organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-N-(4-hy­dr­oxy­benzyl­­idene)­aniline

aDepartment of Physics, NKR Government Arts College for Women, Namakkal-1, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur-7, India, and cCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli-24, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 4 February 2012; accepted 11 February 2012; online 17 February 2012)

In the title compound, C13H10BrNO, the benzene ring planes are inclined at an angle of 48.85 (17)°, resulting in a nonplanar mol­ecule. A characteristic of aromatic Schiff bases with N-aryl substituents is that the terminal phenyl rings are twisted relative to the HC=N plane. In this case, the HC=N unit makes dihedral angles of 11.1 (4) and 38.5 (3)° with the hy­droxy­benzene and bromo­benzene rings, respectively. In the crystal, the molecules are linked by O—H⋯N hydrogen bonds to form infinite (C8) chains along the b axis.

Related literature

For applications of Schiff base compounds and related structures, see: Li et al. (2008[Li, J., Liang, Z.-P. & Tai, X.-S. (2008). Acta Cryst. E64, o2319.]); Zhang (2010[Zhang, F.-G. (2010). Acta Cryst. E66, o382.]). For other related structures, see: Kaitner & Pavlovic (1995[Kaitner, B. & Pavlovic, G. (1995). Acta Cryst. C51, 1875-1878.]); Yeap et al. (1993[Yeap, G.-Y., Teo, S.-B., Fun, H.-K. & Teoh, S.-G. (1993). Acta Cryst. C49, 1396-1398.]). For an early determination of the lattice parameters of this compound, see: Bürgi et al. (1968[Bürgi, H. B., Dunitz, J. D. & Züst, C. (1968). Acta Cryst. B24, 463-464.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrNO

  • Mr = 276.13

  • Orthorhombic, P b c n

  • a = 21.9588 (10) Å

  • b = 11.0866 (5) Å

  • c = 9.3132 (4) Å

  • V = 2267.28 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.60 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.452, Tmax = 0.571

  • 20366 measured reflections

  • 2001 independent reflections

  • 1494 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.174

  • S = 1.03

  • 2001 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −1.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.92 2.734 175
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have been used as fine chemicals and medical substrates. They are important ligands in co-ordination chemistry due to their ease of preparation and their ability to be modified both electronically and sterically (Li et al., 2008 and Zhang, 2010). As a part of our study on the co-ordination behaviour of a ligand having a 4-hydroxy substituent on the benzylidene fragment, X- ray structural analysis of the title compound was carried out, the results are reported herein. The lattice parameters of this compound, determined from precession photographs, were reported previously by Bürgi et al. (1968). The title compound, (I), contains two benzene rings bridged by a C N imino moiety, the planes of which are inclined at an angle of 48.85 (17)°, showing significant deviation of the molecule from planarity as observed in a related structure N-p-tolylvanillaldimine (Kaitner & Pavlovic, 1995). The molecule exists in the solid state in an E-Configuration with respect to the C7N1 bond as indicated by the torsion angle C4–C7–N1–C8 = 171.22 (4)°. In order to minimize the interaction between the hydroxy proton and H6 at C6 the O1–C1–C6 angle [123.4 (4)°] is larger than the O1–C1–C2 angle [117.4 (4)°] (Yeap et al., 1993). The N1–C7–C4 [124.70 (4)°] is greater than the normal value of 120°; this might be a consequence of repulsion between the lone pair of electrons on N1 and H5 attached to C5 (N1···H5 = 2.6583 (1) Å). The C4-C7 [1.454 (6)Å] and N1-C8 [1.412 (6)Å] distances confirm a degree of π-electron delocalization between the benzene rings, and the molecule can be regarded as a partially delocalized π-electron system as observed in the related structures 4-[(3-methoxyphenylimino)methyl]phenol) and N-p-tolylvanillaldimine (Yeap, et al.,, 1993; Kaitner & Pavlovic, 1995). All other bond lengths are within the expected ranges (Allen et al., 1987). The crystal structure is stabilized by intermolecular O-H···N hydrogen bonds linking the neighbouring molecules into infinite chains along the b axis.

Related literature top

For applications of Schiff base compounds and related structures, see: Li et al. (2008); Zhang (2010). For other related structures, see: Kaitner & Pavlovic (1995); Yeap et al. (1993). For an early determination of the lattice parameters of this compound, see: Bürgi et al. (1968). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-Bromo-4'-hydroxybenzylideneaniline was prepared by mixing equimolar amounts of 4-hydroxy benzaldehyde and 4-bromo aniline in ethanol (40 ml). The reaction mixture was refluxed for about 6 h and the resulting solution, kept at room temperature was slowly evaporated. After three days single crystals of the title compound, suitable for X-ray structure analysis were obtained.

Refinement top

All the H atoms were positioned geometrically and treated as riding on their parent atoms, with C-H = 0.93Å (aromatic), O–H = 0.82 Å and refined using a riding model with Uiso(H)=1.2Ueq(C) or 1.5Ueq(O) for the hydroxy H atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the c axis showing O–H···N interactions as dashed lines (see Table 1 for details).
4-Bromo-N-(4-hydroxybenzylidene)aniline top
Crystal data top
C13H10BrNOF(000) = 1104
Mr = 276.13Dx = 1.618 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6133 reflections
a = 21.9588 (10) Åθ = 2.7–24.7°
b = 11.0866 (5) ŵ = 3.60 mm1
c = 9.3132 (4) ÅT = 293 K
V = 2267.28 (17) Å3Block, brown
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2001 independent reflections
Radiation source: fine-focus sealed tube1494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and ϕ scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2626
Tmin = 0.452, Tmax = 0.571k = 1213
20366 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0898P)2 + 6.133P]
where P = (Fo2 + 2Fc2)/3
2001 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 1.62 e Å3
Crystal data top
C13H10BrNOV = 2267.28 (17) Å3
Mr = 276.13Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 21.9588 (10) ŵ = 3.60 mm1
b = 11.0866 (5) ÅT = 293 K
c = 9.3132 (4) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2001 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1494 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 0.571Rint = 0.046
20366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.03Δρmax = 1.32 e Å3
2001 reflectionsΔρmin = 1.62 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3296 (2)0.1888 (4)0.1451 (5)0.0340 (10)
C20.3501 (2)0.0799 (4)0.0885 (5)0.0398 (11)
H20.38790.04930.11560.048*
C30.3145 (2)0.0181 (4)0.0074 (5)0.0407 (11)
H30.32830.05510.04370.049*
C40.2586 (2)0.0620 (4)0.0514 (5)0.0333 (10)
C50.2389 (2)0.1715 (4)0.0048 (4)0.0340 (10)
H50.20140.20270.02310.041*
C60.2743 (2)0.2341 (4)0.1012 (5)0.0340 (10)
H60.26070.30760.13700.041*
C70.2200 (2)0.0109 (4)0.1437 (5)0.0360 (10)
H70.23210.08990.16190.043*
C80.1337 (2)0.0598 (4)0.2718 (5)0.0342 (10)
C90.1277 (2)0.1783 (5)0.2249 (6)0.0456 (12)
H90.14870.20410.14390.055*
C100.0909 (3)0.2569 (5)0.2975 (6)0.0518 (13)
H100.08700.33590.26540.062*
C110.0598 (2)0.2199 (5)0.4172 (6)0.0526 (14)
C120.0639 (2)0.1040 (5)0.4635 (6)0.0518 (13)
H120.04260.07930.54450.062*
C130.1002 (2)0.0229 (5)0.3893 (5)0.0450 (12)
H130.10200.05710.41890.054*
N10.17101 (17)0.0253 (3)0.2012 (4)0.0342 (9)
O10.36520 (16)0.2436 (3)0.2426 (4)0.0465 (9)
H10.35220.31160.25830.070*
Br10.01108 (4)0.33090 (9)0.51718 (9)0.0918 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.032 (2)0.036 (2)0.0054 (19)0.0006 (19)0.0038 (19)
C20.032 (2)0.037 (2)0.050 (3)0.001 (2)0.000 (2)0.003 (2)
C30.042 (3)0.031 (2)0.050 (3)0.000 (2)0.006 (2)0.005 (2)
C40.039 (2)0.028 (2)0.033 (2)0.0046 (19)0.0062 (19)0.0008 (19)
C50.036 (3)0.032 (2)0.034 (2)0.0006 (19)0.0022 (19)0.0030 (18)
C60.039 (3)0.028 (2)0.035 (2)0.0001 (18)0.001 (2)0.0015 (19)
C70.044 (3)0.027 (2)0.037 (3)0.003 (2)0.008 (2)0.0033 (19)
C80.040 (3)0.031 (2)0.031 (2)0.0040 (19)0.0046 (19)0.0030 (18)
C90.052 (3)0.043 (3)0.041 (3)0.010 (2)0.000 (2)0.002 (2)
C100.057 (3)0.041 (3)0.058 (3)0.015 (2)0.008 (3)0.005 (3)
C110.040 (3)0.064 (4)0.053 (3)0.014 (3)0.006 (2)0.021 (3)
C120.040 (3)0.069 (4)0.047 (3)0.002 (3)0.006 (2)0.004 (3)
C130.046 (3)0.046 (3)0.043 (3)0.001 (2)0.000 (2)0.001 (2)
N10.041 (2)0.0301 (19)0.0314 (19)0.0041 (16)0.0036 (17)0.0006 (16)
O10.046 (2)0.0398 (19)0.053 (2)0.0006 (15)0.0120 (16)0.0066 (16)
Br10.0712 (6)0.1138 (7)0.0904 (6)0.0442 (4)0.0008 (4)0.0423 (5)
Geometric parameters (Å, º) top
C1—O11.343 (5)C8—C131.380 (7)
C1—C61.376 (6)C8—C91.390 (7)
C1—C21.392 (6)C8—N11.412 (6)
C2—C31.371 (7)C9—C101.367 (7)
C2—H20.9300C9—H90.9300
C3—C41.382 (7)C10—C111.370 (9)
C3—H30.9300C10—H100.9300
C4—C51.391 (6)C11—C121.358 (8)
C4—C71.454 (6)C11—Br11.878 (5)
C5—C61.375 (6)C12—C131.386 (7)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.267 (6)O1—H10.8200
C7—H70.9300
O1—C1—C6123.4 (4)C13—C8—C9118.6 (4)
O1—C1—C2117.4 (4)C13—C8—N1118.7 (4)
C6—C1—C2119.3 (4)C9—C8—N1122.6 (4)
C3—C2—C1119.7 (4)C10—C9—C8120.2 (5)
C3—C2—H2120.2C10—C9—H9119.9
C1—C2—H2120.2C8—C9—H9119.9
C2—C3—C4121.6 (4)C9—C10—C11120.4 (5)
C2—C3—H3119.2C9—C10—H10119.8
C4—C3—H3119.2C11—C10—H10119.8
C3—C4—C5118.2 (4)C12—C11—C10120.5 (5)
C3—C4—C7119.8 (4)C12—C11—Br1120.0 (4)
C5—C4—C7121.8 (4)C10—C11—Br1119.4 (4)
C6—C5—C4120.6 (4)C11—C12—C13119.6 (5)
C6—C5—H5119.7C11—C12—H12120.2
C4—C5—H5119.7C13—C12—H12120.2
C5—C6—C1120.6 (4)C8—C13—C12120.6 (5)
C5—C6—H6119.7C8—C13—H13119.7
C1—C6—H6119.7C12—C13—H13119.7
N1—C7—C4124.7 (4)C7—N1—C8118.6 (4)
N1—C7—H7117.7C1—O1—H1109.5
C4—C7—H7117.7
O1—C1—C2—C3177.6 (4)N1—C8—C9—C10179.9 (5)
C6—C1—C2—C31.5 (7)C8—C9—C10—C110.2 (8)
C1—C2—C3—C40.9 (7)C9—C10—C11—C121.5 (8)
C2—C3—C4—C50.2 (7)C9—C10—C11—Br1178.6 (4)
C2—C3—C4—C7174.8 (4)C10—C11—C12—C130.4 (8)
C3—C4—C5—C60.1 (6)Br1—C11—C12—C13179.7 (4)
C7—C4—C5—C6174.6 (4)C9—C8—C13—C123.4 (7)
C4—C5—C6—C10.7 (6)N1—C8—C13—C12178.7 (4)
O1—C1—C6—C5177.6 (4)C11—C12—C13—C82.2 (8)
C2—C1—C6—C51.4 (7)C4—C7—N1—C8171.2 (4)
C3—C4—C7—N1172.7 (4)C13—C8—N1—C7147.7 (4)
C5—C4—C7—N112.9 (7)C9—C8—N1—C734.5 (6)
C13—C8—C9—C102.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.922.734175
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H10BrNO
Mr276.13
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)21.9588 (10), 11.0866 (5), 9.3132 (4)
V3)2267.28 (17)
Z8
Radiation typeMo Kα
µ (mm1)3.60
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.452, 0.571
No. of measured, independent and
observed [I > 2σ(I)] reflections
20366, 2001, 1494
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.03
No. of reflections2001
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 1.62

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.9162.734174.92
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the single-crystal X-ray data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBürgi, H. B., Dunitz, J. D. & Züst, C. (1968). Acta Cryst. B24, 463–464.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKaitner, B. & Pavlovic, G. (1995). Acta Cryst. C51, 1875–1878.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J., Liang, Z.-P. & Tai, X.-S. (2008). Acta Cryst. E64, o2319.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeap, G.-Y., Teo, S.-B., Fun, H.-K. & Teoh, S.-G. (1993). Acta Cryst. C49, 1396–1398.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, F.-G. (2010). Acta Cryst. E66, o382.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds