organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-3-(3-Bromo­anilino)-1-(5-hy­dr­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 15 February 2012; accepted 16 February 2012; online 24 February 2012)

In the title compound, C20H18BrN3O2, the central carbonyl group forms amine-N—H⋯O and hy­droxy-O—H⋯O hydrogen bonds, which lead to two fused S(6) rings. The N-bound phenyl ring is coplanar with the five-membered ring to which it is attached [dihedral angle = 5.22 (18)°], but the dihedral angle [33.87 (17)°] between the terminal phenyl and bromo­benzene rings indicates an overall twist in the mol­ecule. In the crystal packing, mol­ecules assemble into dimeric aggregates via C—H⋯π inter­actions.

Related literature

For background to the synthesis, see: Gelin et al. (1983[Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.]); Bendaas et al. (1999[Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291-1294.]). For the structures of the 4-chloro and 4-meth­oxy derivatives, see: Asiri, Al-Youbi, Alamry et al. (2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.]); Asiri, Al-Youbi, Faidallah et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18BrN3O2

  • Mr = 412.28

  • Monoclinic, P 21 /c

  • a = 8.7065 (5) Å

  • b = 11.7982 (8) Å

  • c = 17.5954 (12) Å

  • β = 101.536 (6)°

  • V = 1770.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.592, Tmax = 0.892

  • 7812 measured reflections

  • 4041 independent reflections

  • 3033 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.105

  • S = 1.01

  • 4041 reflections

  • 245 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C7–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (1) 1.68 (3) 2.468 (3) 154 (6)
N3—H3⋯O2 0.88 (1) 1.87 (3) 2.617 (4) 142 (4)
C14—H14BCg1i 0.98 2.69 3.495 (4) 140
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 3-(3-bromoanilino)-1-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one (I), was synthesized during investigations of reactions between pyrazoles and aniline derivatives based on literature precedents (Gelin et al., 1983; Bendaas et al., 1999) and was one of several compounds that were isolated in crystalline form (Asiri, Al-Youbi, Alamry et al., 2011; Asiri, Al-Youbi, Faidallah et al., 2011). As a continuation of these structural studies, the analysis of (I) is now described.

In (I), Fig. 1, The configuration about the formal C12C13 bond [1.376 (4) Å] is Z. This arrangement allows the central O2-carbonyl atom to accept two hydrogen bonds from the adjacent hydroxyl and amine groups to close a pair of fused S(6) rings, Table 1. While the N-bound phenyl ring is co-planar with the five-membered ring to which it is connected, forming a dihedral angle of 5.22 (18)°, a twist in the molecule is evident as seen in the dihedral angle formed between the terminal phenyl and bromobenzene rings, dihedral angle = 33.87 (17)°.

The most notable feature of the crystal packing is the formation of C—H···π interactions where the π-system is the five-membered ring, Table 1. The resulting dimeric aggregates assemble into zigzag layers in the bc plane and stack along the a axis, Fig. 2.

Related literature top

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999). For the structures of the 4-chloro and 4-methoxy derivatives, see: Asiri, Al-Youbi, Alamry et al. (2011); Asiri, Al-Youbi, Faidallah et al. (2011).

Experimental top

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-phenylpyrazole (0.005 mol) and 3-bromo-aniline (0.005 mol) in ethanol (25 ml) was refluxed for 2 h. The precipitate obtained from the hot solution was collected washed with methanol and recrystallized from its ethanol-benzene solution to provide yellow crystals; M.pt: 412–413 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H and O—H-atoms were located in a difference Fourier map, and were refined with distance restraints of N—H = 0.88±0.01 and O—H = 0.84±0.01 Å, respectively; their Uiso values were refined. Owing to poor agreement, the (0 0 2), (0 11 1), (1 11 2) and (1 9 4) reflections were omitted from the final cycles of refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents of (I). The C—H···π interactions are shown as purple dashed lines.
(2Z)-3-(3-Bromoanilino)-1-(5-hydroxy-3-methyl-1-phenyl-1H- pyrazol-4-yl)but-2-en-1-one top
Crystal data top
C20H18BrN3O2F(000) = 840
Mr = 412.28Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1846 reflections
a = 8.7065 (5) Åθ = 2.4–27.5°
b = 11.7982 (8) ŵ = 2.34 mm1
c = 17.5954 (12) ÅT = 100 K
β = 101.536 (6)°Bead, yellow
V = 1770.9 (2) Å30.25 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4041 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3033 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1011
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1114
Tmin = 0.592, Tmax = 0.892l = 1422
7812 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0373P)2]
where P = (Fo2 + 2Fc2)/3
4041 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.58 e Å3
2 restraintsΔρmin = 0.47 e Å3
Crystal data top
C20H18BrN3O2V = 1770.9 (2) Å3
Mr = 412.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7065 (5) ŵ = 2.34 mm1
b = 11.7982 (8) ÅT = 100 K
c = 17.5954 (12) Å0.25 × 0.10 × 0.05 mm
β = 101.536 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4041 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3033 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.892Rint = 0.048
7812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.58 e Å3
4041 reflectionsΔρmin = 0.47 e Å3
245 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18793 (4)0.67333 (3)0.911231 (19)0.01841 (12)
O10.4430 (3)0.3220 (2)0.53800 (14)0.0156 (5)
H10.409 (7)0.351 (5)0.575 (2)0.11 (2)*
O20.3101 (2)0.44759 (19)0.61666 (13)0.0160 (5)
N10.3917 (3)0.3741 (2)0.40520 (15)0.0126 (6)
N20.3061 (3)0.4591 (2)0.35913 (16)0.0148 (6)
N30.1528 (3)0.5638 (2)0.70229 (17)0.0160 (6)
H30.218 (3)0.510 (2)0.694 (2)0.034 (12)*
C10.4707 (3)0.2917 (3)0.36862 (19)0.0142 (7)
C20.4743 (4)0.3022 (3)0.2904 (2)0.0174 (7)
H20.42490.36510.26170.021*
C30.5495 (4)0.2218 (3)0.2542 (2)0.0205 (8)
H3A0.55140.22930.20060.025*
C40.6222 (4)0.1298 (3)0.2955 (2)0.0190 (8)
H40.67330.07400.27050.023*
C50.6196 (4)0.1204 (3)0.3735 (2)0.0197 (8)
H50.67010.05780.40190.024*
C60.5448 (4)0.2005 (3)0.4112 (2)0.0176 (7)
H60.54420.19320.46490.021*
C70.3772 (3)0.3860 (3)0.48029 (19)0.0131 (7)
C80.2809 (3)0.4804 (3)0.48482 (19)0.0129 (7)
C90.2418 (3)0.5222 (3)0.40686 (18)0.0130 (7)
C100.1464 (4)0.6231 (3)0.37541 (19)0.0184 (7)
H10A0.13700.62630.31900.028*
H10B0.19780.69220.39890.028*
H10C0.04180.61720.38770.028*
C110.2435 (3)0.5109 (3)0.55732 (19)0.0155 (7)
C120.1439 (3)0.6012 (3)0.56902 (19)0.0154 (7)
H120.10240.64720.52540.018*
C130.1018 (3)0.6283 (3)0.63815 (19)0.0152 (7)
C140.0010 (4)0.7306 (3)0.6434 (2)0.0178 (7)
H14A0.04270.77210.69140.027*
H14B0.10650.70620.64350.027*
H14C0.00140.78010.59870.027*
C150.1320 (4)0.5704 (3)0.77953 (19)0.0165 (7)
C160.2537 (4)0.5276 (3)0.8356 (2)0.0242 (8)
H160.34530.49870.82080.029*
C170.2420 (4)0.5269 (3)0.9128 (2)0.0256 (9)
H170.32540.49630.95040.031*
C180.1116 (4)0.5696 (3)0.9364 (2)0.0220 (8)
H180.10460.57070.98960.026*
C190.0089 (4)0.6110 (3)0.87941 (19)0.0154 (7)
C200.0032 (4)0.6109 (3)0.80153 (19)0.0172 (7)
H200.08930.63770.76390.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01953 (19)0.0200 (2)0.01736 (19)0.00189 (14)0.00775 (13)0.00017 (14)
O10.0169 (11)0.0183 (13)0.0119 (12)0.0042 (10)0.0035 (9)0.0031 (10)
O20.0196 (11)0.0165 (12)0.0120 (12)0.0033 (10)0.0034 (9)0.0002 (10)
N10.0147 (13)0.0130 (14)0.0110 (14)0.0010 (11)0.0043 (10)0.0009 (11)
N20.0159 (13)0.0132 (14)0.0150 (15)0.0020 (12)0.0024 (11)0.0021 (12)
N30.0175 (14)0.0164 (16)0.0154 (15)0.0035 (13)0.0069 (11)0.0011 (13)
C10.0119 (15)0.0175 (17)0.0134 (17)0.0035 (14)0.0028 (12)0.0040 (14)
C20.0162 (16)0.0213 (19)0.0148 (18)0.0002 (15)0.0032 (13)0.0013 (15)
C30.0192 (17)0.027 (2)0.0165 (19)0.0036 (16)0.0072 (14)0.0036 (16)
C40.0150 (16)0.0172 (18)0.026 (2)0.0022 (15)0.0072 (14)0.0088 (15)
C50.0193 (17)0.0179 (19)0.022 (2)0.0018 (15)0.0036 (14)0.0020 (16)
C60.0152 (16)0.0216 (19)0.0167 (18)0.0043 (15)0.0046 (13)0.0020 (15)
C70.0141 (15)0.0160 (17)0.0097 (16)0.0028 (14)0.0034 (12)0.0004 (14)
C80.0117 (15)0.0145 (17)0.0121 (17)0.0026 (14)0.0016 (12)0.0014 (14)
C90.0140 (15)0.0129 (17)0.0123 (17)0.0014 (14)0.0031 (12)0.0016 (14)
C100.0221 (17)0.0194 (19)0.0146 (18)0.0035 (15)0.0055 (14)0.0007 (15)
C110.0127 (15)0.0188 (18)0.0150 (18)0.0068 (14)0.0031 (13)0.0007 (14)
C120.0147 (15)0.0198 (18)0.0117 (17)0.0013 (14)0.0028 (12)0.0017 (14)
C130.0129 (15)0.0164 (18)0.0163 (18)0.0049 (14)0.0026 (13)0.0000 (14)
C140.0201 (17)0.0186 (19)0.0151 (18)0.0006 (15)0.0043 (13)0.0016 (14)
C150.0205 (16)0.0162 (18)0.0136 (18)0.0024 (15)0.0051 (13)0.0002 (14)
C160.0202 (17)0.033 (2)0.020 (2)0.0076 (17)0.0049 (14)0.0007 (17)
C170.0235 (18)0.036 (2)0.0172 (19)0.0091 (17)0.0031 (14)0.0048 (17)
C180.0273 (18)0.026 (2)0.0129 (18)0.0004 (16)0.0039 (14)0.0031 (15)
C190.0177 (16)0.0133 (18)0.0174 (18)0.0001 (14)0.0090 (13)0.0004 (14)
C200.0165 (16)0.0220 (19)0.0129 (17)0.0016 (15)0.0025 (13)0.0009 (15)
Geometric parameters (Å, º) top
Br1—C191.906 (3)C8—C111.425 (4)
O1—C71.303 (4)C8—C91.433 (4)
O1—H10.843 (10)C9—C101.493 (4)
O2—C111.320 (4)C10—H10A0.9800
N1—C71.359 (4)C10—H10B0.9800
N1—N21.406 (4)C10—H10C0.9800
N1—C11.417 (4)C11—C121.415 (5)
N2—C91.327 (4)C12—C131.376 (4)
N3—C131.360 (4)C12—H120.9500
N3—C151.409 (4)C13—C141.506 (5)
N3—H30.881 (10)C14—H14A0.9800
C1—C21.389 (4)C14—H14B0.9800
C1—C61.395 (5)C14—H14C0.9800
C2—C31.379 (5)C15—C161.391 (4)
C2—H20.9500C15—C201.395 (5)
C3—C41.386 (5)C16—C171.382 (5)
C3—H3A0.9500C16—H160.9500
C4—C51.381 (5)C17—C181.380 (5)
C4—H40.9500C17—H170.9500
C5—C61.389 (5)C18—C191.387 (4)
C5—H50.9500C18—H180.9500
C6—H60.9500C19—C201.381 (4)
C7—C81.405 (4)C20—H200.9500
C7—O1—H1102 (4)H10A—C10—H10B109.5
C7—N1—N2110.2 (3)C9—C10—H10C109.5
C7—N1—C1131.3 (3)H10A—C10—H10C109.5
N2—N1—C1118.5 (3)H10B—C10—H10C109.5
C9—N2—N1106.1 (3)O2—C11—C12119.7 (3)
C13—N3—C15133.3 (3)O2—C11—C8115.0 (3)
C13—N3—H3113 (3)C12—C11—C8125.3 (3)
C15—N3—H3114 (3)C13—C12—C11125.6 (3)
C2—C1—C6120.1 (3)C13—C12—H12117.2
C2—C1—N1119.9 (3)C11—C12—H12117.2
C6—C1—N1120.0 (3)N3—C13—C12120.2 (3)
C3—C2—C1120.2 (3)N3—C13—C14119.7 (3)
C3—C2—H2119.9C12—C13—C14120.1 (3)
C1—C2—H2119.9C13—C14—H14A109.5
C2—C3—C4120.4 (3)C13—C14—H14B109.5
C2—C3—H3A119.8H14A—C14—H14B109.5
C4—C3—H3A119.8C13—C14—H14C109.5
C5—C4—C3119.2 (3)H14A—C14—H14C109.5
C5—C4—H4120.4H14B—C14—H14C109.5
C3—C4—H4120.4C16—C15—C20119.5 (3)
C4—C5—C6121.6 (3)C16—C15—N3115.9 (3)
C4—C5—H5119.2C20—C15—N3124.4 (3)
C6—C5—H5119.2C17—C16—C15120.2 (3)
C5—C6—C1118.6 (3)C17—C16—H16119.9
C5—C6—H6120.7C15—C16—H16119.9
C1—C6—H6120.7C18—C17—C16121.4 (3)
O1—C7—N1125.9 (3)C18—C17—H17119.3
O1—C7—C8126.1 (3)C16—C17—H17119.3
N1—C7—C8108.0 (3)C17—C18—C19117.4 (3)
C7—C8—C11119.8 (3)C17—C18—H18121.3
C7—C8—C9104.4 (3)C19—C18—H18121.3
C11—C8—C9135.8 (3)C20—C19—C18123.0 (3)
N2—C9—C8111.3 (3)C20—C19—Br1119.0 (2)
N2—C9—C10119.1 (3)C18—C19—Br1117.9 (3)
C8—C9—C10129.6 (3)C19—C20—C15118.4 (3)
C9—C10—H10A109.5C19—C20—H20120.8
C9—C10—H10B109.5C15—C20—H20120.8
C7—N1—N2—C90.6 (3)C11—C8—C9—N2178.1 (3)
C1—N1—N2—C9178.5 (3)C7—C8—C9—C10178.0 (3)
C7—N1—C1—C2176.6 (3)C11—C8—C9—C103.2 (6)
N2—N1—C1—C25.9 (4)C7—C8—C11—O22.5 (4)
C7—N1—C1—C63.2 (5)C9—C8—C11—O2178.9 (3)
N2—N1—C1—C6174.2 (3)C7—C8—C11—C12177.7 (3)
C6—C1—C2—C30.9 (5)C9—C8—C11—C121.0 (6)
N1—C1—C2—C3179.3 (3)O2—C11—C12—C133.1 (5)
C1—C2—C3—C40.1 (5)C8—C11—C12—C13177.0 (3)
C2—C3—C4—C50.5 (5)C15—N3—C13—C12179.1 (3)
C3—C4—C5—C60.5 (5)C15—N3—C13—C140.0 (5)
C4—C5—C6—C10.3 (5)C11—C12—C13—N32.1 (5)
C2—C1—C6—C50.9 (5)C11—C12—C13—C14176.9 (3)
N1—C1—C6—C5179.2 (3)C13—N3—C15—C16150.3 (3)
N2—N1—C7—O1179.2 (3)C13—N3—C15—C2033.1 (5)
C1—N1—C7—O13.2 (5)C20—C15—C16—C171.1 (5)
N2—N1—C7—C80.2 (3)N3—C15—C16—C17177.9 (3)
C1—N1—C7—C8177.8 (3)C15—C16—C17—C180.9 (6)
O1—C7—C8—C112.2 (5)C16—C17—C18—C191.4 (6)
N1—C7—C8—C11178.7 (3)C17—C18—C19—C200.1 (5)
O1—C7—C8—C9178.8 (3)C17—C18—C19—Br1178.7 (3)
N1—C7—C8—C90.3 (3)C18—C19—C20—C152.0 (5)
N1—N2—C9—C80.8 (3)Br1—C19—C20—C15176.7 (2)
N1—N2—C9—C10178.1 (3)C16—C15—C20—C192.5 (5)
C7—C8—C9—N20.7 (3)N3—C15—C20—C19179.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C7–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (1)1.68 (3)2.468 (3)154 (6)
N3—H3···O20.88 (1)1.87 (3)2.617 (4)142 (4)
C14—H14B···Cg1i0.982.693.495 (4)140
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H18BrN3O2
Mr412.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.7065 (5), 11.7982 (8), 17.5954 (12)
β (°) 101.536 (6)
V3)1770.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.592, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
7812, 4041, 3033
Rint0.048
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.105, 1.01
No. of reflections4041
No. of parameters245
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.47

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C7–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.843 (10)1.68 (3)2.468 (3)154 (6)
N3—H3···O20.881 (10)1.87 (3)2.617 (4)142 (4)
C14—H14B···Cg1i0.982.693.495 (4)140
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department of King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291–1294.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds