organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o849-o850

(E)-N′-(3-Eth­­oxy-4-hy­dr­oxy­benzyl­­idene)-4-meth­­oxy­benzohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 14 February 2012; accepted 18 February 2012; online 24 February 2012)

In the mol­ecule of the title benzohydrazide derivative, C17H18N2O4, the dihedral angle between the two benzene rings is 6.86 (11)°. The meth­oxy group of the 4-meth­oxy­phenyl fragment deviates slightly [Cmethyl—O—C—C = 10.0 (4)°] with respect to the benzene ring, whereas the eth­oxy group of the 3-eth­oxy-4-hy­droxy­phenyl fragment is almost coplanar [C—O—C—Cmethyl = 178.5 (2)°]. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to the ab plane. C—H⋯π inter­actions and C⋯O [2.980 (3) Å] short contacts are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Promdet et al. (2011[Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.]). For background and applications to benzohydrazide derivatives, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4

  • Mr = 314.33

  • Orthorhombic, P 21 21 21

  • a = 5.0607 (9) Å

  • b = 11.086 (2) Å

  • c = 27.629 (5) Å

  • V = 1550.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.56 × 0.10 × 0.07 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.993

  • 10252 measured reflections

  • 2637 independent reflections

  • 1921 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.04

  • 2637 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O3 0.82 2.41 2.683 (2) 100
O4—H1O4⋯O1i 0.82 2.21 2.981 (2) 156
N1—H1N1⋯O1ii 0.90 2.10 2.994 (3) 172
C10—H10A⋯O4iii 0.93 2.55 3.462 (3) 168
C16—H16BCg1i 0.97 2.68 3.499 (2) 142
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the course of our on-going research on benzohydrazide derivatives, which have been reported to possess various biological properties such as antibacterial and antifungal (Loncle et al., 2004), antitubercular (Bedia et al., 2006) and antiproliferative (Raj et al., 2007) activities, the synthesis and crystal structures of benzohydrazide derivatives have been reported (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011). The title compound was synthesized and tested for its antioxidant and antibacterial activities and found to be inactive.

The molecule of the title benzohydrazide derivative (Fig. 1) exists in a trans-configuration with respect to the C8N2 bond [1.286 (4) Å], as indicated by the torsion angle N1–N2–C8–C9 = -178.2 (2)°. The molecule is slightly twisted with the dihedral angle between the two benzene rings of 6.86 (11)°. The middle bridge fragment (O1/C7/N1/N2/C8) is planar with the torsion angle N2–N1–C7–O1 = 0.8 (4)° and the r.m.s. of 0.0360 (2) Å for the five non-H atoms. The mean plane through this bridge makes dihedral angles of 28.94 (15) and 26.51 (15)° with the C1–C6 and C9–C14 phenyl rings, respectively. The methoxy group of 4-methoxyphenyl is slightly twisted with respect to its bound benzene ring [torsion angle C15–O2–C4–C5 = 10.0 (4)°], whereas the ethoxy group of 3-ethoxy-4-hydroxyphenyl is co-planar with the torsion angle C11–O3–C16–C17 = 178.5 (2)°.

An intramolecular O4—H1O4···O3 hydrogen bond generates a S(5) ring motif (Bernstein et al., 1995). Bond distances are of normal values (Allen et al., 1987) and are comparable with those found in related structures (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O and O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) into a two-dimensional network paralell to the ab plane. The crystal is further stabilized by C—H···π weak interaction (Table 1). A C8···O4iv [2.980 (3) Å: (iv) = -x, 1/2+y, 1/2+z] short contact was observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011); Horkaew et al. (2011); Promdet et al. (2011). For background and applications to benzohydrazide derivatives, see: Bedia et al. (2006); Loncle et al. (2004); Raj et al. (2007).

Experimental top

The title compound was prepared by dissolving 4-methoxybenzohydrazide (2 mmol, 0.33 g) in ethanol (10 ml). A solution of 3-ethoxy-4-hydroxybenzaldehyde (2 mmol, 0.33 g) in ethanol (10 ml) was then added slowly to the reaction. The mixture was refluxed for about 5 h and a white solid appeared. The mixture was then cooled to room temperature and filtered. Colourless needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after several days. M. p. 486-488 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N-H) = 0.90 Å, d(O-H) = 0.82 Å, d(C-H) = 0.93 Å for aromatic and CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq(C, N, O) for methyl, hydroxy and amine H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups. 1879 Friedel pairs were merged. Three outliers (2 1 1, 1 4 0, 3 2 12) were omitted for the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 45% probability displacement ellipsoids. Hydrogen bond are drawn as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
(E)-N'-(3-Ethoxy-4-hydroxybenzylidene)-4-methoxybenzohydrazide top
Crystal data top
C17H18N2O4Dx = 1.347 Mg m3
Mr = 314.33Melting point = 486–488 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2637 reflections
a = 5.0607 (9) Åθ = 1.5–30.1°
b = 11.086 (2) ŵ = 0.10 mm1
c = 27.629 (5) ÅT = 297 K
V = 1550.1 (5) Å3Needle, colorless
Z = 40.56 × 0.10 × 0.07 mm
F(000) = 664
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2637 independent reflections
Radiation source: sealed tube1921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ϕ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.948, Tmax = 0.993k = 1515
10252 measured reflectionsl = 3829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0865P)2 + 0.0494P]
where P = (Fo2 + 2Fc2)/3
2637 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C17H18N2O4V = 1550.1 (5) Å3
Mr = 314.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0607 (9) ŵ = 0.10 mm1
b = 11.086 (2) ÅT = 297 K
c = 27.629 (5) Å0.56 × 0.10 × 0.07 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2637 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1921 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.993Rint = 0.100
10252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
2637 reflectionsΔρmin = 0.35 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7066 (4)0.1645 (2)0.40465 (7)0.0575 (5)
O20.2255 (5)0.16566 (19)0.57022 (7)0.0623 (6)
O30.5434 (4)0.52128 (16)0.19944 (6)0.0450 (4)
O40.2111 (4)0.70975 (15)0.20065 (7)0.0499 (5)
H1O40.23540.67550.17470.075*
N10.2812 (5)0.2287 (2)0.40261 (8)0.0445 (5)
H1N10.11370.20220.40410.067*
N20.3378 (5)0.30448 (19)0.36411 (8)0.0465 (5)
C10.4040 (5)0.0790 (2)0.46083 (9)0.0390 (5)
C20.5413 (6)0.0295 (3)0.46673 (9)0.0469 (6)
H2A0.67940.04820.44580.056*
C30.4754 (7)0.1084 (2)0.50282 (9)0.0518 (7)
H3A0.56600.18100.50570.062*
C40.2741 (6)0.0809 (2)0.53512 (9)0.0460 (6)
C50.1377 (7)0.0268 (3)0.53087 (10)0.0516 (7)
H5A0.00480.04640.55270.062*
C60.2019 (6)0.1050 (2)0.49356 (10)0.0471 (6)
H6A0.10790.17660.49020.057*
C70.4803 (5)0.1604 (2)0.42070 (9)0.0415 (5)
C80.1489 (6)0.3765 (2)0.35246 (9)0.0439 (6)
H8A0.00640.37500.37050.053*
C90.1701 (5)0.4600 (2)0.31206 (9)0.0394 (5)
C100.3601 (5)0.4457 (2)0.27571 (9)0.0387 (5)
H10A0.47750.38120.27700.046*
C110.3739 (5)0.5275 (2)0.23787 (8)0.0363 (5)
C120.2013 (5)0.6265 (2)0.23665 (9)0.0374 (5)
C130.0117 (6)0.6400 (2)0.27242 (9)0.0438 (6)
H13A0.10460.70490.27140.053*
C140.0044 (6)0.5566 (2)0.30982 (9)0.0455 (6)
H14A0.13310.56560.33360.055*
C150.0056 (8)0.1503 (4)0.59944 (11)0.0733 (10)
H15A0.02360.21790.62090.110*
H15B0.15850.14530.57900.110*
H15C0.01020.07760.61800.110*
C160.7123 (5)0.4166 (2)0.19693 (9)0.0417 (5)
H16A0.60650.34370.19610.050*
H16B0.82650.41330.22510.050*
C170.8749 (7)0.4267 (3)0.15168 (9)0.0539 (7)
H17A0.99340.35930.14960.081*
H17B0.97490.50030.15250.081*
H17C0.76030.42700.12400.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0414 (11)0.0677 (13)0.0635 (12)0.0013 (10)0.0107 (10)0.0136 (11)
O20.0805 (16)0.0535 (11)0.0528 (10)0.0074 (11)0.0050 (12)0.0097 (10)
O30.0437 (10)0.0448 (9)0.0465 (9)0.0102 (8)0.0082 (9)0.0071 (8)
O40.0578 (12)0.0402 (8)0.0519 (10)0.0089 (8)0.0092 (10)0.0100 (8)
N10.0411 (12)0.0485 (11)0.0439 (11)0.0042 (9)0.0058 (10)0.0092 (9)
N20.0441 (13)0.0508 (11)0.0445 (11)0.0076 (10)0.0024 (11)0.0059 (10)
C10.0379 (13)0.0411 (11)0.0380 (12)0.0011 (10)0.0006 (10)0.0033 (9)
C20.0437 (15)0.0510 (13)0.0461 (13)0.0085 (11)0.0032 (12)0.0063 (12)
C30.0602 (18)0.0456 (13)0.0496 (15)0.0083 (13)0.0036 (14)0.0001 (12)
C40.0525 (16)0.0438 (12)0.0416 (12)0.0070 (12)0.0032 (12)0.0025 (11)
C50.0522 (17)0.0563 (14)0.0462 (14)0.0015 (13)0.0104 (13)0.0041 (12)
C60.0467 (14)0.0447 (12)0.0500 (14)0.0076 (11)0.0051 (13)0.0009 (11)
C70.0383 (13)0.0431 (11)0.0431 (12)0.0021 (10)0.0031 (12)0.0028 (10)
C80.0413 (14)0.0457 (12)0.0448 (13)0.0052 (11)0.0028 (11)0.0008 (10)
C90.0387 (13)0.0383 (10)0.0411 (12)0.0036 (9)0.0027 (11)0.0007 (10)
C100.0353 (13)0.0359 (10)0.0448 (12)0.0015 (9)0.0023 (10)0.0017 (9)
C110.0321 (11)0.0354 (10)0.0415 (11)0.0018 (9)0.0004 (10)0.0005 (9)
C120.0350 (12)0.0314 (9)0.0457 (12)0.0003 (9)0.0014 (11)0.0010 (9)
C130.0419 (14)0.0344 (11)0.0549 (14)0.0030 (10)0.0051 (13)0.0016 (10)
C140.0430 (14)0.0454 (12)0.0480 (13)0.0020 (11)0.0075 (12)0.0017 (11)
C150.069 (2)0.099 (3)0.0512 (16)0.021 (2)0.0028 (18)0.0182 (18)
C160.0397 (13)0.0379 (11)0.0474 (13)0.0053 (10)0.0016 (12)0.0000 (10)
C170.0583 (18)0.0576 (15)0.0460 (14)0.0112 (14)0.0044 (14)0.0024 (12)
Geometric parameters (Å, º) top
O1—C71.229 (3)C6—H6A0.9300
O2—C41.373 (3)C8—C91.455 (3)
O2—C151.431 (5)C8—H8A0.9300
O3—C111.366 (3)C9—C141.390 (4)
O3—C161.443 (3)C9—C101.400 (4)
O4—C121.358 (3)C10—C111.385 (3)
O4—H1O40.8198C10—H10A0.9300
N1—C71.356 (4)C11—C121.403 (3)
N1—N21.386 (3)C12—C131.386 (4)
N1—H1N10.8977C13—C141.389 (3)
N2—C81.286 (4)C13—H13A0.9300
C1—C61.396 (4)C14—H14A0.9300
C1—C21.398 (4)C15—H15A0.9600
C1—C71.481 (3)C15—H15B0.9600
C2—C31.368 (4)C15—H15C0.9600
C2—H2A0.9300C16—C171.501 (4)
C3—C41.388 (4)C16—H16A0.9700
C3—H3A0.9300C16—H16B0.9700
C4—C51.384 (4)C17—H17A0.9600
C5—C61.385 (4)C17—H17B0.9600
C5—H5A0.9300C17—H17C0.9600
C4—O2—C15117.6 (3)C11—C10—C9120.1 (2)
C11—O3—C16116.72 (18)C11—C10—H10A119.9
C12—O4—H1O4109.3C9—C10—H10A119.9
C7—N1—N2117.9 (2)O3—C11—C10125.8 (2)
C7—N1—H1N1120.2O3—C11—C12114.3 (2)
N2—N1—H1N1115.3C10—C11—C12119.9 (2)
C8—N2—N1114.5 (2)O4—C12—C13118.3 (2)
C6—C1—C2117.8 (2)O4—C12—C11121.8 (2)
C6—C1—C7123.4 (2)C13—C12—C11119.9 (2)
C2—C1—C7118.8 (2)C12—C13—C14119.9 (2)
C3—C2—C1120.9 (3)C12—C13—H13A120.0
C3—C2—H2A119.5C14—C13—H13A120.0
C1—C2—H2A119.5C13—C14—C9120.6 (2)
C2—C3—C4120.5 (3)C13—C14—H14A119.7
C2—C3—H3A119.8C9—C14—H14A119.7
C4—C3—H3A119.8O2—C15—H15A109.5
O2—C4—C5124.2 (3)O2—C15—H15B109.5
O2—C4—C3115.8 (3)H15A—C15—H15B109.5
C5—C4—C3120.1 (3)O2—C15—H15C109.5
C4—C5—C6119.1 (3)H15A—C15—H15C109.5
C4—C5—H5A120.5H15B—C15—H15C109.5
C6—C5—H5A120.5O3—C16—C17107.8 (2)
C5—C6—C1121.7 (3)O3—C16—H16A110.2
C5—C6—H6A119.2C17—C16—H16A110.2
C1—C6—H6A119.2O3—C16—H16B110.2
O1—C7—N1122.6 (2)C17—C16—H16B110.2
O1—C7—C1122.4 (3)H16A—C16—H16B108.5
N1—C7—C1115.0 (2)C16—C17—H17A109.5
N2—C8—C9122.2 (2)C16—C17—H17B109.5
N2—C8—H8A118.9H17A—C17—H17B109.5
C9—C8—H8A118.9C16—C17—H17C109.5
C14—C9—C10119.5 (2)H17A—C17—H17C109.5
C14—C9—C8118.6 (2)H17B—C17—H17C109.5
C10—C9—C8122.0 (2)
C7—N1—N2—C8172.3 (2)N1—N2—C8—C9178.2 (2)
C6—C1—C2—C31.4 (4)N2—C8—C9—C14162.0 (3)
C7—C1—C2—C3179.0 (3)N2—C8—C9—C1018.0 (4)
C1—C2—C3—C41.6 (4)C14—C9—C10—C110.1 (4)
C15—O2—C4—C510.0 (4)C8—C9—C10—C11179.9 (2)
C15—O2—C4—C3170.4 (3)C16—O3—C11—C103.6 (3)
C2—C3—C4—O2179.4 (3)C16—O3—C11—C12175.6 (2)
C2—C3—C4—C50.3 (4)C9—C10—C11—O3177.6 (2)
O2—C4—C5—C6179.2 (3)C9—C10—C11—C121.6 (4)
C3—C4—C5—C61.2 (4)O3—C11—C12—O41.8 (3)
C4—C5—C6—C11.3 (4)C10—C11—C12—O4178.9 (2)
C2—C1—C6—C50.1 (4)O3—C11—C12—C13177.1 (2)
C7—C1—C6—C5179.5 (3)C10—C11—C12—C132.2 (4)
N2—N1—C7—O10.8 (4)O4—C12—C13—C14180.0 (2)
N2—N1—C7—C1178.3 (2)C11—C12—C13—C141.0 (4)
C6—C1—C7—O1150.6 (3)C12—C13—C14—C90.7 (4)
C2—C1—C7—O129.0 (4)C10—C9—C14—C131.2 (4)
C6—C1—C7—N130.2 (4)C8—C9—C14—C13178.8 (2)
C2—C1—C7—N1150.2 (2)C11—O3—C16—C17178.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O30.822.412.683 (2)100
O4—H1O4···O1i0.822.212.981 (2)156
N1—H1N1···O1ii0.902.102.994 (3)172
C10—H10A···O4iii0.932.553.462 (3)168
C16—H16B···Cg1i0.972.683.499 (2)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O4
Mr314.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)297
a, b, c (Å)5.0607 (9), 11.086 (2), 27.629 (5)
V3)1550.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.10 × 0.07
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.948, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10252, 2637, 1921
Rint0.100
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.04
No. of reflections2637
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O30.822.412.683 (2)100
O4—H1O4···O1i0.822.212.981 (2)156
N1—H1N1···O1ii0.902.102.994 (3)172
C10—H10A···O4iii0.932.553.462 (3)168
C16—H16B···Cg1i0.972.683.499 (2)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

PP thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. JH thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. PP and JH thank Dr Nawong Boonnak for useful suggestions. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for baterial assays. The authors thank the Prince of Songkla University and the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPromdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o849-o850
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds