (4)0.0065 (3)0.27436 (17)0.0561 (8)
C70.6704 (6)0.2798 (4)0.2476 (2)0.0730 (10)
C80.6971 (3)0.5045 (3)0.00507 (14)0.0423 (6)
C90.5083 (4)0.5131 (4)0.0392 (2)0.0621 (8)
C100.7023 (5)0.4311 (3)0.07445 (17)0.0527 (7)
C110.7817 (6)0.6475 (3)0.0011 (2)0.0618 (9)
H9C0.509 (4)0.550 (3)0.0879 (18)0.060 (9)*
H20.667 (3)0.012 (2)0.0913 (14)0.041 (6)*
H10A0.641 (4)0.337 (3)0.0697 (16)0.074 (9)*
H7B0.593 (4)0.247 (3)0.2904 (19)0.071 (10)*
H9B0.438 (5)0.567 (4)0.005 (2)0.113 (14)*
H9A0.439 (4)0.423 (3)0.0417 (16)0.065 (9)*
H50.878 (4)0.161 (3)0.3324 (17)0.060 (8)*
H60.807 (4)0.066 (3)0.3158 (15)0.056 (8)*
H10.692 (4)0.237 (2)0.0438 (14)0.039 (7)*
H40.845 (4)0.312 (3)0.2268 (15)0.056 (8)*
H11C0.913 (5)0.641 (3)0.0169 (18)0.069 (10)*
H10C0.819 (4)0.425 (3)0.0947 (17)0.077 (10)*
H11A0.709 (4)0.705 (3)0.0376 (17)0.071 (9)*
H10B0.643 (4)0.481 (3)0.1119 (16)0.061 (8)*
H7A0.620 (5)0.361 (4)0.224 (2)0.103 (14)*
H7C0.793 (5)0.285 (4)0.2714 (18)0.095 (13)*
H11B0.775 (4)0.695 (3)0.0537 (18)0.075 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0392 (3)0.0430 (3)0.0405 (3)0.0007 (3)0.0001 (3)0.0027 (3)
O10.0977 (18)0.0545 (11)0.0550 (11)0.0043 (13)0.0024 (13)0.0189 (9)
O20.0394 (10)0.0641 (12)0.0594 (12)0.0039 (10)0.0060 (9)0.0031 (9)
N10.0555 (14)0.0464 (12)0.0374 (12)0.0082 (10)0.0103 (12)0.0041 (10)
C10.0424 (16)0.0568 (16)0.0414 (13)0.0049 (12)0.0027 (13)0.0091 (11)
C20.0401 (15)0.0520 (15)0.0326 (13)0.0047 (11)0.0005 (12)0.0048 (11)
C30.0304 (14)0.0538 (14)0.0328 (12)0.0025 (11)0.0020 (12)0.0059 (10)
C40.061 (2)0.0594 (17)0.0419 (15)0.0038 (16)0.0022 (14)0.0001 (13)
C50.067 (2)0.088 (2)0.0333 (14)0.0040 (19)0.0088 (17)0.0004 (13)
C60.0509 (18)0.076 (2)0.0412 (15)0.0086 (16)0.0015 (14)0.0183 (14)
C70.075 (3)0.075 (2)0.068 (2)0.007 (2)0.004 (2)0.0300 (18)
C80.0428 (15)0.0392 (12)0.0448 (14)0.0019 (12)0.0018 (12)0.0021 (10)
C90.0529 (19)0.065 (2)0.068 (2)0.0114 (18)0.0010 (19)0.0014 (18)
C100.0557 (19)0.0586 (17)0.0439 (14)0.0086 (15)0.0047 (16)0.0064 (14)
C110.072 (3)0.0414 (16)0.072 (2)0.0058 (15)0.007 (2)0.0048 (15)
Geometric parameters (Å, º) top
S1—O21.4866 (18)C6—H60.92 (3)
S1—N11.657 (2)C7—H7B0.98 (3)
S1—C81.844 (2)C7—H7A0.96 (4)
O1—C11.367 (3)C7—H7C1.00 (4)
O1—C71.428 (3)C8—C91.521 (4)
N1—C31.416 (3)C8—C101.519 (4)
N1—H10.80 (2)C8—C111.527 (4)
C1—C21.385 (3)C9—H9C0.90 (3)
C1—C61.379 (4)C9—H9B0.93 (4)
C2—C31.381 (3)C9—H9A1.01 (3)
C2—H20.91 (2)C10—H10A1.02 (3)
C3—C41.382 (4)C10—H10C0.94 (3)
C4—C51.376 (4)C10—H10B0.91 (3)
C4—H40.90 (3)C11—H11C1.02 (3)
C5—C61.376 (4)C11—H11A0.99 (3)
C5—H50.95 (3)C11—H11B1.03 (3)
S1—N1—H1116.3 (18)C8—C9—H9C111.4 (19)
O1—C1—C2114.8 (2)C8—C9—H9B109 (2)
O1—C1—C6124.5 (2)C8—C9—H9A115.9 (17)
O1—C7—H7B109.7 (18)C8—C10—H10A109.8 (16)
O1—C7—H7A104 (2)C8—C10—H10C112.1 (19)
O1—C7—H7C109 (2)C8—C10—H10B110.3 (17)
O2—S1—N1111.17 (12)C8—C11—H11C110.9 (17)
O2—S1—C8106.35 (11)C8—C11—H11A109.0 (18)
N1—S1—C898.23 (12)C8—C11—H11B108.7 (17)
C1—O1—C7118.0 (3)C9—C8—S1108.1 (2)
C1—C2—H2119.6 (15)C9—C8—C11110.9 (3)
C1—C6—H6122.8 (16)C10—C8—S1110.65 (19)
C2—C3—N1118.0 (2)C10—C8—C9112.5 (3)
C2—C3—C4119.4 (2)C10—C8—C11110.8 (2)
C3—N1—S1120.62 (19)C11—C8—S1103.4 (2)
C3—N1—H1117.4 (17)H9C—C9—H9B110 (3)
C3—C2—C1120.3 (2)H9C—C9—H9A108 (3)
C3—C2—H2120.1 (15)H10A—C10—H10C113 (3)
C3—C4—H4117.5 (17)H10A—C10—H10B108 (2)
C4—C3—N1122.5 (2)H7B—C7—H7A110 (3)
C4—C5—C6122.1 (3)H7B—C7—H7C105 (3)
C4—C5—H5118.5 (17)H9B—C9—H9A103 (3)
C5—C4—C3119.4 (3)H11C—C11—H11A114 (3)
C5—C4—H4123.1 (17)H11C—C11—H11B108 (3)
C5—C6—C1118.2 (3)H10C—C10—H10B103 (2)
C5—C6—H6118.8 (16)H11A—C11—H11B106 (2)
C6—C1—C2120.6 (3)H7A—C7—H7C119 (3)
C6—C5—H5119.4 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.80 (2)2.28 (3)3.031 (3)157 (2)
C10—H10A···O2i1.02 (3)2.47 (3)3.487 (4)171 (2)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC11H17NO2S
Mr227.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.4418 (9), 9.7027 (12), 16.862 (2)
V3)1217.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.990, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
7010, 2481, 2062
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.092, 1.10
No. of reflections2481
No. of parameters204
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.29
Absolute structureFlack (1983), 1029 Friedel pairs
Absolute structure parameter0.02 (9)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.80 (2)2.28 (3)3.031 (3)157 (2)
C10—H10A···O2i1.02 (3)2.47 (3)3.487 (4)171 (2)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The authors thank the National Science Foundation of China (grant No. 20672088), the Ministry of Human Resources and Social Security of China, the Science and Technology Bureau of Sichuan (grant No. 2011HH0016), the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, and the Cultivating Programme for Excellent Innovation Team of Chengdu University of Technology (grant No. HY0084) for financial support.

References

First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2009a). Acta Cryst. E65, o2823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2009b). Acta Cryst. E65, o2034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2010). Acta Cryst. E66, o109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds