organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o700-o701

Erythromycin A di­methyl sulfoxide disolvate 1.43-hydrate

aInstitute of Inorganic and Analytical Chemistry, University of Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany, and bInstitute of Organic Chemistry and Chemical Biology, University of Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
*Correspondence e-mail: m.schmidt@chemie.uni-frankfurt.de

(Received 27 January 2012; accepted 6 February 2012; online 17 February 2012)

The title compound, C37H67NO13·2C2H6OS·1.43H2O, is a macrolide anti­biotic with better solubility and better dermal penetration abilities than erythromycin A itself. The asymmetric unit of this form contains one erythromycin A mol­ecule, two dimethyl sulfoxide (DMSO) solvent mol­ecules, a fully occupied water mol­ecule and a partially occupied water mol­ecule with an occupancy factor of 0.432 (11). The 14-membered ring of the erythronolide fragment has a conformation which differs considerably from that in erythromycin A dihydrate [Stephenson, Stowell, Toma, Pfeiffer & Byrn (1997[Stephenson, G. A., Stowell, J. G., Toma, P. H., Pfeiffer, R. R. & Byrn, S. R. (1997). J. Pharm. Sci. 86, 1239-1244.]). J. Pharm. Sci. 86, 1239–1244]. One of the two DMSO mol­ecules is disordered over two orientations; the orientation depends on the presence or absence of the second, partially occupied, water mol­ecule. In the crystal, erythromycin mol­ecules are connected by O—H⋯O hydrogen bonds involving the hy­droxy groups and the fully occupied water mol­ecule to form layers parallel to (010). These layers are connected along the b-axis direction only by a possible hydrogen-bonding contact involving the partially occupied water mol­ecule.

Related literature

For a description of the title compound, see: Schmidt et al. (2011[Schmidt, M. U., Brüning, J., Trepte, T. K. & Bats, J. W. (2011). German Patent Appl. 102011117874.4.]). For general background, see: Woodward et al. (1981[Woodward, R. B., Logusch, E., Nambiar, K. P., Sakan, K., Ward, D. E., Au-Yeung, B. W., Balaram, P., Browne, L. J., Card, P. J. & Chen, C. H. (1981). J. Am. Chem. Soc. 103, 3210-3213.]). For crystallization experiments, see: Mirza et al. (2003[Mirza, S., Miroshnyk, I., Heinämäki, J., Christiansen, L., Karjalainen, M. & Yliruusi, J. (2003). AAPS PharmSci. 5(2), 39-47.]). For related structures, see: Stephenson et al. (1997[Stephenson, G. A., Stowell, J. G., Toma, P. H., Pfeiffer, R. R. & Byrn, S. R. (1997). J. Pharm. Sci. 86, 1239-1244.]); Henry & Zhang (2007[Henry, R. & Zhang, G. G. Z. (2007). J. Pharm. Sci. 96, 1251-1257.]); Tian et al. (2009[Tian, J., Thallapally, P. K., Dalgarno, S. J. & Atwood, J. L. (2009). J. Am. Chem. Soc. 131, 13216-13217.]). For refinement details, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C37H67NO13·2C2H6SO·1.43H2O

  • Mr = 915.93

  • Monoclinic, P 21

  • a = 11.1716 (7) Å

  • b = 19.4025 (12) Å

  • c = 12.0025 (7) Å

  • β = 106.245 (1)°

  • V = 2497.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.55 × 0.42 × 0.32 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.870, Tmax = 0.947

  • 27453 measured reflections

  • 10520 independent reflections

  • 7109 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.142

  • S = 1.04

  • 10520 reflections

  • 579 parameters

  • 23 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 4965 Friedel pairs

  • Flack parameter: 0.02 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O7Wi 0.82 2.00 2.810 (4) 170
O7W—H7C⋯O26ii 0.85 (1) 2.07 (2) 2.888 (4) 163 (4)
O7W—H7D⋯N33 0.84 (1) 2.04 (2) 2.863 (4) 166 (5)
O11—H11B⋯O12 0.82 2.07 2.575 (4) 120
O12—H12A⋯O15 0.82 1.85 2.602 (8) 152
O12—H12A⋯O15′ 0.82 2.04 2.667 (7) 134
O25—H25B⋯O11iii 0.82 2.04 2.838 (4) 166
O34—H34B⋯O14 0.82 1.94 2.747 (4) 170
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y, z+1.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Erythromycin is a macrolide antibiotic with a wide antimicrobial spectrum (Woodward et al., 1981; Schmidt et al., 2011). The dimethyl sulfoxide disolvate 1.4-hydrate of erythromycin A reported here may have potential as an active pharmaceutical ingredient (API), because it shows enhanced solubility and better dermal penetration abilities than erythromycin A itself (Schmidt et al., 2011). The title compound can be used as an antibiotic, e.g. for defence against germs such as bacillus anthracis, streptococcaceae, bordetella, legionellaceae, and chlamydiaceae. It could also have a role in the treatment of infections, e.g. in the ear, nose, and throat regions, especially in the middle ear and the paranasal sinuses. It could be used to treat infections in the deep respiratory passages against e.g. bronchitis, pneumonia, pertussis, and infection of the conjunctiva. Other uses include the treatment of erysipelas, diphtheria, severe forms of acne vulgaris, inflammation of the skin and urethra, and dysfunction of motility and excretion. It could treat inflammation of the gastro and intestinal tract as well as inflammation of the pharynx, e.g. pharyngitis, tonsillitis, or scarlatina, syphilis and actinomycosis. It is a potential prophylactic against rheumatic fever after infection, especially in case of penicillin allergy. The compound may also be applied to comparable diseases in veterinary medicine as well. The crystalline forms of a number of other solvates of erythromycin A have been characterized by Stephenson et al. (1997), Mirza et al. (2003) and Henry & Zhang (2007).

The asymmetric unit of the dimethyl sulfoxide disolvate 1.4-hydrate of erythromycin A, (I, Fig. 1), C37H67NO13.2(C2H6OS).1.4(H2O), at 296 K contains one erythromycin A molecule, two DMSO solvate molecules, a fully occupied water molecule and a partially occupied water molecule with an occupancy factor of 0.432 (11). The 14-membered ring has a conformation which differs considerably from that in the crystal structure of erythromycin A dihydrate (Stephenson et al., 1997). For the two structures, the torsion angles in the fragment C10–C11–C12–C13–O13–C1–C2–C3–C4–C5–C6 are rather similar, but torsion angles in the fragment C6–C7–C8–C9–C10 are considerably different. The six-membered rings of the side-chains have the usual chair conformation. The partially occupied water molecule lies too close to the methyl group C41 of the disordered DMSO molecule [distance O8W···C41 2.439 (15) Å]. Thus, if the water molecule is present, the disordered DMSO molecule must have the orientation defined by positions S2', C40', C41', O15'. A search for possible solvent accessible voids with program PLATON (Spek, 2009) reveals that no voids are present in the unit cell if the disordered DMSO molecule has the orientation defined by positions S2, O15, C40, C41, but that a void of 16 Å3 at the position of atom O8W occurs when this DMSO molecule has the orientation defined by positions S2', O15', C40', C41'. No H atoms were located at the partially occupied water molecule (O8W). However, O8W shows possible hydrogen bonding contacts with atom O15' of the disordered DMSO molecule [O8W···O15' = 3.146 (11) Å] and with atom O14 of the ordered DMSO molecule [O8W···O14i = 2.971 (10) Å; i: 1 - x, 1/2 + y, 1 - z]. The O15'—O8W—O14i angle of 139.8 (4)°, however, appears too large for both hydrogen bonds to occur simultaneously. A partially occupied water molecule has also been observed in the crystal structure of the closely related compound clarithromycin (Tian et al., 2009). The fully occupied water molecule (O7W, H7C, H7D) accepts a hydrogen bond from the hydroxy group O6—H6A and acts as a donor for two hydrogen bonds to two symmetry-related erythromycin molecules (Table 1).

The erythromycin molecule shows one intramolecular O—H···O hydrogen bond. The remaining hydroxy groups are involved in intermolecular hydrogen bonds. One of them links the erythromycin molecules along the c-axis direction. The other three hydroxy groups are directed towards the two DMSO solvate molecules and towards water molecule O7W. The latter water molecule links the erythromycin molecules along the a-axis direction. Thus, the structure contains hydrogen bonded layers parallel to the (010) plane. The only intermolecular contact between adjacent layers along the b-axis direction is the before mentioned possible O8W···O14i hydrogen bond, involving the partially occupied water molecule.

A second crystal of the title compound was measured at 177 K. The resulting crystal structure was similar to the structure determined at room temperature. The occupancy factor of the partially occupied water molecule refined to 0.400 (7). No phase transition was observed on cooling of the crystal from room temperature to 177 K.

Related literature top

For a description of the title compound, see: Schmidt et al. (2011). For general background, see: Woodward et al. (1981). For crystallization experiments, see: Mirza et al. (2003). For related structures, see: Stephenson et al. (1997); Henry & Zhang (2007); Tian et al. (2009). For refinement details, see: Flack (1983); Spek (2009).

Experimental top

Erythromycin A was recrystallized from a dimethyl sulfoxide/water mixture. The crystal used for the data collection was sealed in a glass capillary tube with a drop of mother liquor.

The compound was also characterized by its X-ray powder pattern which shows the following characteristic reflections (Cu Kα1 radiation, 2θ in °, rel. intensities: ss = very strong, s = strong, m = medium, mw = medium–weak, w = weak): 7.6 (w), 9.1 (ss), 9.4 (ss), 9.5 (m), 11.9 (m), 12.3 (s), 13.2 (mw), 13.5 (mw), 15.3 (w), 15.6 (s), 15.9 (mw), 16.7 (ss), 17.1 (w), 17.8 (w), 18.2 (mw), 18.5 (w), 18.7 (w), 18.9 (mw), 19.1 (w), 19.4 (m), 19.7 (m), 19.9 (mw), 20.5 (m), 21.5 (m), 22.1 (w), 22.3 (mw), 22.7 (mw), 23.6 (w), 23.9 (w), 24.1(w), 24.4(mw), 24.8(w), 26.1(w), 26.2 (w), 26.6 (w), 26.9(w), 27.2(w), 27.6(w), 28.1 (w), 28.4 (w), 28.9 (w), 29.6(w), 30.0(w), 30.1 (w), 31.3 (w), 31.6 (w), 32.1 (w), 33.7 (w), 34.3 (w), 36.2 (w), 36.4(w), 37.6 (w), 37.8 (w), 38.9(w), 39.3 (w).

Refinement top

The H atoms were positioned geometrically and treated as riding with Cprimary—H = 0.98 Å, Csecondary—H = 0.97 Å, Cmethyl—H = 0.96 Å, O—H = 0.82 Å, Uiso(H) = 1.2Ueq(Cnon-methyl) and Uiso(H) = 1.5Ueq(Cmethyl,O). The H atoms at water molecule O7W were taken from a difference Fourier synthesis and were refined, using an O—H distance restraint of 0.84 (1) Å. The O and C atoms of the disordered DMSO solvate molecule were refined as anisotropic split atoms, using 20 restraints to bond distances and atomic displacement parameters. The occupancy factors refined to 0.482 (4) for atoms O15, C40, C41 and to 0.518 (4) for atoms O15', C40', C41'. The occupancy factor of the water molecule O8W refined to 0.432 (11). H atoms associated with the partially occupied water molecule (O8W) could not be located in difference Fourier maps and were not assigned.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) at 296 K with the numbering scheme of the atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms belonging to the second orientation of the disordered DMSO solvate molecule have been omitted for clarity.
Erythromycin A dimethyl sulfoxide disolvate 1.43-hydrate top
Crystal data top
C37H67NO13·2C2H6SO·1.43H2OF(000) = 997
Mr = 915.93Dx = 1.218 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6074 reflections
a = 11.1716 (7) Åθ = 3–24°
b = 19.4025 (12) ŵ = 0.17 mm1
c = 12.0025 (7) ÅT = 296 K
β = 106.245 (1)°Block, colourless
V = 2497.8 (3) Å30.55 × 0.42 × 0.32 mm
Z = 2
Data collection top
Siemens SMART 1K CCD
diffractometer
10520 independent reflections
Radiation source: normal-focus sealed tube7109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1414
Tmin = 0.870, Tmax = 0.947k = 2424
27453 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.062P)2 + 0.61P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
10520 reflectionsΔρmax = 0.37 e Å3
579 parametersΔρmin = 0.34 e Å3
23 restraintsAbsolute structure: Flack (1983), with 4965 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (9)
Crystal data top
C37H67NO13·2C2H6SO·1.43H2OV = 2497.8 (3) Å3
Mr = 915.93Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.1716 (7) ŵ = 0.17 mm1
b = 19.4025 (12) ÅT = 296 K
c = 12.0025 (7) Å0.55 × 0.42 × 0.32 mm
β = 106.245 (1)°
Data collection top
Siemens SMART 1K CCD
diffractometer
10520 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
7109 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.947Rint = 0.037
27453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.34 e Å3
10520 reflectionsAbsolute structure: Flack (1983), with 4965 Friedel pairs
579 parametersAbsolute structure parameter: 0.02 (9)
23 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.9259 (2)0.73051 (18)0.7044 (2)0.0678 (8)
O30.89509 (19)0.71189 (13)1.06566 (17)0.0416 (5)
O50.66199 (19)0.54287 (13)0.93991 (17)0.0379 (5)
O60.9249 (2)0.56635 (14)0.8216 (2)0.0498 (6)
H6A0.99000.56500.87430.075*
O7W0.1470 (3)0.57984 (19)1.0016 (2)0.0695 (8)
H7C0.129 (4)0.592 (3)1.063 (2)0.11 (2)*
H7D0.207 (3)0.552 (2)1.022 (3)0.094 (18)*
O8W0.5845 (8)0.9276 (5)0.2582 (8)0.106 (4)0.432 (11)
O90.5978 (4)0.47211 (19)0.4648 (3)0.0971 (11)
O110.7227 (3)0.63909 (15)0.4476 (2)0.0601 (7)
H11B0.69610.66450.39160.090*
O120.5552 (3)0.73381 (19)0.3910 (2)0.0767 (9)
H12A0.48170.74540.37140.115*
O130.7336 (2)0.77075 (14)0.68886 (18)0.0441 (5)
O240.8552 (2)0.73134 (15)1.3084 (2)0.0556 (6)
O250.9804 (2)0.62995 (16)1.4629 (2)0.0600 (7)
H25B0.90570.63801.45050.090*
O261.0377 (2)0.63220 (14)1.17612 (19)0.0493 (6)
O300.7064 (2)0.47251 (14)1.0976 (2)0.0511 (6)
O340.4210 (2)0.56850 (14)0.9577 (2)0.0517 (6)
H34B0.41990.57170.88930.078*
N330.3193 (3)0.46849 (16)1.0750 (2)0.0466 (7)
C10.8498 (3)0.75202 (17)0.7486 (3)0.0389 (7)
C20.8725 (3)0.76395 (17)0.8779 (3)0.0389 (7)
H2A0.80370.79170.88950.047*
C30.8777 (3)0.69572 (17)0.9450 (2)0.0335 (7)
H3A0.94910.66860.93750.040*
C40.7580 (3)0.65215 (17)0.9018 (3)0.0363 (7)
H4A0.73600.65240.81680.044*
C50.7790 (3)0.57594 (17)0.9404 (3)0.0345 (7)
H5A0.83680.57361.01850.041*
C60.8284 (3)0.52994 (18)0.8564 (3)0.0441 (8)
C70.7203 (3)0.5174 (2)0.7452 (3)0.0469 (8)
H7A0.67880.47500.75560.056*
H7B0.66050.55450.73850.056*
C80.7540 (4)0.51235 (19)0.6293 (3)0.0533 (9)
H8A0.80790.55150.62500.064*
C90.6353 (4)0.5193 (2)0.5315 (3)0.0599 (11)
C100.5615 (3)0.5868 (2)0.5174 (3)0.0555 (10)
H10A0.52420.58970.58210.067*
C110.6505 (3)0.6485 (2)0.5281 (3)0.0479 (9)
H11A0.70880.64630.60610.058*
C120.5943 (3)0.7213 (2)0.5137 (3)0.0515 (9)
C130.7001 (3)0.7736 (2)0.5620 (3)0.0478 (8)
H13A0.77280.76040.53630.057*
C140.9918 (4)0.8051 (2)0.9199 (3)0.0569 (10)
H14A0.98440.84710.87620.085*
H14B1.06030.77850.90930.085*
H14C1.00630.81581.00070.085*
C150.6484 (3)0.6862 (2)0.9362 (4)0.0573 (10)
H15A0.64010.73320.91050.086*
H15B0.66420.68471.01900.086*
H15C0.57270.66170.90030.086*
C160.8815 (4)0.46350 (19)0.9167 (4)0.0577 (10)
H16A0.91360.43590.86530.087*
H16B0.81690.43850.93790.087*
H16C0.94740.47400.98530.087*
C170.8250 (5)0.4457 (3)0.6187 (5)0.0940 (17)
H17A0.84440.44540.54570.141*
H17B0.77390.40650.62290.141*
H17C0.90080.44360.68080.141*
C180.4532 (4)0.5846 (3)0.4040 (4)0.0864 (15)
H18A0.40330.54440.40400.130*
H18B0.48660.58310.33850.130*
H18C0.40250.62510.39910.130*
C190.4898 (4)0.7309 (3)0.5700 (4)0.0748 (12)
H19A0.42510.69790.53860.112*
H19B0.45670.77670.55470.112*
H19C0.52150.72420.65220.112*
C200.6678 (4)0.8489 (2)0.5289 (3)0.0692 (12)
H20A0.62920.85170.44590.083*
H20B0.60760.86490.56770.083*
C210.7804 (5)0.8958 (2)0.5608 (4)0.0855 (15)
H21A0.75490.94230.53860.128*
H21B0.83950.88110.52100.128*
H21C0.81830.89390.64310.128*
C221.0168 (3)0.7020 (2)1.1400 (3)0.0445 (8)
H22A1.07560.71311.09540.053*
C231.0425 (4)0.7513 (2)1.2420 (3)0.0535 (9)
H23A1.00950.79621.21350.064*
H23B1.13200.75611.27340.064*
C240.9880 (3)0.7304 (2)1.3406 (3)0.0502 (9)
C251.0223 (3)0.6553 (2)1.3694 (3)0.0476 (9)
H25A1.11360.65291.39410.057*
C260.9787 (3)0.6105 (2)1.2625 (3)0.0473 (8)
H26A0.88810.61451.23120.057*
C271.0414 (5)0.7765 (3)1.4463 (3)0.0729 (12)
H27A1.01960.82361.42600.109*
H27B1.13050.77191.47110.109*
H27C1.00750.76291.50820.109*
C280.7942 (5)0.7927 (2)1.2621 (4)0.0775 (13)
H28A0.83960.83151.30270.116*
H28B0.71130.79281.27070.116*
H28C0.79000.79581.18130.116*
C291.0136 (5)0.5356 (2)1.2872 (4)0.0731 (12)
H29A0.98270.50921.21750.110*
H29B0.97760.51871.34570.110*
H29C1.10270.53141.31400.110*
C300.6344 (3)0.52944 (18)1.0432 (3)0.0379 (7)
H30A0.65120.57001.09390.046*
C310.6781 (3)0.4524 (2)1.2038 (3)0.0551 (10)
H31A0.69260.49171.25710.066*
C320.5423 (3)0.4309 (2)1.1766 (3)0.0571 (10)
H32A0.52250.42061.24860.069*
H32B0.52950.38931.13010.069*
C330.4542 (3)0.48677 (19)1.1117 (3)0.0414 (8)
H33A0.46310.52601.16470.050*
C340.4951 (3)0.51140 (18)1.0086 (3)0.0379 (7)
H34A0.48070.47410.95120.046*
C350.7669 (4)0.3950 (3)1.2574 (4)0.0831 (14)
H35A0.85120.41121.27290.125*
H35B0.75460.35671.20470.125*
H35C0.75150.38061.32860.125*
C360.2757 (4)0.4494 (2)1.1756 (4)0.0681 (12)
H36A0.18630.44661.15250.102*
H36B0.30220.48371.23520.102*
H36C0.31010.40551.20490.102*
C370.2853 (4)0.4155 (2)0.9868 (3)0.0574 (10)
H37A0.32590.37311.01690.086*
H37B0.31090.42930.92020.086*
H37C0.19660.40900.96480.086*
S10.25601 (10)0.59971 (10)0.65505 (9)0.0772 (4)
O140.3849 (3)0.5796 (2)0.7224 (3)0.0901 (11)
C380.2103 (6)0.6649 (3)0.7334 (6)0.118 (2)
H38A0.22810.65140.81330.177*
H38B0.12240.67290.70260.177*
H38C0.25500.70630.72760.177*
C390.1537 (5)0.5351 (4)0.6804 (5)0.1078 (19)
H39A0.15960.49470.63610.162*
H39B0.06960.55200.65750.162*
H39C0.17670.52370.76150.162*
S20.32316 (11)0.78019 (6)0.13850 (11)0.0831 (4)0.482 (4)
O150.3312 (7)0.7602 (4)0.2610 (4)0.0988 (12)0.482 (4)
C400.3945 (18)0.7122 (7)0.0884 (13)0.129 (3)0.482 (4)
H40D0.34300.67190.08040.193*0.482 (4)
H40E0.47410.70310.14260.193*0.482 (4)
H40F0.40600.72390.01430.193*0.482 (4)
C410.4354 (12)0.8434 (6)0.1485 (12)0.126 (3)0.482 (4)
H41A0.40950.88500.17840.189*0.482 (4)
H41B0.44560.85210.07290.189*0.482 (4)
H41C0.51310.82820.19970.189*0.482 (4)
S2'0.32316 (11)0.78019 (6)0.13850 (11)0.0831 (4)0.518 (4)
O15'0.3821 (7)0.8140 (3)0.2530 (4)0.0988 (12)0.518 (4)
C40'0.3841 (18)0.6976 (5)0.1450 (13)0.129 (3)0.518 (4)
H40A0.35030.66960.19470.193*0.518 (4)
H40B0.47320.69950.17520.193*0.518 (4)
H40C0.36260.67800.06850.193*0.518 (4)
C41'0.4084 (12)0.8139 (7)0.0506 (10)0.126 (3)0.518 (4)
H41D0.38870.86190.03670.189*0.518 (4)
H41E0.38780.78960.02190.189*0.518 (4)
H41F0.49580.80890.08850.189*0.518 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0607 (16)0.100 (2)0.0466 (14)0.0232 (16)0.0213 (13)0.0065 (15)
O30.0416 (12)0.0527 (14)0.0337 (11)0.0013 (10)0.0155 (10)0.0010 (10)
O50.0376 (12)0.0434 (12)0.0368 (11)0.0056 (10)0.0174 (9)0.0028 (10)
O60.0447 (13)0.0531 (14)0.0593 (15)0.0022 (12)0.0272 (11)0.0008 (12)
O7W0.0553 (17)0.089 (2)0.0660 (18)0.0140 (16)0.0195 (14)0.0020 (17)
O8W0.098 (7)0.107 (7)0.108 (7)0.008 (5)0.018 (5)0.035 (5)
O90.133 (3)0.071 (2)0.085 (2)0.027 (2)0.026 (2)0.0360 (19)
O110.0719 (18)0.0600 (17)0.0573 (16)0.0040 (13)0.0328 (14)0.0000 (13)
O120.079 (2)0.096 (2)0.0426 (14)0.0130 (19)0.0045 (13)0.0086 (15)
O130.0442 (13)0.0525 (14)0.0348 (11)0.0021 (11)0.0095 (10)0.0015 (10)
O240.0551 (15)0.0602 (16)0.0537 (14)0.0110 (13)0.0187 (12)0.0153 (13)
O250.0606 (16)0.0774 (19)0.0468 (14)0.0079 (14)0.0230 (12)0.0203 (13)
O260.0482 (13)0.0596 (16)0.0418 (13)0.0092 (11)0.0155 (11)0.0054 (11)
O300.0460 (14)0.0614 (16)0.0490 (14)0.0072 (12)0.0185 (11)0.0173 (12)
O340.0453 (13)0.0538 (15)0.0624 (15)0.0109 (11)0.0254 (12)0.0157 (12)
N330.0462 (16)0.0517 (18)0.0483 (17)0.0118 (14)0.0235 (13)0.0027 (14)
C10.0444 (19)0.0345 (18)0.0403 (17)0.0037 (15)0.0162 (15)0.0054 (14)
C20.0419 (17)0.0390 (18)0.0359 (16)0.0019 (14)0.0109 (14)0.0022 (14)
C30.0350 (16)0.0338 (16)0.0323 (15)0.0028 (13)0.0106 (13)0.0019 (13)
C40.0318 (16)0.0384 (19)0.0396 (17)0.0003 (13)0.0115 (13)0.0022 (14)
C50.0293 (15)0.0380 (17)0.0377 (16)0.0026 (13)0.0119 (13)0.0056 (14)
C60.0425 (19)0.0395 (19)0.056 (2)0.0014 (15)0.0229 (16)0.0039 (16)
C70.053 (2)0.046 (2)0.048 (2)0.0054 (16)0.0236 (16)0.0068 (16)
C80.075 (3)0.038 (2)0.058 (2)0.0027 (18)0.036 (2)0.0088 (17)
C90.083 (3)0.054 (3)0.051 (2)0.020 (2)0.032 (2)0.015 (2)
C100.056 (2)0.071 (3)0.0400 (18)0.017 (2)0.0141 (16)0.0113 (18)
C110.0454 (19)0.061 (2)0.0383 (19)0.0096 (17)0.0137 (15)0.0058 (17)
C120.048 (2)0.060 (2)0.0412 (19)0.0007 (18)0.0044 (16)0.0028 (17)
C130.059 (2)0.048 (2)0.0343 (17)0.0002 (17)0.0096 (15)0.0023 (15)
C140.063 (2)0.053 (2)0.052 (2)0.0158 (19)0.0111 (18)0.0087 (18)
C150.040 (2)0.042 (2)0.096 (3)0.0038 (16)0.028 (2)0.006 (2)
C160.062 (2)0.043 (2)0.073 (3)0.0062 (18)0.027 (2)0.0029 (19)
C170.127 (4)0.081 (3)0.093 (4)0.023 (3)0.062 (3)0.019 (3)
C180.082 (3)0.104 (4)0.061 (3)0.033 (3)0.001 (2)0.017 (3)
C190.049 (2)0.092 (3)0.080 (3)0.004 (2)0.014 (2)0.011 (3)
C200.097 (3)0.055 (2)0.047 (2)0.000 (2)0.006 (2)0.0005 (19)
C210.144 (5)0.050 (3)0.072 (3)0.011 (3)0.044 (3)0.002 (2)
C220.0383 (18)0.058 (2)0.0389 (17)0.0050 (16)0.0140 (15)0.0011 (16)
C230.058 (2)0.063 (2)0.0410 (19)0.0133 (19)0.0151 (16)0.0005 (17)
C240.060 (2)0.055 (2)0.0375 (18)0.0081 (18)0.0171 (16)0.0008 (16)
C250.0391 (18)0.069 (2)0.0361 (17)0.0025 (17)0.0121 (14)0.0079 (17)
C260.0414 (18)0.056 (2)0.0440 (19)0.0052 (17)0.0105 (15)0.0089 (17)
C270.104 (3)0.075 (3)0.045 (2)0.019 (3)0.028 (2)0.014 (2)
C280.098 (3)0.067 (3)0.068 (3)0.030 (3)0.025 (3)0.014 (2)
C290.107 (4)0.049 (2)0.064 (3)0.015 (2)0.025 (2)0.010 (2)
C300.0440 (18)0.0349 (18)0.0380 (17)0.0009 (14)0.0166 (14)0.0002 (14)
C310.053 (2)0.069 (3)0.045 (2)0.0018 (19)0.0162 (17)0.0171 (18)
C320.063 (2)0.062 (2)0.052 (2)0.008 (2)0.0256 (19)0.0126 (19)
C330.0416 (18)0.048 (2)0.0362 (17)0.0073 (15)0.0142 (14)0.0032 (15)
C340.0397 (17)0.0386 (18)0.0393 (17)0.0004 (15)0.0174 (14)0.0006 (15)
C350.074 (3)0.094 (4)0.078 (3)0.005 (3)0.016 (3)0.041 (3)
C360.072 (3)0.082 (3)0.065 (3)0.024 (2)0.043 (2)0.012 (2)
C370.055 (2)0.055 (2)0.063 (2)0.0121 (18)0.0181 (19)0.0080 (19)
S10.0550 (6)0.1259 (11)0.0512 (6)0.0139 (7)0.0158 (5)0.0244 (6)
O140.0610 (18)0.141 (3)0.0719 (19)0.027 (2)0.0256 (15)0.024 (2)
C380.112 (5)0.118 (5)0.116 (5)0.045 (4)0.019 (4)0.007 (4)
C390.086 (4)0.140 (5)0.096 (4)0.000 (4)0.025 (3)0.023 (4)
S20.0556 (6)0.1101 (10)0.0765 (7)0.0036 (6)0.0067 (5)0.0220 (7)
O150.104 (4)0.108 (3)0.0781 (11)0.003 (2)0.014 (2)0.0190 (15)
C400.160 (7)0.121 (3)0.103 (8)0.032 (5)0.032 (7)0.010 (2)
C410.136 (7)0.148 (5)0.106 (4)0.052 (4)0.054 (4)0.014 (3)
S2'0.0556 (6)0.1101 (10)0.0765 (7)0.0036 (6)0.0067 (5)0.0220 (7)
O15'0.104 (4)0.108 (3)0.0781 (11)0.003 (2)0.014 (2)0.0190 (15)
C40'0.160 (7)0.121 (3)0.103 (8)0.032 (5)0.032 (7)0.010 (2)
C41'0.136 (7)0.148 (5)0.106 (4)0.052 (4)0.054 (4)0.014 (3)
Geometric parameters (Å, º) top
O1—C11.197 (4)C19—H19A0.9600
O3—C221.416 (4)C19—H19B0.9600
O3—C31.440 (4)C19—H19C0.9600
O5—C301.383 (3)C20—C211.513 (7)
O5—C51.454 (3)C20—H20A0.9700
O6—C61.445 (4)C20—H20B0.9700
O6—H6A0.8200C21—H21A0.9600
O7W—H7C0.845 (10)C21—H21B0.9600
O7W—H7D0.841 (10)C21—H21C0.9600
O9—C91.210 (5)C22—C231.517 (5)
O11—C111.434 (4)C22—H22A0.9800
O11—H11B0.8200C23—C241.529 (5)
O12—C121.436 (4)C23—H23A0.9700
O12—H12A0.8200C23—H23B0.9700
O13—C11.345 (4)C24—C251.523 (5)
O13—C131.464 (4)C24—C271.530 (5)
O24—C281.407 (5)C25—C261.512 (5)
O24—C241.425 (4)C25—H25A0.9800
O25—C251.419 (4)C26—C291.513 (5)
O25—H25B0.8200C26—H26A0.9800
O26—C221.421 (4)C27—H27A0.9600
O26—C261.438 (4)C27—H27B0.9600
O30—C301.414 (4)C27—H27C0.9600
O30—C311.450 (4)C28—H28A0.9600
O34—C341.415 (4)C28—H28B0.9600
O34—H34B0.8200C28—H28C0.9600
N33—C371.448 (5)C29—H29A0.9600
N33—C361.470 (4)C29—H29B0.9600
N33—C331.490 (4)C29—H29C0.9600
C1—C21.519 (4)C30—C341.534 (4)
C2—C141.514 (5)C30—H30A0.9800
C2—C31.542 (4)C31—C351.511 (6)
C2—H2A0.9800C31—C321.518 (5)
C3—C41.544 (4)C31—H31A0.9800
C3—H3A0.9800C32—C331.523 (5)
C4—C151.546 (5)C32—H32A0.9700
C4—C51.548 (4)C32—H32B0.9700
C4—H4A0.9800C33—C341.511 (4)
C5—C61.558 (4)C33—H33A0.9800
C5—H5A0.9800C34—H34A0.9800
C6—C161.516 (5)C35—H35A0.9600
C6—C71.548 (5)C35—H35B0.9600
C7—C81.542 (5)C35—H35C0.9600
C7—H7A0.9700C36—H36A0.9600
C7—H7B0.9700C36—H36B0.9600
C8—C91.512 (6)C36—H36C0.9600
C8—C171.542 (6)C37—H37A0.9600
C8—H8A0.9800C37—H37B0.9600
C9—C101.532 (6)C37—H37C0.9600
C10—C111.537 (5)S1—O141.493 (3)
C10—C181.549 (5)S1—C381.735 (6)
C10—H10A0.9800S1—C391.779 (6)
C11—C121.536 (6)C38—H38A0.9600
C11—H11A0.9800C38—H38B0.9600
C12—C191.514 (5)C38—H38C0.9600
C12—C131.544 (5)C39—H39A0.9600
C13—C201.530 (6)C39—H39B0.9600
C13—H13A0.9800C39—H39C0.9600
C14—H14A0.9600S2—O151.498 (5)
C14—H14B0.9600S2—C411.734 (6)
C14—H14C0.9600S2—C401.734 (6)
C15—H15A0.9600C40—H40D0.9600
C15—H15B0.9600C40—H40E0.9600
C15—H15C0.9600C40—H40F0.9600
C16—H16A0.9600C41—H41A0.9600
C16—H16B0.9600C41—H41B0.9600
C16—H16C0.9600C41—H41C0.9600
C17—H17A0.9600C40'—H40A0.9600
C17—H17B0.9600C40'—H40B0.9600
C17—H17C0.9600C40'—H40C0.9600
C18—H18A0.9600C41'—H41D0.9600
C18—H18B0.9600C41'—H41E0.9600
C18—H18C0.9600C41'—H41F0.9600
C22—O3—C3116.0 (2)H21B—C21—H21C109.5
C30—O5—C5120.3 (2)O3—C22—O26111.6 (3)
C6—O6—H6A109.5O3—C22—C23110.7 (3)
H7C—O7W—H7D106 (4)O26—C22—C23112.1 (3)
C11—O11—H11B109.5O3—C22—H22A107.4
C12—O12—H12A109.5O26—C22—H22A107.4
C1—O13—C13119.5 (2)C23—C22—H22A107.4
C28—O24—C24118.0 (3)C22—C23—C24115.6 (3)
C25—O25—H25B109.5C22—C23—H23A108.4
C22—O26—C26115.4 (3)C24—C23—H23A108.4
C30—O30—C31112.4 (2)C22—C23—H23B108.4
C34—O34—H34B109.5C24—C23—H23B108.4
C37—N33—C36110.0 (3)H23A—C23—H23B107.4
C37—N33—C33114.9 (3)O24—C24—C25104.5 (3)
C36—N33—C33111.0 (3)O24—C24—C23113.3 (3)
O1—C1—O13123.8 (3)C25—C24—C23107.4 (3)
O1—C1—C2124.8 (3)O24—C24—C27110.7 (3)
O13—C1—C2111.4 (3)C25—C24—C27110.9 (3)
C14—C2—C1107.5 (3)C23—C24—C27109.9 (3)
C14—C2—C3112.2 (3)O25—C25—C26111.9 (3)
C1—C2—C3112.0 (2)O25—C25—C24113.2 (3)
C14—C2—H2A108.4C26—C25—C24110.9 (3)
C1—C2—H2A108.4O25—C25—H25A106.8
C3—C2—H2A108.4C26—C25—H25A106.8
O3—C3—C2108.2 (2)C24—C25—H25A106.8
O3—C3—C4108.5 (2)O26—C26—C25109.9 (3)
C2—C3—C4113.1 (2)O26—C26—C29106.1 (3)
O3—C3—H3A109.0C25—C26—C29112.4 (3)
C2—C3—H3A109.0O26—C26—H26A109.5
C4—C3—H3A109.0C25—C26—H26A109.5
C3—C4—C15110.7 (3)C29—C26—H26A109.5
C3—C4—C5112.2 (2)C24—C27—H27A109.5
C15—C4—C5113.2 (3)C24—C27—H27B109.5
C3—C4—H4A106.8H27A—C27—H27B109.5
C15—C4—H4A106.8C24—C27—H27C109.5
C5—C4—H4A106.8H27A—C27—H27C109.5
O5—C5—C4111.1 (2)H27B—C27—H27C109.5
O5—C5—C6103.0 (2)O24—C28—H28A109.5
C4—C5—C6113.9 (2)O24—C28—H28B109.5
O5—C5—H5A109.5H28A—C28—H28B109.5
C4—C5—H5A109.5O24—C28—H28C109.5
C6—C5—H5A109.5H28A—C28—H28C109.5
O6—C6—C16109.3 (3)H28B—C28—H28C109.5
O6—C6—C7107.0 (3)C26—C29—H29A109.5
C16—C6—C7112.6 (3)C26—C29—H29B109.5
O6—C6—C5109.6 (3)H29A—C29—H29B109.5
C16—C6—C5109.9 (3)C26—C29—H29C109.5
C7—C6—C5108.4 (3)H29A—C29—H29C109.5
C8—C7—C6117.4 (3)H29B—C29—H29C109.5
C8—C7—H7A108.0O5—C30—O30108.7 (2)
C6—C7—H7A108.0O5—C30—C34105.3 (2)
C8—C7—H7B108.0O30—C30—C34110.5 (2)
C6—C7—H7B108.0O5—C30—H30A110.7
H7A—C7—H7B107.2O30—C30—H30A110.7
C9—C8—C17111.7 (3)C34—C30—H30A110.7
C9—C8—C7108.2 (3)O30—C31—C35107.1 (3)
C17—C8—C7112.9 (3)O30—C31—C32109.6 (3)
C9—C8—H8A107.9C35—C31—C32112.8 (3)
C17—C8—H8A107.9O30—C31—H31A109.1
C7—C8—H8A107.9C35—C31—H31A109.1
O9—C9—C8120.9 (4)C32—C31—H31A109.1
O9—C9—C10119.8 (4)C31—C32—C33112.3 (3)
C8—C9—C10119.3 (3)C31—C32—H32A109.2
C9—C10—C11109.9 (3)C33—C32—H32A109.2
C9—C10—C18109.7 (3)C31—C32—H32B109.2
C11—C10—C18115.0 (3)C33—C32—H32B109.2
C9—C10—H10A107.3H32A—C32—H32B107.9
C11—C10—H10A107.3N33—C33—C34110.3 (3)
C18—C10—H10A107.3N33—C33—C32115.9 (3)
O11—C11—C12109.3 (3)C34—C33—C32110.1 (3)
O11—C11—C10108.5 (3)N33—C33—H33A106.7
C12—C11—C10118.2 (3)C34—C33—H33A106.7
O11—C11—H11A106.8C32—C33—H33A106.7
C12—C11—H11A106.8O34—C34—C33109.0 (3)
C10—C11—H11A106.8O34—C34—C30111.4 (3)
O12—C12—C19112.7 (3)C33—C34—C30111.5 (3)
O12—C12—C11105.6 (3)O34—C34—H34A108.3
C19—C12—C11113.9 (3)C33—C34—H34A108.3
O12—C12—C13104.8 (3)C30—C34—H34A108.3
C19—C12—C13110.9 (3)C31—C35—H35A109.5
C11—C12—C13108.5 (3)C31—C35—H35B109.5
O13—C13—C20106.2 (3)H35A—C35—H35B109.5
O13—C13—C12108.1 (3)C31—C35—H35C109.5
C20—C13—C12115.5 (3)H35A—C35—H35C109.5
O13—C13—H13A108.9H35B—C35—H35C109.5
C20—C13—H13A108.9N33—C36—H36A109.5
C12—C13—H13A108.9N33—C36—H36B109.5
C2—C14—H14A109.5H36A—C36—H36B109.5
C2—C14—H14B109.5N33—C36—H36C109.5
H14A—C14—H14B109.5H36A—C36—H36C109.5
C2—C14—H14C109.5H36B—C36—H36C109.5
H14A—C14—H14C109.5N33—C37—H37A109.5
H14B—C14—H14C109.5N33—C37—H37B109.5
C4—C15—H15A109.5H37A—C37—H37B109.5
C4—C15—H15B109.5N33—C37—H37C109.5
H15A—C15—H15B109.5H37A—C37—H37C109.5
C4—C15—H15C109.5H37B—C37—H37C109.5
H15A—C15—H15C109.5O14—S1—C38106.4 (3)
H15B—C15—H15C109.5O14—S1—C39107.0 (2)
C6—C16—H16A109.5C38—S1—C3996.9 (3)
C6—C16—H16B109.5S1—C38—H38A109.5
H16A—C16—H16B109.5S1—C38—H38B109.5
C6—C16—H16C109.5H38A—C38—H38B109.5
H16A—C16—H16C109.5S1—C38—H38C109.5
H16B—C16—H16C109.5H38A—C38—H38C109.5
C8—C17—H17A109.5H38B—C38—H38C109.5
C8—C17—H17B109.5S1—C39—H39A109.5
H17A—C17—H17B109.5S1—C39—H39B109.5
C8—C17—H17C109.5H39A—C39—H39B109.5
H17A—C17—H17C109.5S1—C39—H39C109.5
H17B—C17—H17C109.5H39A—C39—H39C109.5
C10—C18—H18A109.5H39B—C39—H39C109.5
C10—C18—H18B109.5O15—S2—C41105.7 (5)
H18A—C18—H18B109.5O15—S2—C40103.7 (6)
C10—C18—H18C109.5C41—S2—C4099.7 (9)
H18A—C18—H18C109.5S2—C40—H40D109.5
H18B—C18—H18C109.5S2—C40—H40E109.5
C12—C19—H19A109.5H40D—C40—H40E109.5
C12—C19—H19B109.5S2—C40—H40F109.5
H19A—C19—H19B109.5H40D—C40—H40F109.5
C12—C19—H19C109.5H40E—C40—H40F109.5
H19A—C19—H19C109.5S2—C41—H41A109.5
H19B—C19—H19C109.5S2—C41—H41B109.5
C21—C20—C13112.9 (4)H41A—C41—H41B109.5
C21—C20—H20A109.0S2—C41—H41C109.5
C13—C20—H20A109.0H41A—C41—H41C109.5
C21—C20—H20B109.0H41B—C41—H41C109.5
C13—C20—H20B109.0H40A—C40'—H40B109.5
H20A—C20—H20B107.8H40A—C40'—H40C109.5
C20—C21—H21A109.5H40B—C40'—H40C109.5
C20—C21—H21B109.5H41D—C41'—H41E109.5
H21A—C21—H21B109.5H41D—C41'—H41F109.5
C20—C21—H21C109.5H41E—C41'—H41F109.5
H21A—C21—H21C109.5
C13—O13—C1—O17.9 (5)C19—C12—C13—O1350.4 (4)
C13—O13—C1—C2170.3 (3)C11—C12—C13—O1375.4 (3)
O1—C1—C2—C1449.6 (4)O12—C12—C13—C2053.5 (4)
O13—C1—C2—C14128.6 (3)C19—C12—C13—C2068.4 (4)
O1—C1—C2—C374.1 (4)C11—C12—C13—C20165.8 (3)
O13—C1—C2—C3107.8 (3)O13—C13—C20—C2170.1 (4)
C22—O3—C3—C2103.4 (3)C12—C13—C20—C21170.1 (3)
C22—O3—C3—C4133.6 (3)C3—O3—C22—O2683.3 (3)
C14—C2—C3—O361.1 (3)C3—O3—C22—C23151.0 (3)
C1—C2—C3—O3178.0 (2)C26—O26—C22—O375.0 (3)
C14—C2—C3—C4178.7 (3)C26—O26—C22—C2349.9 (4)
C1—C2—C3—C457.8 (3)O3—C22—C23—C2479.8 (4)
O3—C3—C4—C1549.2 (3)O26—C22—C23—C2445.6 (4)
C2—C3—C4—C1570.8 (3)C28—O24—C24—C25171.9 (3)
O3—C3—C4—C578.2 (3)C28—O24—C24—C2355.2 (4)
C2—C3—C4—C5161.7 (2)C28—O24—C24—C2768.7 (4)
C30—O5—C5—C4105.4 (3)C22—C23—C24—O2466.5 (4)
C30—O5—C5—C6132.3 (3)C22—C23—C24—C2548.4 (4)
C3—C4—C5—O5157.8 (2)C22—C23—C24—C27169.1 (3)
C15—C4—C5—O531.6 (4)O24—C24—C25—O2561.2 (3)
C3—C4—C5—C686.4 (3)C23—C24—C25—O25178.1 (3)
C15—C4—C5—C6147.4 (3)C27—C24—C25—O2558.0 (4)
O5—C5—C6—O6163.7 (2)O24—C24—C25—C2665.4 (3)
C4—C5—C6—O643.3 (3)C23—C24—C25—C2655.2 (4)
O5—C5—C6—C1676.2 (3)C27—C24—C25—C26175.3 (3)
C4—C5—C6—C16163.4 (3)C22—O26—C26—C2558.2 (3)
O5—C5—C6—C747.3 (3)C22—O26—C26—C29180.0 (3)
C4—C5—C6—C773.1 (3)O25—C25—C26—O26171.7 (3)
O6—C6—C7—C827.4 (4)C24—C25—C26—O2660.9 (4)
C16—C6—C7—C892.7 (4)O25—C25—C26—C2953.9 (4)
C5—C6—C7—C8145.5 (3)C24—C25—C26—C29178.8 (3)
C6—C7—C8—C9165.1 (3)C5—O5—C30—O3074.8 (3)
C6—C7—C8—C1770.7 (5)C5—O5—C30—C34166.8 (2)
C17—C8—C9—O99.0 (5)C31—O30—C30—O5176.7 (3)
C7—C8—C9—O9115.9 (4)C31—O30—C30—C3461.7 (3)
C17—C8—C9—C10171.5 (3)C30—O30—C31—C35176.0 (3)
C7—C8—C9—C1063.6 (4)C30—O30—C31—C3261.3 (4)
O9—C9—C10—C11134.4 (4)O30—C31—C32—C3355.0 (4)
C8—C9—C10—C1146.0 (4)C35—C31—C32—C33174.2 (3)
O9—C9—C10—C186.9 (5)C37—N33—C33—C3458.7 (4)
C8—C9—C10—C18173.5 (3)C36—N33—C33—C34175.7 (3)
C9—C10—C11—O1153.6 (4)C37—N33—C33—C3267.3 (4)
C18—C10—C11—O1170.9 (4)C36—N33—C33—C3258.3 (4)
C9—C10—C11—C12178.6 (3)C31—C32—C33—N33176.4 (3)
C18—C10—C11—C1254.2 (4)C31—C32—C33—C3450.4 (4)
O11—C11—C12—O1240.4 (4)N33—C33—C34—O3457.6 (3)
C10—C11—C12—O1284.3 (4)C32—C33—C34—O34173.3 (3)
O11—C11—C12—C19164.5 (3)N33—C33—C34—C30179.0 (3)
C10—C11—C12—C1939.9 (4)C32—C33—C34—C3049.9 (4)
O11—C11—C12—C1371.4 (3)O5—C30—C34—O3465.0 (3)
C10—C11—C12—C13163.9 (3)O30—C30—C34—O34177.9 (2)
C1—O13—C13—C20117.1 (3)O5—C30—C34—C33173.0 (3)
C1—O13—C13—C12118.3 (3)O30—C30—C34—C3355.8 (3)
O12—C12—C13—O13172.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O7Wi0.822.002.810 (4)170
O7W—H7C···O26ii0.85 (1)2.07 (2)2.888 (4)163 (4)
O7W—H7D···N330.84 (1)2.04 (2)2.863 (4)166 (5)
O11—H11B···O120.822.072.575 (4)120
O12—H12A···O150.821.852.602 (8)152
O12—H12A···O150.822.042.667 (7)134
O25—H25B···O11iii0.822.042.838 (4)166
O34—H34B···O140.821.942.747 (4)170
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC37H67NO13·2C2H6SO·1.43H2O
Mr915.93
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)11.1716 (7), 19.4025 (12), 12.0025 (7)
β (°) 106.245 (1)
V3)2497.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.55 × 0.42 × 0.32
Data collection
DiffractometerSiemens SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.870, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
27453, 10520, 7109
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.142, 1.04
No. of reflections10520
No. of parameters579
No. of restraints23
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.34
Absolute structureFlack (1983), with 4965 Friedel pairs
Absolute structure parameter0.02 (9)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O7Wi0.822.002.810 (4)169.9
O7W—H7C···O26ii0.845 (10)2.071 (15)2.888 (4)163 (4)
O7W—H7D···N330.841 (10)2.038 (16)2.863 (4)166 (5)
O11—H11B···O120.822.072.575 (4)119.7
O12—H12A···O150.821.852.602 (8)152.2
O12—H12A···O15'0.822.042.667 (7)133.5
O25—H25B···O11iii0.822.042.838 (4)166.1
O34—H34B···O140.821.942.747 (4)169.6
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z+1.
 

Acknowledgements

The authors gratefully thank Edith Alig for the X-ray powder diffraction experiments.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenry, R. & Zhang, G. G. Z. (2007). J. Pharm. Sci. 96, 1251–1257.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMirza, S., Miroshnyk, I., Heinämäki, J., Christiansen, L., Karjalainen, M. & Yliruusi, J. (2003). AAPS PharmSci. 5(2), 39–47.  CrossRef Google Scholar
First citationSchmidt, M. U., Brüning, J., Trepte, T. K. & Bats, J. W. (2011). German Patent Appl. 102011117874.4.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, G. A., Stowell, J. G., Toma, P. H., Pfeiffer, R. R. & Byrn, S. R. (1997). J. Pharm. Sci. 86, 1239–1244.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTian, J., Thallapally, P. K., Dalgarno, S. J. & Atwood, J. L. (2009). J. Am. Chem. Soc. 131, 13216–13217.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWoodward, R. B., Logusch, E., Nambiar, K. P., Sakan, K., Ward, D. E., Au-Yeung, B. W., Balaram, P., Browne, L. J., Card, P. J. & Chen, C. H. (1981). J. Am. Chem. Soc. 103, 3210–3213.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o700-o701
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds