organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N-methyl­benzamide

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: liuyanju886@163.com

(Received 29 January 2012; accepted 3 February 2012; online 10 February 2012)

In the title compound, C9H11NO2, the dihedral angle between the amide group and the benzene ring is 10.6 (1)°. In the crystal, mol­ecules are connected via N—H⋯O hydrogen bonds, supported by a C—H⋯O contact, forming chains along b. These chains are linked by C—H⋯π inter­actions to give a three-dimensional network.

Related literature

The title compound is an important inter­mediate in organic synthesis. For background to applications of the title compound and the synthesis, see: Lee et al. (2009[Lee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358-6361.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO2

  • Mr = 165.19

  • Monoclinic, P 21 /c

  • a = 8.7350 (17) Å

  • b = 9.2750 (19) Å

  • c = 10.719 (2) Å

  • β = 99.83 (3)°

  • V = 855.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 3239 measured reflections

  • 1573 independent reflections

  • 1088 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.169

  • S = 1.00

  • 1573 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.20 2.961 (2) 147
C1—H1A⋯O2i 0.93 2.46 3.378 (3) 169
C7—H7CCg1ii 0.96 2.94 3.816 (3) 153
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzamide derivatives exhibit interesting biological activities including antibacterial and antifungal effects (Lee et al., 2009). We report here the crystal structure of the title compound 4-methoxy-N-methylbenzamide, (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the amide group and the benzene ring is 10.6 (1)°. The bond lengths are within normal ranges (Allen et al., 1987). In the crystal structure, intermolecular N—H0A···O2 hydrogen bonds, supported by C1—H1···O1 contacts (Table 1) result in the molecular chains along b. These chains are linked by C7—H7···π interactions to give a three-dimensional network.

Related literature top

The title compound is an important intermediate in organic synthesis. For background to applications of the title compound and the synthesis, see: Lee et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a literature method (Lee et al., 2009). Crystals were obtained by dissolving (I) (0.2 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H, 0.96 Å for methyl H and 0.86 Å for N—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and N—H, and x = 1.5 for methyl H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
4-Methoxy-N-methylbenzamide top
Crystal data top
C9H11NO2F(000) = 352
Mr = 165.19Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.7350 (17) Åθ = 10–14°
b = 9.2750 (19) ŵ = 0.09 mm1
c = 10.719 (2) ÅT = 293 K
β = 99.83 (3)°Block, colourless
V = 855.7 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1088 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.4°, θmin = 2.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.973, Tmax = 0.991l = 1212
3239 measured reflections3 standard reflections every 200 reflections
1573 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.1P)2 + 0.095P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1573 reflectionsΔρmax = 0.18 e Å3
110 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.25 (2)
Crystal data top
C9H11NO2V = 855.7 (3) Å3
Mr = 165.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7350 (17) ŵ = 0.09 mm1
b = 9.2750 (19) ÅT = 293 K
c = 10.719 (2) Å0.30 × 0.20 × 0.10 mm
β = 99.83 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1088 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
3239 measured reflections intensity decay: 1%
1573 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1573 reflectionsΔρmin = 0.19 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.0727 (2)0.35158 (19)0.24974 (17)0.0581 (6)
H0A0.03750.43820.25980.070*
O10.4704 (2)0.42231 (19)0.72531 (15)0.0746 (6)
C10.1914 (3)0.4288 (2)0.4363 (2)0.0641 (7)
H1A0.16100.49370.37060.077*
O20.0596 (2)0.12586 (17)0.32506 (15)0.0701 (6)
C20.3083 (3)0.4659 (2)0.5335 (2)0.0701 (8)
H2A0.35690.55500.53210.084*
C30.3548 (3)0.3727 (2)0.63338 (19)0.0544 (6)
C40.2849 (3)0.2390 (3)0.63200 (19)0.0564 (6)
H4A0.31610.17400.69750.068*
C50.1686 (3)0.2022 (2)0.5331 (2)0.0532 (6)
H5A0.12290.11160.53280.064*
C60.1180 (2)0.2963 (2)0.43448 (19)0.0474 (6)
C70.5133 (3)0.3375 (3)0.8361 (2)0.0813 (9)
H7A0.59570.38470.89210.122*
H7B0.54810.24450.81310.122*
H7C0.42530.32600.87790.122*
C80.0109 (2)0.2511 (2)0.33215 (18)0.0497 (6)
C90.1962 (3)0.3222 (3)0.1440 (2)0.0700 (8)
H9A0.22290.40940.09700.105*
H9B0.28570.28670.17530.105*
H9C0.16180.25120.08980.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0653 (12)0.0475 (10)0.0548 (11)0.0002 (9)0.0089 (9)0.0047 (8)
O10.0820 (12)0.0739 (11)0.0562 (10)0.0104 (9)0.0210 (9)0.0078 (8)
C10.0857 (17)0.0445 (12)0.0520 (13)0.0056 (12)0.0170 (12)0.0065 (10)
O20.0913 (13)0.0485 (9)0.0628 (10)0.0150 (8)0.0085 (9)0.0023 (7)
C20.0898 (18)0.0466 (12)0.0629 (14)0.0129 (12)0.0185 (13)0.0059 (10)
C30.0585 (13)0.0559 (13)0.0445 (11)0.0014 (10)0.0034 (10)0.0015 (10)
C40.0685 (14)0.0558 (13)0.0429 (11)0.0057 (11)0.0045 (10)0.0115 (10)
C50.0644 (14)0.0459 (11)0.0483 (12)0.0041 (10)0.0065 (10)0.0011 (9)
C60.0575 (12)0.0411 (11)0.0427 (11)0.0032 (9)0.0058 (9)0.0017 (8)
C70.0776 (17)0.106 (2)0.0522 (14)0.0006 (16)0.0108 (13)0.0132 (14)
C80.0593 (13)0.0460 (12)0.0427 (11)0.0008 (10)0.0058 (9)0.0059 (9)
C90.0688 (15)0.0703 (16)0.0630 (16)0.0017 (12)0.0117 (13)0.0018 (12)
Geometric parameters (Å, º) top
N—C81.333 (3)C4—C51.380 (3)
N—C91.451 (3)C4—H4A0.9300
N—H0A0.8600C5—C61.384 (3)
O1—C31.365 (3)C5—H5A0.9300
O1—C71.420 (3)C6—C81.492 (3)
C1—C21.372 (3)C7—H7A0.9600
C1—C61.385 (3)C7—H7B0.9600
C1—H1A0.9300C7—H7C0.9600
O2—C81.235 (3)C9—H9A0.9600
C2—C31.383 (3)C9—H9B0.9600
C2—H2A0.9300C9—H9C0.9600
C3—C41.381 (3)
C8—N—C9123.30 (19)C5—C6—C1117.52 (19)
C8—N—H0A118.3C5—C6—C8119.12 (19)
C9—N—H0A118.3C1—C6—C8123.36 (19)
C3—O1—C7118.3 (2)O1—C7—H7A109.5
C2—C1—C6121.1 (2)O1—C7—H7B109.5
C2—C1—H1A119.5H7A—C7—H7B109.5
C6—C1—H1A119.5O1—C7—H7C109.5
C1—C2—C3120.9 (2)H7A—C7—H7C109.5
C1—C2—H2A119.6H7B—C7—H7C109.5
C3—C2—H2A119.6O2—C8—N121.38 (19)
O1—C3—C4125.57 (19)O2—C8—C6121.26 (19)
O1—C3—C2115.6 (2)N—C8—C6117.36 (18)
C4—C3—C2118.86 (19)N—C9—H9A109.5
C5—C4—C3119.8 (2)N—C9—H9B109.5
C5—C4—H4A120.1H9A—C9—H9B109.5
C3—C4—H4A120.1N—C9—H9C109.5
C4—C5—C6121.9 (2)H9A—C9—H9C109.5
C4—C5—H5A119.1H9B—C9—H9C109.5
C6—C5—H5A119.1
C6—C1—C2—C30.9 (4)C4—C5—C6—C8178.5 (2)
C7—O1—C3—C46.9 (4)C2—C1—C6—C51.0 (4)
C7—O1—C3—C2174.2 (2)C2—C1—C6—C8179.2 (2)
C1—C2—C3—O1179.0 (2)C9—N—C8—O22.2 (3)
C1—C2—C3—C42.0 (4)C9—N—C8—C6178.6 (2)
O1—C3—C4—C5179.8 (2)C5—C6—C8—O29.3 (3)
C2—C3—C4—C51.4 (3)C1—C6—C8—O2170.5 (2)
C3—C4—C5—C60.5 (3)C5—C6—C8—N169.8 (2)
C4—C5—C6—C11.7 (3)C1—C6—C8—N10.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.202.961 (2)147
C1—H1A···O2i0.932.463.378 (3)169
C7—H7C···Cg1ii0.962.943.816 (3)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11NO2
Mr165.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7350 (17), 9.2750 (19), 10.719 (2)
β (°) 99.83 (3)
V3)855.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3239, 1573, 1088
Rint0.042
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.169, 1.00
No. of reflections1573
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.202.961 (2)147
C1—H1A···O2i0.932.463.378 (3)169
C7—H7C···Cg1ii0.962.943.816 (3)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2.
 

Acknowledgements

This study was supported by the Science and Technology Department of Henan Province (grant No. 102102310321) and the Doctoral Research Fund of Henan Chinese Medicine (grant No. BSJJ2009-38). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358–6361.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds