organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 February 2012; accepted 9 February 2012; online 17 February 2012)

In the structure of the title compound, C14H12ClNO, the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the aniline ring is positioned anti to the N—H bond. The amide group forms dihedral angles of 60.1 (1) and 22.0 (1)°, respectively, with the benzoyl and aniline rings, while the angle between these rings is 38.7 (1)°. The crystal structure is stabilized by N—H⋯O hydrogen bonds, which give rise to infinite chains running along the c axis.

Related literature

For studies, including ours, on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2006[Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588-594.]); Rodrigues et al. (2011[Rodrigues, V. Z., Kucková,, L., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3277.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]); for N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]); for N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]); and for N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Tetragonal, P 43

  • a = 8.8751 (3) Å

  • c = 15.9642 (5) Å

  • V = 1257.45 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.898, Tmax = 0.942

  • 8244 measured reflections

  • 2552 independent reflections

  • 1757 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 1.04

  • 2552 reflections

  • 158 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1229 Friedel pairs

  • Flack parameter: 0.00 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.03 (1) 2.8790 (16) 171 (2)
Symmetry code: (i) [y, -x+1, z+{\script{1\over 4}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbH, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 1999, 2006; Rodrigues et al., 2011; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of 2-chloro-N-(3-methylphenyl)benzamide (I) has been determined (Fig.1).

In (I), the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the anilino ring is positioned anti to the N—H bond, similar to that observed in 3-chloro-N-(3-methylphenyl)benzamide (I) (Rodrigues et al., 2011).

The amide group forms dihedral angles of 60.1 (1) and 22.0 (1)°, respectively, with the benzoyl and aniline rings, while the angle between the benzoyl and aniline rings is 38.7 (1)°, compared to the value of 77.4 (1)° in (II).

In the crystal structure, intermolecular N1—H1···O1 hydrogen bonds (Table 1) link the molecules into infinite chains running along the c-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies, including ours, on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (1999, 2006); Rodrigues et al. (2011); Saeed et al. (2010); for N-(aryl)-methanesulfonamides, see: Gowda et al. (2007); for N-chloroarylamides, see: Jyothi & Gowda (2004); and for N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by a method similar to the one described by Gowda et al. (2006). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Plate like colorless single crystals of the title compound used in the X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All hydrogen atoms bound to carbon were placed in calculated positions with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was located in a difference map and refined with the N—H distance restrained to 0.86 (1) Å. Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular chains along along the c axis are generated by N—H···O hydrogen bonds which are shown as dashed lines. H atoms have been omitted.
2-Chloro-N-(3-methylphenyl)benzamide top
Crystal data top
C14H12ClNODx = 1.298 Mg m3
Mr = 245.70Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 2552 reflections
a = 8.8751 (3) Åθ = 3.4–29.3°
c = 15.9642 (5) ŵ = 0.29 mm1
V = 1257.45 (6) Å3T = 295 K
Z = 4Plate, colourless
F(000) = 5120.4 × 0.3 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2552 independent reflections
Radiation source: fine-focus sealed tube1757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 0 pixels mm-1θmax = 26.4°, θmin = 4.1°
ω scans with κ offsetsh = 1011
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1110
Tmin = 0.898, Tmax = 0.942l = 1919
8244 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0348P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2552 reflectionsΔρmax = 0.08 e Å3
158 parametersΔρmin = 0.11 e Å3
2 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (6)
Crystal data top
C14H12ClNOZ = 4
Mr = 245.70Mo Kα radiation
Tetragonal, P43µ = 0.29 mm1
a = 8.8751 (3) ÅT = 295 K
c = 15.9642 (5) Å0.4 × 0.3 × 0.2 mm
V = 1257.45 (6) Å3
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2552 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1757 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.942Rint = 0.019
8244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.08 e Å3
S = 1.04Δρmin = 0.11 e Å3
2552 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
158 parametersAbsolute structure parameter: 0.00 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6060 (2)0.6255 (2)0.21616 (9)0.0579 (4)
C20.6965 (2)0.7340 (2)0.25296 (11)0.0731 (5)
C30.6388 (4)0.8363 (2)0.30991 (13)0.1015 (8)
H30.70020.91030.33300.122*
C40.4900 (5)0.8268 (3)0.33167 (17)0.1176 (10)
H40.45050.89520.37000.141*
C50.3986 (3)0.7188 (4)0.29813 (18)0.1124 (9)
H50.29790.71310.31400.135*
C60.4562 (3)0.6180 (2)0.24059 (14)0.0819 (6)
H60.39390.54420.21800.098*
C70.66413 (19)0.52431 (19)0.14825 (9)0.0525 (4)
C80.69202 (18)0.25396 (19)0.11204 (9)0.0529 (4)
C90.7955 (2)0.2664 (2)0.04811 (10)0.0582 (4)
H90.83930.35940.03680.070*
C100.8357 (2)0.1411 (2)0.00002 (10)0.0678 (5)
C110.7689 (3)0.0059 (3)0.01807 (13)0.0839 (6)
H110.79410.07860.01340.101*
C120.6663 (3)0.0075 (2)0.08115 (15)0.0927 (7)
H120.62280.10070.09230.111*
C130.6264 (2)0.1167 (2)0.12884 (12)0.0732 (5)
H130.55600.10750.17170.088*
C140.9504 (3)0.1563 (3)0.06817 (13)0.0986 (7)
H14A0.96450.06050.09500.148*
H14B1.04420.18960.04470.148*
H14C0.91600.22850.10860.148*
N10.65297 (16)0.37678 (15)0.16483 (7)0.0541 (3)
H10.6216 (16)0.3554 (18)0.2143 (4)0.057 (5)*
O10.71348 (15)0.57708 (12)0.08283 (6)0.0695 (3)
Cl10.88575 (8)0.74156 (9)0.22927 (4)0.1238 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0768 (13)0.0532 (10)0.0435 (9)0.0070 (9)0.0009 (8)0.0051 (8)
C20.1011 (15)0.0678 (12)0.0505 (10)0.0026 (11)0.0069 (10)0.0031 (9)
C30.167 (3)0.0738 (15)0.0636 (13)0.0023 (15)0.0112 (15)0.0163 (12)
C40.184 (3)0.0806 (18)0.0882 (17)0.052 (2)0.024 (2)0.0110 (15)
C50.106 (2)0.122 (2)0.1091 (19)0.0456 (19)0.0298 (16)0.0028 (18)
C60.0827 (15)0.0798 (14)0.0831 (13)0.0154 (11)0.0071 (12)0.0038 (12)
C70.0604 (10)0.0576 (11)0.0397 (8)0.0039 (8)0.0057 (7)0.0000 (8)
C80.0618 (11)0.0561 (11)0.0407 (8)0.0074 (9)0.0086 (8)0.0017 (7)
C90.0647 (11)0.0597 (11)0.0503 (9)0.0074 (8)0.0004 (8)0.0018 (8)
C100.0762 (13)0.0770 (14)0.0504 (10)0.0228 (11)0.0066 (9)0.0098 (9)
C110.1158 (18)0.0646 (14)0.0714 (13)0.0147 (12)0.0142 (13)0.0211 (10)
C120.134 (2)0.0550 (13)0.0897 (15)0.0091 (12)0.0063 (15)0.0062 (12)
C130.0945 (15)0.0604 (13)0.0647 (11)0.0058 (10)0.0061 (10)0.0001 (10)
C140.1021 (18)0.118 (2)0.0757 (13)0.0372 (14)0.0136 (12)0.0137 (13)
N10.0747 (10)0.0516 (9)0.0361 (7)0.0009 (7)0.0059 (6)0.0023 (6)
O10.1070 (10)0.0619 (8)0.0397 (6)0.0015 (6)0.0060 (6)0.0053 (6)
Cl10.1097 (5)0.1673 (7)0.0943 (4)0.0532 (4)0.0089 (3)0.0407 (4)
Geometric parameters (Å, º) top
C1—C21.384 (3)C8—C91.378 (2)
C1—C61.387 (3)C8—N11.421 (2)
C1—C71.499 (2)C9—C101.398 (2)
C2—C31.383 (3)C9—H90.9300
C2—Cl11.723 (2)C10—C111.369 (3)
C3—C41.368 (4)C10—C141.496 (3)
C3—H30.9300C11—C121.363 (3)
C4—C51.366 (4)C11—H110.9300
C4—H40.9300C12—C131.386 (3)
C5—C61.381 (3)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H14A0.9600
C7—O11.2254 (19)C14—H14B0.9600
C7—N11.340 (2)C14—H14C0.9600
C8—C131.376 (2)N1—H10.859 (2)
C2—C1—C6118.06 (17)C8—C9—C10120.92 (17)
C2—C1—C7121.60 (16)C8—C9—H9119.5
C6—C1—C7120.25 (17)C10—C9—H9119.5
C3—C2—C1121.4 (2)C11—C10—C9118.07 (18)
C3—C2—Cl1118.66 (19)C11—C10—C14121.81 (18)
C1—C2—Cl1119.96 (14)C9—C10—C14120.12 (19)
C4—C3—C2119.0 (2)C12—C11—C10121.44 (18)
C4—C3—H3120.5C12—C11—H11119.3
C2—C3—H3120.5C10—C11—H11119.3
C5—C4—C3121.1 (2)C11—C12—C13120.5 (2)
C5—C4—H4119.4C11—C12—H12119.7
C3—C4—H4119.4C13—C12—H12119.7
C4—C5—C6119.7 (3)C8—C13—C12119.23 (18)
C4—C5—H5120.2C8—C13—H13120.4
C6—C5—H5120.2C12—C13—H13120.4
C5—C6—C1120.7 (2)C10—C14—H14A109.5
C5—C6—H6119.6C10—C14—H14B109.5
C1—C6—H6119.6H14A—C14—H14B109.5
O1—C7—N1124.64 (14)C10—C14—H14C109.5
O1—C7—C1120.67 (15)H14A—C14—H14C109.5
N1—C7—C1114.67 (14)H14B—C14—H14C109.5
C13—C8—C9119.83 (16)C7—N1—C8127.93 (13)
C13—C8—N1117.39 (15)C7—N1—H1115.0 (11)
C9—C8—N1122.74 (16)C8—N1—H1117.1 (11)
C6—C1—C2—C32.6 (3)C13—C8—C9—C100.3 (2)
C7—C1—C2—C3173.88 (17)N1—C8—C9—C10177.13 (14)
C6—C1—C2—Cl1176.38 (15)C8—C9—C10—C110.2 (2)
C7—C1—C2—Cl17.1 (2)C8—C9—C10—C14178.91 (17)
C1—C2—C3—C41.8 (3)C9—C10—C11—C120.2 (3)
Cl1—C2—C3—C4177.27 (19)C14—C10—C11—C12178.9 (2)
C2—C3—C4—C50.1 (4)C10—C11—C12—C130.2 (3)
C3—C4—C5—C60.7 (4)C9—C8—C13—C120.3 (3)
C4—C5—C6—C10.3 (4)N1—C8—C13—C12177.23 (16)
C2—C1—C6—C51.9 (3)C11—C12—C13—C80.3 (3)
C7—C1—C6—C5174.69 (19)O1—C7—N1—C81.0 (3)
C2—C1—C7—O158.9 (2)C1—C7—N1—C8177.16 (15)
C6—C1—C7—O1117.55 (19)C13—C8—N1—C7158.57 (16)
C2—C1—C7—N1122.85 (17)C9—C8—N1—C724.0 (2)
C6—C1—C7—N160.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.03 (1)2.8790 (16)171 (2)
Symmetry code: (i) y, x+1, z+1/4.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupTetragonal, P43
Temperature (K)295
a, c (Å)8.8751 (3), 15.9642 (5)
V3)1257.45 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur System
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.898, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
8244, 2552, 1757
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.069, 1.04
No. of reflections2552
No. of parameters158
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.08, 0.11
Absolute structureFlack (1983), ???? Friedel pairs
Absolute structure parameter0.00 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.859 (2)2.027 (4)2.8790 (16)171.3 (15)
Symmetry code: (i) y, x+1, z+1/4.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. VV and JK thank the Grant Agencies for their financial support (VEGA Grant Agency of the Slovak Ministry of Education, grant No. 1/0679/11), the Research and Development Agency of Slovakia (grant No. APVV-0202–10) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbH, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRodrigues, V. Z., Kucková,, L., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3277.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds