organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o630-o631

Methyl 1-ethyl-7-methyl-4-oxo-1,4-di­hydro-1,8-naphthyridine-3-carboxyl­ate monohydrate

aDepartment of Chemistry, Gomal University, Dera Ismail Khan, Pakistan, bApplied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600, Pakistan, cDepartment of Chemistry, University of Gujrat 50781, Gujrat, Pakistan, and dMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 29 January 2012; accepted 2 February 2012; online 10 February 2012)

In the structure of the title compound, C13H14N2O3·H2O, all atoms of the organic molecule except the terminal methyl group of the ethyl group attached to the N atom of the pyridinone ring are roughly coplanar, with an r.m.s. deviation of 0.0897 Å. In the crystal, C—H⋯O contacts link pairs of naphthyridine mol­ecules into head-to-tail dimers. These are joined by strong O—H⋯O hydrogen bonds from the water molecules into infinite chains along the a axis.

Related literature

For the coordination properties of 1,8-naphthyridine ligands, see: Gavrilova & Bosnich (2004[Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.]); Mintert & Sheldrick (1995[Mintert, M. & Sheldrick, W. S. (1995). J. Chem. Soc. Dalton Trans. pp. 2663-2669.]). For their biological activity, see: Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2378.]); Ferrarini et al. (2000[Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem. 35, 815-819.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]). For related structures, see: Deeba, Khan, Zia-ur-Rehman, Çaylak & Şahin (2009[Deeba, F., Khan, M. A., Zia-ur-Rehman, M., Çaylak, N. & Şahin, E. (2009). Acta Cryst. E65, o860-o861.]); Deeba, Khan, Zia-ur-Rehman, Şahin & Çaylak (2009[Deeba, F., Khan, M. A., Zia-ur-Rehman, M., Şahin, E. & Çaylak, N. (2009). Acta Cryst. E65, o3152-o3153.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O3·H2O

  • Mr = 264.28

  • Monoclinic, P 21 /c

  • a = 4.6989 (1) Å

  • b = 23.7246 (7) Å

  • c = 11.3635 (3) Å

  • β = 91.646 (1)°

  • V = 1266.27 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.19 × 0.09 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 12165 measured reflections

  • 3128 independent reflections

  • 2152 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.163

  • S = 0.98

  • 3128 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O1i 1.01 (4) 2.02 (4) 2.994 (2) 163 (3)
O4—H4A⋯O1ii 0.84 (3) 2.09 (3) 2.928 (2) 176 (3)
O4—H4B⋯O3i 1.01 (4) 2.56 (3) 3.224 (2) 124 (2)
C3—H3⋯O2iii 0.93 2.40 3.293 (2) 160
C11—H11C⋯O4iv 0.96 2.59 3.539 (3) 168
Symmetry codes: (i) x-1, y, z-1; (ii) x, y, z-1; (iii) -x+2, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

1,8-Naphthyridines have been cited in the literature for their interesting complexation properties due to the possibility of their bonding with metals in several coordination modes. These include monodendate, chelating bidendate and dinuclear bridging coordination (Gavrilova & Bosnich, 2004; Mintert & Sheldrick, 1995). These compounds are also biologically active with anti-bacterial (Chen et al., 2001), anti-hypertensive (Ferrarini et al., 2000) and anti-inflammatory (Roma et al., 2000) properties. In a continuation of our work on the synthesis, biological activity and crystal structures of various 1,8-naphthyridines (Deeba, Khan, Zia-ur-Rehman, Çaylak & Şahin, 2009; Deeba, Khan, Zia-ur-Rehman, Şahin & Çaylak, 2009), we herein report the synthesis and crystal structure of the title compound (I) (Fig. 1; Scheme 1).

The two fused aromatic rings (C1/C2/C3/N2/C4/C5) & (C4/C5/C6/C7/C8/N1) are co-planar with root mean square (r. m. s.) deviations of 0.0103 Å & 0.0023 Å and are twisted at a dihedral angle of 1.20 (10)°. The methyl ester unit attached to the pyridinone ring is also planar with an r. m. s. deviation of 0.0051 Å and oriented at dihedral angles of 10.97 (15)° & 11.41 (15)° with respect to the pyridinone and pyridine rings respectively. In addition, a solvent water molecule is also present and stabilizes the crystal structure through intermolecular hydrogen bonding interactions. The molecule exhibits C—H···O type weak intermolecular hydrogen bonding and forms dimers through the formation of ten membered ring motif R22(10) (Bernstein, et al., 1995). These are further connected via water molecules along the a axis to form infinite chains. On the other hand, one of the hydrogen atoms of water molecule is also involved in the formation of six membered ring motif with O atoms of pyridinone ring and the ester (Fig. 2, Table. 1).

Related literature top

For the coordination properties of 1,8-naphthyridine ligands, see: Gavrilova & Bosnich (2004); Mintert & Sheldrick (1995). For their biological activity, see: Chen et al. (2001); Ferrarini et al. (2000); Roma et al. (2000). For related structures, see: Deeba, Khan, Zia-ur-Rehman, Çaylak & Şahin (2009); Deeba, Khan, Zia-ur-Rehman, Şahin & Çaylak (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid (100.0 mmol; 23.22 g) and thionyl chloride (50 ml) was refluxed for a period of 4 h followed by distillation (under reduced pressure) of the excess thionyl chloride. After complete removal of thionyl chloride, methanol (100 ml) was slowly added and stirred for two hours followed by the addition of ice cooled water (300 ml). The contents were washed with aqueous sodium carbonate (0.5 M) and water respectively followed by crystallization from methanol to give suitable crystals. Yield: 92%.

Refinement top

All C-bonded H-atoms were positioned in an idealized geometry, with C—H = 0.95Å for aromatic CH and C—H =0.98Å for the methyl group. U(H) was set to 1.2Ueq for all Caromatic and 1.5Ueq for the Cmethyl & oxygen atoms. The H atoms of the water molecule were located in a difference Fourier map and refined freely with U(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 50% displacement ellipsoids.
[Figure 2] Fig. 2. A crystal packing plot parallel to a with hydrogen bonds drawn as dashed lines.
Methyl 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylate monohydrate top
Crystal data top
C13H14N2O3·H2OF(000) = 560
Mr = 264.28Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3082 reflections
a = 4.6989 (1) Åθ = 2.5–27.9°
b = 23.7246 (7) ŵ = 0.10 mm1
c = 11.3635 (3) ÅT = 296 K
β = 91.646 (1)°Needle, white
V = 1266.27 (6) Å30.19 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2152 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
ϕ and ω scansh = 66
12165 measured reflectionsk = 2931
3128 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0956P)2 + 0.2245P]
where P = (Fo2 + 2Fc2)/3
3128 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H14N2O3·H2OV = 1266.27 (6) Å3
Mr = 264.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6989 (1) ŵ = 0.10 mm1
b = 23.7246 (7) ÅT = 296 K
c = 11.3635 (3) Å0.19 × 0.09 × 0.07 mm
β = 91.646 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2152 reflections with I > 2σ(I)
12165 measured reflectionsRint = 0.026
3128 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.27 e Å3
3128 reflectionsΔρmin = 0.18 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6664 (3)0.38694 (7)0.77501 (14)0.0320 (4)
C20.7843 (3)0.42644 (7)0.69281 (14)0.0309 (4)
C30.6891 (3)0.42666 (7)0.57746 (15)0.0328 (4)
H30.76870.45300.52740.039*
C40.3706 (3)0.35103 (7)0.60267 (14)0.0307 (4)
C50.4552 (3)0.34821 (7)0.72122 (14)0.0310 (4)
C60.3282 (4)0.30618 (7)0.78758 (16)0.0381 (4)
H60.37640.30230.86710.046*
C70.1332 (4)0.27070 (7)0.73569 (16)0.0398 (4)
H70.04810.24260.77960.048*
C80.0627 (3)0.27700 (7)0.61615 (15)0.0349 (4)
C91.0005 (3)0.46984 (7)0.72231 (14)0.0330 (4)
C101.2543 (4)0.51876 (9)0.87123 (18)0.0525 (5)
H10A1.43640.51020.83950.079*
H10B1.27130.52020.95560.079*
H10C1.18960.55460.84180.079*
C110.1477 (4)0.23821 (8)0.55685 (18)0.0448 (4)
H11A0.21170.25430.48330.067*
H11B0.30740.23290.60650.067*
H11C0.05900.20250.54280.067*
C120.3991 (4)0.39784 (8)0.40625 (15)0.0421 (4)
H12A0.44150.43580.38010.051*
H12B0.19450.39260.39940.051*
C130.5409 (5)0.35647 (9)0.32742 (18)0.0560 (6)
H19A0.47110.36160.24790.084*
H19B0.49950.31880.35270.084*
H19C0.74300.36250.33110.084*
N10.1777 (3)0.31671 (6)0.55030 (12)0.0346 (3)
N20.4905 (3)0.39199 (6)0.53125 (12)0.0331 (3)
O10.7306 (3)0.38354 (6)0.88110 (11)0.0449 (4)
O21.1179 (3)0.49770 (6)0.64973 (12)0.0529 (4)
O31.0520 (3)0.47558 (6)0.83641 (11)0.0483 (4)
O40.2506 (4)0.38795 (8)0.03949 (15)0.0678 (5)
H4B0.099 (7)0.3912 (13)0.025 (3)0.102*
H4A0.394 (7)0.3865 (14)0.003 (3)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0303 (8)0.0350 (9)0.0306 (8)0.0031 (6)0.0017 (6)0.0001 (7)
C20.0285 (8)0.0320 (8)0.0322 (8)0.0010 (6)0.0005 (6)0.0023 (7)
C30.0334 (8)0.0311 (8)0.0339 (9)0.0009 (6)0.0000 (6)0.0004 (7)
C40.0294 (8)0.0304 (8)0.0321 (8)0.0033 (6)0.0007 (6)0.0006 (6)
C50.0301 (8)0.0305 (8)0.0324 (8)0.0020 (6)0.0002 (6)0.0006 (7)
C60.0403 (9)0.0399 (10)0.0341 (9)0.0007 (7)0.0005 (7)0.0025 (7)
C70.0406 (9)0.0368 (9)0.0421 (10)0.0045 (7)0.0036 (7)0.0030 (8)
C80.0291 (8)0.0325 (8)0.0433 (9)0.0011 (6)0.0029 (7)0.0062 (7)
C90.0301 (8)0.0349 (9)0.0338 (9)0.0015 (7)0.0019 (6)0.0006 (7)
C100.0581 (12)0.0563 (12)0.0427 (11)0.0220 (10)0.0066 (9)0.0083 (9)
C110.0428 (10)0.0412 (10)0.0505 (11)0.0069 (8)0.0010 (8)0.0079 (8)
C120.0480 (10)0.0434 (10)0.0342 (9)0.0084 (8)0.0126 (8)0.0078 (8)
C130.0709 (14)0.0609 (13)0.0361 (10)0.0118 (11)0.0036 (9)0.0068 (9)
N10.0317 (7)0.0341 (7)0.0377 (8)0.0003 (6)0.0017 (6)0.0028 (6)
N20.0348 (7)0.0347 (8)0.0296 (7)0.0011 (6)0.0041 (5)0.0011 (6)
O10.0472 (7)0.0558 (8)0.0313 (7)0.0130 (6)0.0069 (5)0.0055 (6)
O20.0583 (8)0.0615 (9)0.0388 (7)0.0266 (7)0.0020 (6)0.0047 (6)
O30.0571 (8)0.0544 (8)0.0331 (7)0.0227 (6)0.0046 (6)0.0034 (6)
O40.0642 (10)0.0912 (13)0.0477 (9)0.0087 (9)0.0003 (8)0.0004 (8)
Geometric parameters (Å, º) top
C1—O11.237 (2)C9—O31.319 (2)
C1—C21.445 (2)C10—O31.445 (2)
C1—C51.472 (2)C10—H10A0.9600
C2—C31.373 (2)C10—H10B0.9600
C2—C91.478 (2)C10—H10C0.9600
C3—N21.340 (2)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—N11.344 (2)C11—H11C0.9600
C4—N21.395 (2)C12—N21.479 (2)
C4—C51.395 (2)C12—C131.498 (3)
C5—C61.395 (2)C12—H12A0.9700
C6—C71.366 (2)C12—H12B0.9700
C6—H60.9300C13—H19A0.9600
C7—C81.397 (2)C13—H19B0.9600
C7—H70.9300C13—H19C0.9600
C8—N11.328 (2)O4—H4B1.01 (4)
C8—C111.497 (2)O4—H4A0.84 (3)
C9—O21.203 (2)
O1—C1—C2125.82 (15)H10A—C10—H10B109.5
O1—C1—C5120.43 (15)O3—C10—H10C109.5
C2—C1—C5113.75 (14)H10A—C10—H10C109.5
C3—C2—C1119.95 (14)H10B—C10—H10C109.5
C3—C2—C9114.64 (14)C8—C11—H11A109.5
C1—C2—C9125.38 (14)C8—C11—H11B109.5
N2—C3—C2125.18 (15)H11A—C11—H11B109.5
N2—C3—H3117.4C8—C11—H11C109.5
C2—C3—H3117.4H11A—C11—H11C109.5
N1—C4—N2116.27 (14)H11B—C11—H11C109.5
N1—C4—C5124.62 (15)N2—C12—C13113.02 (16)
N2—C4—C5119.10 (14)N2—C12—H12A109.0
C6—C5—C4116.23 (15)C13—C12—H12A109.0
C6—C5—C1121.03 (15)N2—C12—H12B109.0
C4—C5—C1122.75 (14)C13—C12—H12B109.0
C7—C6—C5119.97 (16)H12A—C12—H12B107.8
C7—C6—H6120.0C12—C13—H19A109.5
C5—C6—H6120.0C12—C13—H19B109.5
C6—C7—C8119.43 (16)H19A—C13—H19B109.5
C6—C7—H7120.3C12—C13—H19C109.5
C8—C7—H7120.3H19A—C13—H19C109.5
N1—C8—C7122.34 (15)H19B—C13—H19C109.5
N1—C8—C11117.19 (16)C8—N1—C4117.42 (14)
C7—C8—C11120.48 (16)C3—N2—C4119.21 (14)
O2—C9—O3122.85 (15)C3—N2—C12119.92 (14)
O2—C9—C2123.56 (15)C4—N2—C12120.87 (13)
O3—C9—C2113.58 (14)C9—O3—C10116.29 (14)
O3—C10—H10A109.5H4B—O4—H4A99 (3)
O3—C10—H10B109.5
O1—C1—C2—C3178.42 (16)C3—C2—C9—O210.8 (2)
C5—C1—C2—C32.3 (2)C1—C2—C9—O2171.14 (17)
O1—C1—C2—C90.5 (3)C3—C2—C9—O3168.67 (15)
C5—C1—C2—C9179.75 (14)C1—C2—C9—O39.3 (2)
C1—C2—C3—N20.6 (2)C7—C8—N1—C40.8 (2)
C9—C2—C3—N2178.77 (15)C11—C8—N1—C4178.85 (14)
N1—C4—C5—C60.4 (2)N2—C4—N1—C8179.33 (14)
N2—C4—C5—C6179.72 (14)C5—C4—N1—C80.8 (2)
N1—C4—C5—C1179.66 (14)C2—C3—N2—C41.5 (2)
N2—C4—C5—C10.2 (2)C2—C3—N2—C12177.86 (16)
O1—C1—C5—C61.5 (2)N1—C4—N2—C3178.45 (14)
C2—C1—C5—C6177.77 (14)C5—C4—N2—C31.7 (2)
O1—C1—C5—C4178.56 (15)N1—C4—N2—C122.2 (2)
C2—C1—C5—C42.1 (2)C5—C4—N2—C12177.68 (15)
C4—C5—C6—C70.0 (2)C13—C12—N2—C399.01 (19)
C1—C5—C6—C7179.89 (16)C13—C12—N2—C481.6 (2)
C5—C6—C7—C80.0 (3)O2—C9—O3—C101.6 (3)
C6—C7—C8—N10.4 (3)C2—C9—O3—C10177.90 (15)
C6—C7—C8—C11179.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1i1.01 (4)2.02 (4)2.994 (2)163 (3)
O4—H4A···O1ii0.84 (3)2.09 (3)2.928 (2)176 (3)
O4—H4B···O3i1.01 (4)2.56 (3)3.224 (2)124 (2)
C3—H3···O2iii0.932.403.293 (2)160
C11—H11C···O4iv0.962.593.539 (3)168
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2O3·H2O
Mr264.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.6989 (1), 23.7246 (7), 11.3635 (3)
β (°) 91.646 (1)
V3)1266.27 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.09 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12165, 3128, 2152
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.163, 0.98
No. of reflections3128
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1i1.01 (4)2.02 (4)2.994 (2)163 (3)
O4—H4A···O1ii0.84 (3)2.09 (3)2.928 (2)176 (3)
O4—H4B···O3i1.01 (4)2.56 (3)3.224 (2)124 (2)
C3—H3···O2iii0.932.403.293 (2)160.4
C11—H11C···O4iv0.962.593.539 (3)168.4
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for the purchase of the X-ray Diffractometer at the Material Science Laboratories, Department of Chemistry, Government College University, Lahore, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeeba, F., Khan, M. A., Zia-ur-Rehman, M., Çaylak, N. & Şahin, E. (2009). Acta Cryst. E65, o860–o861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeeba, F., Khan, M. A., Zia-ur-Rehman, M., Şahin, E. & Çaylak, N. (2009). Acta Cryst. E65, o3152–o3153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem. 35, 815–819.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMintert, M. & Sheldrick, W. S. (1995). J. Chem. Soc. Dalton Trans. pp. 2663–2669.  CSD CrossRef Web of Science Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o630-o631
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds