organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(2-Hy­dr­oxy­phen­yl)(pyrrolidin-1-yl)­meth­yl]naphthalen-2-ol N,N-di­methyl­formamide monosolvate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wxwang@seu.edu.cn

(Received 13 February 2012; accepted 21 February 2012; online 29 February 2012)

The title compound, C21H21NO2·C3H7NO, was synthesized by solvent-free one-pot three-component reaction of naphthalen-2-ol, 2-hy­droxy­benzaldehyde and pyrrolidine. The dihedral angle between the naphthalene ring system and the benzene ring is 77.74 (6)°. The pyrrolidine ring assumes an envelope conformation. An intra­molecular O—H⋯N and an inter­molecular O—H⋯O hydrogen bond are observed.

Related literature

For background to Betti-type reactions, see: Pu & Yu (2001[Pu, L. & Yu, H. B. (2001). Chem. Rev. 101, 757-824.]); Yuan (2005[Yuan, C.-L. (2005). Acta Cryst. E61, o1182-o1183.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21NO2·C3H7NO

  • Mr = 392.48

  • Monoclinic, P 21 /n

  • a = 13.675 (3) Å

  • b = 9.6518 (19) Å

  • c = 16.505 (3) Å

  • β = 102.84 (3)°

  • V = 2123.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury2 (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.989

  • 21445 measured reflections

  • 4874 independent reflections

  • 2223 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.184

  • S = 1.03

  • 4874 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 1.88 2.565 (3) 140
O3—H3A⋯O1 0.82 1.86 2.678 (3) 173

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The so-called Betti base derivatives, which can be synthesized by many ways (Pu & Yu, 2001; Yuan, 2005), have been of great interest in coordination chemistry. Herein the crystal structure of one such compounds obtained by solvent free, one-pot, three-component domino reaction of naphthalen-2-ol, 2-hydroxybenzaldehyde and pyrrolidine is reported.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are well within the expected range. The dihedral angle between the naphthalene ring system and the benzene ring is 77.74 (6)°. The pyrrolidine ring adopts an envelope conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.408 (3) Å and ϕ = 170.7 (5)°. An intramolecular O—H···N hydrogen bond (Table 1) stabilizes the molecular conformation. In the crystal structure, the molecules interact via an intermolecular O—H···O hydrogen bond (Table 1).

Related literature top

For background to Betti-type reactions, see: Pu & Yu (2001); Yuan (2005). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A dry 50 ml flask was charged with 2-hydroxybenzaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and pyrrolidine (10 mmol). The mixture was stirred at 100°C for 5 h, then ethanol (15 ml) was added. After refluxing for 30 minutes, the precipitate was filtrated out, washed with ethanol for 3 times and purified by recrystallization from a mixed solution of dichloromethane, methanol and DMF (30:8:10 v/v/v) to give crystals of the title compound suitable for X-ray analysis.

Refinement top

All H atoms were calculated geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Intra- and intermolecular hydrogen bonds are shown as dashed lines.
1-[(2-Hydroxyphenyl)(pyrrolidin-1-yl)methyl]naphthalen-2-ol N,N-dimethylformamide monosolvate top
Crystal data top
C21H21NO2·C3H7NOF(000) = 840
Mr = 392.48Dx = 1.227 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3860 reflections
a = 13.675 (3) Åθ = 2.3–27.5°
b = 9.6518 (19) ŵ = 0.08 mm1
c = 16.505 (3) ÅT = 293 K
β = 102.84 (3)°Prism, colourless
V = 2123.9 (7) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
4874 independent reflections
Radiation source: fine-focus sealed tube2223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD Profile fitting scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.963, Tmax = 0.989l = 2121
21445 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.0577P]
where P = (Fo2 + 2Fc2)/3
4874 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H21NO2·C3H7NOV = 2123.9 (7) Å3
Mr = 392.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.675 (3) ŵ = 0.08 mm1
b = 9.6518 (19) ÅT = 293 K
c = 16.505 (3) Å0.25 × 0.22 × 0.20 mm
β = 102.84 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
4874 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2223 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.989Rint = 0.100
21445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
4874 reflectionsΔρmin = 0.17 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.86622 (14)0.7318 (2)1.01567 (12)0.0696 (6)
H2A0.84840.77621.05220.104*
O30.59379 (14)1.15741 (19)1.04615 (12)0.0620 (6)
H3A0.57231.22811.06360.093*
N10.73008 (15)0.8368 (2)1.08164 (11)0.0421 (5)
C80.72196 (18)0.8476 (3)0.93131 (15)0.0396 (6)
C160.66100 (19)0.8697 (2)0.84998 (15)0.0414 (6)
C150.5776 (2)0.9595 (3)0.83292 (16)0.0508 (7)
H15A0.56141.00990.87610.061*
C10.69749 (19)0.9227 (2)1.00552 (14)0.0397 (6)
H1A0.62450.93350.99520.048*
C90.8026 (2)0.7581 (3)0.94091 (17)0.0508 (7)
C170.6846 (2)0.7971 (3)0.78094 (16)0.0518 (7)
C70.8420 (2)1.0914 (3)1.00816 (15)0.0540 (7)
H7A0.87901.01810.99400.065*
C20.7445 (2)1.0671 (3)1.01694 (14)0.0422 (6)
C30.6901 (2)1.1791 (3)1.03819 (15)0.0485 (7)
C100.8248 (2)0.6866 (3)0.8726 (2)0.0648 (9)
H10A0.87940.62670.88060.078*
C140.5201 (2)0.9739 (3)0.75428 (19)0.0639 (8)
H14A0.46501.03300.74510.077*
C50.8301 (3)1.3300 (3)1.04007 (18)0.0706 (10)
H5A0.85851.41791.04770.085*
C120.6236 (3)0.8158 (4)0.70070 (17)0.0679 (9)
H12A0.63920.76850.65610.082*
C130.5429 (3)0.9011 (4)0.68713 (19)0.0734 (10)
H13A0.50300.91130.63400.088*
C180.6664 (2)0.7135 (3)1.08117 (17)0.0628 (9)
H18A0.67780.64581.04090.075*
H18B0.59580.73821.06900.075*
C110.7670 (2)0.7048 (3)0.7955 (2)0.0651 (9)
H11A0.78170.65570.75120.078*
C210.7284 (2)0.9051 (3)1.16070 (15)0.0596 (8)
H21A0.66740.95871.15640.072*
H21B0.78580.96581.17780.072*
C40.7332 (3)1.3106 (3)1.04918 (17)0.0636 (9)
H4A0.69671.38511.06260.076*
C200.7325 (3)0.7847 (3)1.22155 (18)0.0734 (10)
H20A0.80000.77291.25470.088*
H20B0.68760.80131.25850.088*
C190.7004 (3)0.6593 (4)1.16925 (18)0.0850 (11)
H19A0.64580.61231.18670.102*
H19B0.75580.59511.17320.102*
C60.8852 (2)1.2218 (4)1.01990 (18)0.0667 (9)
H6A0.95071.23571.01420.080*
N20.45935 (18)1.5046 (3)1.20142 (17)0.0669 (7)
O10.50827 (19)1.3762 (2)1.10246 (16)0.0883 (8)
C220.5038 (2)1.3964 (4)1.1737 (3)0.0729 (9)
H22A0.53401.33121.21280.087*
C230.4627 (3)1.5224 (4)1.2890 (2)0.1042 (13)
H23A0.50101.44871.31980.156*
H23C0.39571.52061.29790.156*
H23D0.49341.60961.30730.156*
C240.4053 (3)1.6046 (4)1.1449 (3)0.1163 (15)
H24C0.40911.58071.08920.174*
H24D0.43421.69461.15850.174*
H24A0.33641.60561.14910.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0655 (13)0.0786 (15)0.0595 (14)0.0240 (11)0.0028 (11)0.0003 (11)
O30.0592 (13)0.0468 (12)0.0864 (15)0.0006 (10)0.0300 (11)0.0142 (10)
N10.0557 (13)0.0384 (12)0.0315 (11)0.0083 (11)0.0085 (10)0.0001 (9)
C80.0430 (15)0.0391 (15)0.0381 (15)0.0027 (12)0.0116 (12)0.0032 (11)
C160.0480 (16)0.0391 (15)0.0385 (15)0.0134 (13)0.0125 (12)0.0023 (11)
C150.0569 (18)0.0499 (18)0.0439 (16)0.0025 (14)0.0077 (14)0.0028 (13)
C10.0474 (15)0.0372 (15)0.0346 (14)0.0019 (12)0.0090 (11)0.0002 (11)
C90.0529 (17)0.0527 (18)0.0465 (17)0.0006 (15)0.0105 (14)0.0028 (14)
C170.0662 (19)0.0539 (18)0.0368 (16)0.0154 (15)0.0146 (14)0.0106 (13)
C70.0608 (19)0.0584 (19)0.0433 (16)0.0102 (15)0.0130 (14)0.0009 (14)
C20.0505 (16)0.0446 (17)0.0309 (14)0.0086 (13)0.0079 (12)0.0009 (11)
C30.0684 (19)0.0371 (16)0.0394 (15)0.0053 (14)0.0108 (14)0.0048 (12)
C100.064 (2)0.067 (2)0.069 (2)0.0125 (16)0.0265 (18)0.0124 (17)
C140.0599 (19)0.069 (2)0.056 (2)0.0037 (16)0.0010 (16)0.0133 (16)
C50.102 (3)0.054 (2)0.0509 (19)0.035 (2)0.0074 (19)0.0035 (15)
C120.093 (3)0.075 (2)0.0352 (18)0.031 (2)0.0135 (17)0.0097 (15)
C130.087 (3)0.084 (3)0.0406 (19)0.026 (2)0.0045 (17)0.0112 (17)
C180.084 (2)0.0501 (18)0.0505 (18)0.0236 (16)0.0062 (15)0.0073 (14)
C110.075 (2)0.066 (2)0.064 (2)0.0113 (18)0.0362 (18)0.0245 (16)
C210.085 (2)0.0585 (19)0.0348 (15)0.0073 (17)0.0131 (15)0.0049 (14)
C40.093 (3)0.0411 (18)0.0552 (19)0.0131 (17)0.0138 (17)0.0047 (14)
C200.094 (2)0.080 (2)0.0452 (18)0.0161 (19)0.0134 (17)0.0097 (17)
C190.114 (3)0.077 (2)0.058 (2)0.030 (2)0.006 (2)0.0151 (19)
C60.071 (2)0.077 (2)0.0511 (19)0.030 (2)0.0121 (16)0.0032 (17)
N20.0663 (17)0.0551 (17)0.082 (2)0.0039 (14)0.0228 (15)0.0131 (15)
O10.1021 (19)0.0734 (17)0.101 (2)0.0031 (13)0.0463 (16)0.0201 (15)
C220.065 (2)0.056 (2)0.097 (3)0.0124 (17)0.018 (2)0.010 (2)
C230.136 (4)0.094 (3)0.084 (3)0.007 (3)0.028 (2)0.020 (2)
C240.130 (4)0.099 (3)0.119 (3)0.048 (3)0.027 (3)0.023 (3)
Geometric parameters (Å, º) top
O2—C91.366 (3)C5—H5A0.9300
O2—H2A0.8200C12—C131.356 (4)
O3—C31.368 (3)C12—H12A0.9300
O3—H3A0.8200C13—H13A0.9300
N1—C211.467 (3)C18—C191.518 (4)
N1—C181.473 (3)C18—H18A0.9700
N1—C11.489 (3)C18—H18B0.9700
C8—C91.382 (3)C11—H11A0.9300
C8—C161.430 (3)C21—C201.529 (4)
C8—C11.523 (3)C21—H21A0.9700
C16—C151.410 (4)C21—H21B0.9700
C16—C171.434 (3)C4—H4A0.9300
C15—C141.367 (4)C20—C191.495 (4)
C15—H15A0.9300C20—H20A0.9700
C1—C21.529 (3)C20—H20B0.9700
C1—H1A0.9800C19—H19A0.9700
C9—C101.411 (4)C19—H19B0.9700
C17—C121.411 (4)C6—H6A0.9300
C17—C111.415 (4)N2—C221.339 (4)
C7—C61.386 (4)N2—C241.428 (4)
C7—C21.393 (4)N2—C231.446 (4)
C7—H7A0.9300O1—C221.207 (4)
C2—C31.400 (4)C22—H22A0.9300
C3—C41.394 (4)C23—H23A0.9600
C10—C111.351 (4)C23—H23C0.9600
C10—H10A0.9300C23—H23D0.9600
C14—C131.404 (4)C24—H24C0.9600
C14—H14A0.9300C24—H24D0.9600
C5—C61.372 (4)C24—H24A0.9600
C5—C41.379 (4)
C9—O2—H2A109.5N1—C18—H18A111.2
C3—O3—H3A109.5C19—C18—H18A111.2
C21—N1—C18104.0 (2)N1—C18—H18B111.2
C21—N1—C1116.0 (2)C19—C18—H18B111.2
C18—N1—C1112.29 (19)H18A—C18—H18B109.2
C9—C8—C16119.0 (2)C10—C11—C17121.3 (3)
C9—C8—C1121.2 (2)C10—C11—H11A119.4
C16—C8—C1119.8 (2)C17—C11—H11A119.4
C15—C16—C8123.8 (2)N1—C21—C20103.7 (2)
C15—C16—C17117.1 (2)N1—C21—H21A111.0
C8—C16—C17119.1 (2)C20—C21—H21A111.0
C14—C15—C16121.4 (3)N1—C21—H21B111.0
C14—C15—H15A119.3C20—C21—H21B111.0
C16—C15—H15A119.3H21A—C21—H21B109.0
N1—C1—C8109.61 (19)C5—C4—C3119.9 (3)
N1—C1—C2111.41 (19)C5—C4—H4A120.0
C8—C1—C2111.8 (2)C3—C4—H4A120.0
N1—C1—H1A107.9C19—C20—C21105.9 (2)
C8—C1—H1A107.9C19—C20—H20A110.6
C2—C1—H1A107.9C21—C20—H20A110.6
O2—C9—C8123.5 (2)C19—C20—H20B110.6
O2—C9—C10115.1 (3)C21—C20—H20B110.6
C8—C9—C10121.5 (3)H20A—C20—H20B108.7
C12—C17—C11121.5 (3)C20—C19—C18105.2 (3)
C12—C17—C16119.6 (3)C20—C19—H19A110.7
C11—C17—C16118.9 (3)C18—C19—H19A110.7
C6—C7—C2121.8 (3)C20—C19—H19B110.7
C6—C7—H7A119.1C18—C19—H19B110.7
C2—C7—H7A119.1H19A—C19—H19B108.8
C7—C2—C3118.1 (2)C5—C6—C7119.0 (3)
C7—C2—C1121.7 (2)C5—C6—H6A120.5
C3—C2—C1120.2 (2)C7—C6—H6A120.5
O3—C3—C4121.0 (3)C22—N2—C24120.8 (3)
O3—C3—C2118.8 (2)C22—N2—C23121.2 (3)
C4—C3—C2120.1 (3)C24—N2—C23118.0 (3)
C11—C10—C9120.3 (3)O1—C22—N2125.8 (4)
C11—C10—H10A119.9O1—C22—H22A117.1
C9—C10—H10A119.9N2—C22—H22A117.1
C15—C14—C13121.1 (3)N2—C23—H23A109.5
C15—C14—H14A119.4N2—C23—H23C109.5
C13—C14—H14A119.4H23A—C23—H23C109.5
C6—C5—C4121.1 (3)N2—C23—H23D109.5
C6—C5—H5A119.5H23A—C23—H23D109.5
C4—C5—H5A119.5H23C—C23—H23D109.5
C13—C12—C17121.5 (3)N2—C24—H24C109.5
C13—C12—H12A119.3N2—C24—H24D109.5
C17—C12—H12A119.3H24C—C24—H24D109.5
C12—C13—C14119.3 (3)N2—C24—H24A109.5
C12—C13—H13A120.4H24C—C24—H24A109.5
C14—C13—H13A120.4H24D—C24—H24A109.5
N1—C18—C19102.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.882.565 (3)140
O3—H3A···O10.821.862.678 (3)173

Experimental details

Crystal data
Chemical formulaC21H21NO2·C3H7NO
Mr392.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.675 (3), 9.6518 (19), 16.505 (3)
β (°) 102.84 (3)
V3)2123.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
21445, 4874, 2223
Rint0.100
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.184, 1.03
No. of reflections4874
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.882.565 (3)140.0
O3—H3A···O10.821.862.678 (3)172.6
 

Acknowledgements

This work was supported by Southeast University.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPu, L. & Yu, H. B. (2001). Chem. Rev. 101, 757–824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, C.-L. (2005). Acta Cryst. E61, o1182–o1183.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds