organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­iodo-6-[(propyl­imino)­meth­yl]phenol

aState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hailiang_zhu@163.com

(Received 7 February 2012; accepted 9 February 2012; online 24 February 2012)

The title compound, C10H11I2NO, was prepared by the reaction of 3,5-diiodo­salicyl­aldehyde with propyl­amine in ethanol. The mol­ecule adopts an E conformation with respect to the C=N bond and the aromatic ring. The aromatic ring and the imino unit are close to being coplanar, with a dihedral angle of 2.6 (3)° between their planes. This planarity is assisted by the formation of an intra­molecular O—H⋯O hydrogen bond.

Related literature

For the biological activity of Schiff base compounds, see: Chohan et al. (2012[Chohan, Z. H., Shad, H. A. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 58-68.]); Yan et al. (2011[Yan, L., Liu, F. W. & Liu, H. M. (2011). Chin. J. Org. Chem. 31, 1639-1642.]); Zhang et al. (2011[Zhang, H.-J., Qin, X., Liu, K., Zhu, D.-D., Wang, X.-M. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 5708-5715.]). For their use as ligands in coordination chemistry, see: You et al. (2008[You, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862-871.]); Xu et al. (2009[Xu, S.-P., Lv, P.-C., Fang, R.-Q. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 2048-2057.]); Chen et al. (2010[Chen, W., Li, Y.-G., Cui, Y.-M., Zhang, X.-A., Zhu, H.-L. & Zeng, Q.-F. (2010). Eur. J. Med. Chem. 45, 4473-4478.]); Cui et al. (2011[Cui, Y.-M., Li, Y.-G., Cai, Y.-J., Chen, W. & Zhu, H.-L. (2011). J. Coord. Chem. 64, 610-616.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11I2NO

  • Mr = 415.00

  • Orthorhombic, P b c a

  • a = 10.7019 (14) Å

  • b = 7.1483 (9) Å

  • c = 32.404 (4) Å

  • V = 2478.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.05 mm−1

  • T = 298 K

  • 0.21 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.417, Tmax = 0.432

  • 18976 measured reflections

  • 2704 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.104

  • S = 1.23

  • 2704 reflections

  • 131 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.90 (1) 1.82 (5) 2.567 (6) 138 (7)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been extensively studied because of their biological activity (Chohan et al., 2012; Yan et al., 2011; Zhang et al., 2011). In addition, Schiff bases have been shown to be versatile ligands for the preparation of coordination complexes (You et al., 2008; Xu et al., 2009; Chen et al., 2010; Cui et al., 2011). In the present paper, the structure of the new title Schiff base compound is reported.

The molecule of the compound exists in a trans of E configuration with respect to the methylidene unit. The torsion angles C1—C7—N1—C8, C7—N1—C8—C9, and N1—C8—C9—C10 are 0.9 (2), 60.5 (2), and 4.6 (2)°, respectively. Bond distances are within normal values (Allen et al., 1987). An intramolecular O1—H1···N1 hydrogen bond stabilises the molecular structure.

Related literature top

For the biological activity of Schiff base compounds, see: Chohan et al. (2012); Yan et al. (2011); Zhang et al. (2011). For their use as ligands in coordination chemistry, see: You et al. (2008); Xu et al. (2009); Chen et al. (2010); Cui et al. (2011). For standard bond distances, see: Allen et al. (1987).

Experimental top

3,5-Diiodosalicylaldehyde (0.37 g, 1 mmol) and propylamine (0.06 g, 1 mmol) were mixed in ethanol (20 ml). The mixture was stirred at room temperature for 30 min to give a yellow solution. Yellow block-shaped single crystals were obtained by slow evaporation of this solution in air.

Refinement top

H1 was located from a difference Fourier map and refined isotropically, with the O—H distance restrained to 0.90 (1) Å. The remaining H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) set to 1.2Ueq(C) and 1.5Ueq(C10).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. An intramolecular hydrogen bond is indicated by a dashed line.
2,4-Diiodo-6-[(propylimino)methyl]phenol top
Crystal data top
C10H11I2NOF(000) = 1536
Mr = 415.00Dx = 2.224 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1027 reflections
a = 10.7019 (14) Åθ = 2.3–24.5°
b = 7.1483 (9) ŵ = 5.05 mm1
c = 32.404 (4) ÅT = 298 K
V = 2478.9 (5) Å3Block, yellow
Z = 80.21 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2704 independent reflections
Radiation source: fine-focus sealed tube2224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.417, Tmax = 0.432k = 98
18976 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.038P)2 + 7.4143P]
where P = (Fo2 + 2Fc2)/3
2704 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.96 e Å3
1 restraintΔρmin = 0.89 e Å3
Crystal data top
C10H11I2NOV = 2478.9 (5) Å3
Mr = 415.00Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7019 (14) ŵ = 5.05 mm1
b = 7.1483 (9) ÅT = 298 K
c = 32.404 (4) Å0.21 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2704 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2224 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.432Rint = 0.030
18976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.96 e Å3
2704 reflectionsΔρmin = 0.89 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.14060 (4)0.18844 (7)0.522554 (12)0.05384 (15)
I20.14147 (3)0.44774 (7)0.371421 (13)0.05752 (16)
N10.3755 (4)0.4405 (7)0.34042 (16)0.0449 (11)
O10.1359 (4)0.4554 (7)0.33939 (13)0.0520 (10)
C10.2521 (5)0.3571 (7)0.39908 (16)0.0378 (11)
C20.1382 (5)0.3981 (8)0.37824 (17)0.0393 (11)
C30.0266 (5)0.3772 (7)0.40084 (16)0.0396 (11)
C40.0250 (5)0.3193 (8)0.44167 (17)0.0444 (12)
H40.05010.30870.45590.053*
C50.1389 (5)0.2770 (7)0.46109 (17)0.0397 (11)
C60.2501 (5)0.2976 (7)0.44023 (16)0.0415 (11)
H60.32500.27160.45370.050*
C70.3699 (5)0.3819 (8)0.37775 (18)0.0431 (12)
H70.44380.35440.39160.052*
C80.4981 (6)0.4653 (9)0.32071 (19)0.0520 (14)
H8A0.56360.43430.34020.062*
H8B0.50850.59520.31270.062*
C90.5099 (6)0.3412 (10)0.28282 (19)0.0572 (16)
H9A0.44860.37910.26240.069*
H9B0.49260.21260.29040.069*
C100.6403 (7)0.3541 (14)0.2642 (2)0.077 (2)
H10A0.65670.48090.25610.115*
H10B0.64530.27400.24050.115*
H10C0.70090.31540.28430.115*
H10.211 (3)0.471 (11)0.327 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0536 (2)0.0651 (3)0.0428 (2)0.0002 (2)0.00119 (15)0.00945 (18)
I20.0393 (2)0.0751 (3)0.0582 (3)0.00399 (19)0.01085 (16)0.0073 (2)
N10.039 (2)0.045 (3)0.050 (3)0.002 (2)0.0032 (19)0.001 (2)
O10.048 (2)0.060 (3)0.048 (2)0.004 (2)0.0015 (17)0.008 (2)
C10.037 (2)0.032 (3)0.045 (3)0.003 (2)0.002 (2)0.005 (2)
C20.044 (3)0.035 (3)0.040 (3)0.001 (2)0.004 (2)0.006 (2)
C30.039 (3)0.035 (3)0.045 (3)0.004 (2)0.008 (2)0.002 (2)
C40.040 (3)0.042 (3)0.052 (3)0.002 (2)0.002 (2)0.002 (2)
C50.045 (3)0.033 (3)0.042 (3)0.002 (2)0.003 (2)0.001 (2)
C60.040 (3)0.036 (3)0.048 (3)0.004 (2)0.005 (2)0.003 (2)
C70.041 (3)0.043 (3)0.045 (3)0.002 (2)0.002 (2)0.009 (2)
C80.041 (3)0.059 (4)0.057 (3)0.006 (3)0.005 (2)0.000 (3)
C90.057 (4)0.067 (4)0.048 (3)0.006 (3)0.005 (3)0.001 (3)
C100.070 (5)0.099 (6)0.061 (4)0.003 (4)0.017 (3)0.005 (4)
Geometric parameters (Å, º) top
I1—C52.090 (5)C5—C61.377 (7)
I2—C32.097 (5)C6—H60.9300
N1—C71.282 (8)C7—H70.9300
N1—C81.471 (7)C8—C91.520 (9)
O1—C21.324 (7)C8—H8A0.9700
O1—H10.900 (10)C8—H8B0.9700
C1—C61.400 (7)C9—C101.523 (9)
C1—C21.424 (7)C9—H9A0.9700
C1—C71.449 (7)C9—H9B0.9700
C2—C31.409 (7)C10—H10A0.9600
C3—C41.386 (8)C10—H10B0.9600
C4—C51.405 (7)C10—H10C0.9600
C4—H40.9300
C7—N1—C8119.4 (5)N1—C7—H7119.0
C2—O1—H1116 (5)C1—C7—H7119.0
C6—C1—C2120.1 (5)N1—C8—C9110.7 (5)
C6—C1—C7120.3 (5)N1—C8—H8A109.5
C2—C1—C7119.6 (5)C9—C8—H8A109.5
O1—C2—C3120.7 (5)N1—C8—H8B109.5
O1—C2—C1122.1 (5)C9—C8—H8B109.5
C3—C2—C1117.2 (5)H8A—C8—H8B108.1
C4—C3—C2122.6 (5)C8—C9—C10111.1 (6)
C4—C3—I2119.7 (4)C8—C9—H9A109.4
C2—C3—I2117.7 (4)C10—C9—H9A109.4
C3—C4—C5118.7 (5)C8—C9—H9B109.4
C3—C4—H4120.6C10—C9—H9B109.4
C5—C4—H4120.6H9A—C9—H9B108.0
C6—C5—C4120.5 (5)C9—C10—H10A109.5
C6—C5—I1119.5 (4)C9—C10—H10B109.5
C4—C5—I1120.0 (4)H10A—C10—H10B109.5
C5—C6—C1120.9 (5)C9—C10—H10C109.5
C5—C6—H6119.6H10A—C10—H10C109.5
C1—C6—H6119.6H10B—C10—H10C109.5
N1—C7—C1122.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.90 (1)1.82 (5)2.567 (6)138 (7)

Experimental details

Crystal data
Chemical formulaC10H11I2NO
Mr415.00
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)10.7019 (14), 7.1483 (9), 32.404 (4)
V3)2478.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.05
Crystal size (mm)0.21 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.417, 0.432
No. of measured, independent and
observed [I > 2σ(I)] reflections
18976, 2704, 2224
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.104, 1.23
No. of reflections2704
No. of parameters131
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.89

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.900 (10)1.82 (5)2.567 (6)138 (7)
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Li, Y.-G., Cui, Y.-M., Zhang, X.-A., Zhu, H.-L. & Zeng, Q.-F. (2010). Eur. J. Med. Chem. 45, 4473–4478.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChohan, Z. H., Shad, H. A. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 58–68.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCui, Y.-M., Li, Y.-G., Cai, Y.-J., Chen, W. & Zhu, H.-L. (2011). J. Coord. Chem. 64, 610–616.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-P., Lv, P.-C., Fang, R.-Q. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 2048–2057.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, L., Liu, F. W. & Liu, H. M. (2011). Chin. J. Org. Chem. 31, 1639–1642.  CAS Google Scholar
First citationYou, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862–871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, H.-J., Qin, X., Liu, K., Zhu, D.-D., Wang, X.-M. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 5708–5715.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds