organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-N′-(5-hy­dr­oxy-2-nitro­benzyl­­idene)-3-methyl­benzohydrazide

aDepartment of Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066600, People's Republic of China
*Correspondence e-mail: zhaofu_zhu@163.com

(Received 8 January 2012; accepted 19 January 2012; online 4 February 2012)

The title compound, C15H13N3O5, was prepared by condensing 5-hy­droxy-2-nitro­benzaldehyde and 2-hy­droxy-3-methyl­benzohydrazide in methanol. The two benzene rings make a dihedral angle of 3.9 (3)°. An intra­molecular O—H⋯O hydrogen bond is observed. The crystal structure is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, and C—H⋯O and ππ inter­actions [centroid–centroid distances = 3.5658 (17)–3.9287 (19) Å].

Related literature

For the crystal structures of similar hydrazone compounds, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Zhi et al. (2011[Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.]); Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]); Shen et al. (2012[Shen, X.-H., Zhu, L.-X., Shao, L.-J. & Zhu, Z.-F. (2012). Acta Cryst. E68, o297.]); Zhu et al. (2012[Zhu, Z.-F., Shao, L.-J. & Shen, X.-H. (2012). Acta Cryst. E68, o500.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O5

  • Mr = 315.28

  • Triclinic, [P \overline 1]

  • a = 7.643 (2) Å

  • b = 9.055 (3) Å

  • c = 10.876 (3) Å

  • α = 84.865 (2)°

  • β = 72.732 (2)°

  • γ = 77.479 (2)°

  • V = 701.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.985

  • 4694 measured reflections

  • 2942 independent reflections

  • 1788 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.132

  • S = 1.01

  • 2942 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4 0.82 1.83 2.552 (2) 146
O3—H3⋯O4i 0.82 1.97 2.775 (2) 168
N3—H3B⋯O2ii 0.89 (2) 2.53 (2) 3.397 (3) 167 (2)
C6—H6⋯O3i 0.93 2.54 3.306 (3) 140
C7—H7⋯O1ii 0.93 2.59 3.464 (3) 157
C14—H14⋯O2ii 0.93 2.44 3.325 (3) 159
C15—H15C⋯O2iii 0.96 2.54 3.488 (3) 170
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, the synthesis and crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2011; Horkaew et al., 2011; Zhi et al., 2011; Huang & Wu, 2010). The compounds derived from 2-hydroxy-3-methylbenzohydrazide have seldom been reported As an extension of our work on such compounds (Shen et al., 2012; Zhu et al., 2012), we report herein on the crystal structure of the title compound.

In the molecule of the title compound there is an intramolecular O5—H5···O4 hydrogen bond (Table 1 and Fig. 1). The (C1—C6) and (C9—C14) benzene rings make a dihedral angle of 3.9 (3)°. All the bond values are within normal ranges and are comparable with those in similar compounds reported on by (Fun et al., 2011; Horkaew et al., 2011; Zhi et al., 2011; Huang & Wu, 2010; Shen et al., 2012; Zhu et al., 2012).

In the crystal molecules are linked by intermolecular O—H···O and N—H···O hydrogen bonds and C—H···O interactions (Table 1 and Fig. 2). Moreover, there are also ππ interactions present involving molecules related by inversion centers [Cg1—Cg1i 3.7989 (17) Å; Cg1—Cg2ii 3.5658 (17) Å; Cg2—Cg2iii 3.9287 (19) Å; symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y, -z + 2; where Cg1 and Cg2 are the centroids of the (C1—C6) and (C9—C14) benzene rings, respectively].

Related literature top

For the crystal structures of similar hydrazone compounds, see: Fun et al. (2011); Horkaew et al. (2011); Zhi et al. (2011); Huang & Wu (2010); Shen et al. (2012); Zhu et al. (2012).

Experimental top

5-Hydroxy-2-nitrobenzaldehyde (167.1 mg, 1.0 mmol) and 2-hydroxy-3-methylbenzohydrazide (166.2 mg, 1.0 mmol) were mixed in methanol (60 ml). The mixture was refluxed for 30 min, then cooled to room temperature, yielding a colourless solution. Colourless block-like crystals of the title compound were formed when the solution was evaporated in air for several days.

Refinement top

The amino H atom was located in a difference Fourier map and was refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering and displacement ellipsoids drawn at the 30% probability level. The intramolecular O—H···O hydrogen bond is drawn as a dashed line - see Table 1 for details.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are drawn as dashed lines - see Table 1 for details.
2-Hydroxy-N'-(5-hydroxy-2-nitrobenzylidene)-3-methylbenzohydrazide top
Crystal data top
C15H13N3O5Z = 2
Mr = 315.28F(000) = 328
Triclinic, P1Dx = 1.493 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.643 (2) ÅCell parameters from 907 reflections
b = 9.055 (3) Åθ = 2.3–26.3°
c = 10.876 (3) ŵ = 0.12 mm1
α = 84.865 (2)°T = 298 K
β = 72.732 (2)°Block, colourless
γ = 77.479 (2)°0.18 × 0.17 × 0.13 mm
V = 701.4 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2942 independent reflections
Radiation source: fine-focus sealed tube1788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.980, Tmax = 0.985k = 1110
4694 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C15H13N3O5γ = 77.479 (2)°
Mr = 315.28V = 701.4 (4) Å3
Triclinic, P1Z = 2
a = 7.643 (2) ÅMo Kα radiation
b = 9.055 (3) ŵ = 0.12 mm1
c = 10.876 (3) ÅT = 298 K
α = 84.865 (2)°0.18 × 0.17 × 0.13 mm
β = 72.732 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2942 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1788 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.025
4694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
2942 reflectionsΔρmin = 0.22 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3407 (2)0.5111 (2)0.34762 (17)0.0392 (4)
N20.3357 (2)0.12755 (18)0.60779 (16)0.0378 (4)
N30.4581 (2)0.09322 (19)0.68114 (17)0.0387 (5)
O10.4907 (2)0.46271 (18)0.36935 (16)0.0566 (5)
O20.3020 (2)0.63840 (17)0.30078 (17)0.0619 (5)
O30.1905 (2)0.15022 (17)0.43917 (16)0.0513 (5)
H30.23280.15330.37780.077*
O40.35835 (19)0.12443 (16)0.74968 (15)0.0485 (4)
O50.4783 (2)0.29790 (17)0.91796 (16)0.0548 (5)
H50.40520.26190.87610.082*
C10.2028 (2)0.2941 (2)0.46606 (19)0.0313 (5)
C20.2020 (2)0.4156 (2)0.37541 (19)0.0317 (5)
C30.0716 (3)0.4480 (2)0.3073 (2)0.0377 (5)
H3A0.07290.52990.24920.045*
C40.0602 (3)0.3606 (2)0.3242 (2)0.0390 (5)
H40.14620.38160.27680.047*
C50.0633 (3)0.2405 (2)0.4132 (2)0.0351 (5)
C60.0654 (3)0.2105 (2)0.4831 (2)0.0343 (5)
H60.05940.13120.54380.041*
C70.3329 (3)0.2528 (2)0.5452 (2)0.0375 (5)
H70.41120.31670.54930.045*
C80.4651 (3)0.0391 (2)0.7500 (2)0.0352 (5)
C90.6023 (3)0.0770 (2)0.8241 (2)0.0349 (5)
C100.6006 (3)0.2070 (2)0.9055 (2)0.0371 (5)
C110.7307 (3)0.2501 (2)0.9763 (2)0.0427 (5)
C120.8620 (3)0.1626 (3)0.9628 (2)0.0536 (7)
H120.94970.19001.00860.064*
C130.8668 (3)0.0341 (3)0.8822 (3)0.0577 (7)
H130.95730.02300.87430.069*
C140.7382 (3)0.0073 (2)0.8151 (2)0.0470 (6)
H140.74130.09370.76200.056*
C150.7271 (4)0.3903 (3)1.0606 (2)0.0660 (8)
H15A0.81530.39781.10910.099*
H15B0.75980.47751.00810.099*
H15C0.60390.38561.11870.099*
H3B0.538 (3)0.152 (2)0.679 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0418 (10)0.0344 (10)0.0408 (11)0.0144 (8)0.0062 (9)0.0007 (8)
N20.0381 (9)0.0390 (10)0.0454 (12)0.0133 (8)0.0227 (9)0.0031 (9)
N30.0425 (10)0.0379 (10)0.0477 (12)0.0160 (8)0.0279 (9)0.0080 (9)
O10.0478 (9)0.0662 (11)0.0698 (13)0.0300 (8)0.0291 (9)0.0142 (9)
O20.0599 (10)0.0369 (9)0.0838 (14)0.0183 (8)0.0116 (9)0.0158 (9)
O30.0527 (9)0.0545 (10)0.0658 (12)0.0282 (8)0.0365 (8)0.0104 (8)
O40.0516 (9)0.0462 (9)0.0647 (11)0.0263 (7)0.0348 (8)0.0129 (8)
O50.0548 (10)0.0532 (10)0.0677 (13)0.0277 (8)0.0289 (9)0.0199 (8)
C10.0320 (10)0.0303 (11)0.0356 (12)0.0080 (8)0.0134 (9)0.0050 (9)
C20.0308 (10)0.0282 (10)0.0359 (12)0.0093 (8)0.0067 (9)0.0015 (9)
C30.0411 (12)0.0344 (12)0.0371 (13)0.0061 (9)0.0130 (10)0.0034 (9)
C40.0375 (11)0.0436 (13)0.0406 (14)0.0045 (10)0.0208 (10)0.0004 (10)
C50.0333 (10)0.0344 (11)0.0430 (14)0.0104 (9)0.0156 (10)0.0034 (10)
C60.0383 (11)0.0307 (11)0.0404 (13)0.0113 (9)0.0192 (10)0.0031 (9)
C70.0386 (11)0.0365 (12)0.0460 (14)0.0168 (9)0.0191 (10)0.0017 (10)
C80.0330 (11)0.0368 (12)0.0400 (13)0.0095 (9)0.0144 (10)0.0023 (10)
C90.0374 (11)0.0325 (11)0.0377 (13)0.0076 (9)0.0141 (10)0.0031 (9)
C100.0384 (11)0.0371 (12)0.0369 (13)0.0100 (9)0.0104 (10)0.0028 (10)
C110.0476 (13)0.0452 (13)0.0346 (13)0.0012 (10)0.0161 (10)0.0030 (10)
C120.0589 (14)0.0553 (15)0.0584 (17)0.0034 (12)0.0385 (13)0.0071 (13)
C130.0598 (15)0.0497 (15)0.083 (2)0.0193 (12)0.0432 (14)0.0026 (14)
C140.0536 (13)0.0389 (13)0.0619 (17)0.0181 (11)0.0322 (12)0.0045 (11)
C150.0682 (16)0.0716 (18)0.0578 (18)0.0093 (14)0.0270 (14)0.0207 (14)
Geometric parameters (Å, º) top
N1—O11.219 (2)C4—H40.9300
N1—O21.230 (2)C5—C61.382 (3)
N1—C21.457 (2)C6—H60.9300
N2—C71.269 (2)C7—H70.9300
N2—N31.372 (2)C8—C91.471 (3)
N3—C81.354 (3)C9—C141.393 (3)
N3—H3B0.889 (10)C9—C101.408 (3)
O3—C51.354 (2)C10—C111.402 (3)
O3—H30.8200C11—C121.376 (3)
O4—C81.240 (2)C11—C151.499 (3)
O5—C101.344 (2)C12—C131.392 (3)
O5—H50.8200C12—H120.9300
C1—C61.384 (2)C13—C141.363 (3)
C1—C21.410 (3)C13—H130.9300
C1—C71.470 (3)C14—H140.9300
C2—C31.379 (3)C15—H15A0.9600
C3—C41.372 (3)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.389 (3)
O1—N1—O2122.22 (18)C1—C7—H7120.9
O1—N1—C2119.73 (17)O4—C8—N3120.40 (18)
O2—N1—C2118.04 (18)O4—C8—C9121.74 (19)
C7—N2—N3116.56 (16)N3—C8—C9117.87 (17)
C8—N3—N2118.53 (16)C14—C9—C10118.08 (19)
C8—N3—H3B120.2 (16)C14—C9—C8123.11 (19)
N2—N3—H3B121.0 (16)C10—C9—C8118.78 (18)
C5—O3—H3109.5O5—C10—C11116.37 (19)
C10—O5—H5109.5O5—C10—C9122.50 (18)
C6—C1—C2116.38 (17)C11—C10—C9121.12 (19)
C6—C1—C7118.11 (18)C12—C11—C10118.0 (2)
C2—C1—C7125.49 (17)C12—C11—C15122.0 (2)
C3—C2—C1121.46 (17)C10—C11—C15119.9 (2)
C3—C2—N1116.86 (17)C11—C12—C13121.7 (2)
C1—C2—N1121.67 (17)C11—C12—H12119.1
C4—C3—C2120.70 (19)C13—C12—H12119.1
C4—C3—H3A119.6C14—C13—C12119.6 (2)
C2—C3—H3A119.6C14—C13—H13120.2
C3—C4—C5119.12 (19)C12—C13—H13120.2
C3—C4—H4120.4C13—C14—C9121.4 (2)
C5—C4—H4120.4C13—C14—H14119.3
O3—C5—C6116.53 (18)C9—C14—H14119.3
O3—C5—C4123.56 (18)C11—C15—H15A109.5
C6—C5—C4119.89 (18)C11—C15—H15B109.5
C5—C6—C1122.41 (18)H15A—C15—H15B109.5
C5—C6—H6118.8C11—C15—H15C109.5
C1—C6—H6118.8H15A—C15—H15C109.5
N2—C7—C1118.21 (18)H15B—C15—H15C109.5
N2—C7—H7120.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.821.832.552 (2)146
O3—H3···O4i0.821.972.775 (2)168
N3—H3B···O2ii0.89 (2)2.53 (2)3.397 (3)167 (2)
C6—H6···O3i0.932.543.306 (3)140
C7—H7···O1ii0.932.593.464 (3)157
C14—H14···O2ii0.932.443.325 (3)159
C15—H15C···O2iii0.962.543.488 (3)170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O5
Mr315.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.643 (2), 9.055 (3), 10.876 (3)
α, β, γ (°)84.865 (2), 72.732 (2), 77.479 (2)
V3)701.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.18 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4694, 2942, 1788
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.132, 1.01
No. of reflections2942
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.821.8302.552 (2)146
O3—H3···O4i0.821.972.775 (2)168
N3—H3B···O2ii0.89 (2)2.53 (2)3.397 (3)166.7 (17)
C6—H6···O3i0.932.543.306 (3)140
C7—H7···O1ii0.932.593.464 (3)157
C14—H14···O2ii0.932.443.325 (3)159
C15—H15C···O2iii0.962.543.488 (3)170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z+1.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X.-H., Zhu, L.-X., Shao, L.-J. & Zhu, Z.-F. (2012). Acta Cryst. E68, o297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Z.-F., Shao, L.-J. & Shen, X.-H. (2012). Acta Cryst. E68, o500.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds