organic compounds
(E)-Isopentyl 3-(3,4-dihydroxyphenyl)acrylate
aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, People's Republic of China, and bSericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, People's Republic of China
*Correspondence e-mail: jimwang_js@hotmail.com
The title compound, C14H18O4, a derivative of caffeic acid, has an E configuration about the C=C bond. The benzene ring is almost coplanar with the C=C—C(O)—O—C linker [maximum deviation = 0.050 (2) Å], making a dihedral angle of only 4.53 (2)°. In the molecule, the adjacent hydroxy groups form an O—H⋯O interaction. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, generating a chain propagating in the [110] direction.
Related literature
For the biological properties of caffeic acid et al. (2009); Uwai et al. (2008). For synthetic details, see: Feng et al. (2011); Wang et al. (2011). For related structures, see: Xia et al. (2004, 2006); Wang et al. (2011).
see: BuzziExperimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812003352/su2370sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812003352/su2370Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812003352/su2370Isup3.cml
The synthesis follows the method of (Wang et al., 2011). Esterification of caffeic acid with hexyl alcohol was performed in a column (inner diameter = 15 mm, length = 200 mm). A
resin CD-552 particles (5 g) molecular sieve (5 g) and glass beads of 2 mm in diameter were packed into the middle of the reactor. In a reaction mixture tank, 9 g of caffeic acid was mixed with 100 ml hexyl alcohol. The reaction mixture was supplied to the reaction column at a aret of 10.0 ml/h. The reaction continued at 353 K for 24 h. The solvent was then removed under reduced pressure. The residue was extracted with ethyl acetate three times and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO3 solution, saturated aqueous NaCl, then dried over MgSO4, and evaporated. The residue was recrystallized from ethanol to give the title compound as colourless crystals (Yield 5.2 g; 57.7%).The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.98, 0.97 and 0.96 Å for CH(aromtic), CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).C14H18O4 | Z = 2 |
Mr = 250.28 | F(000) = 268 |
Triclinic, P1 | Dx = 1.220 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.2790 (11) Å | Cell parameters from 25 reflections |
b = 10.244 (2) Å | θ = 9–13° |
c = 13.834 (3) Å | µ = 0.09 mm−1 |
α = 69.05 (3)° | T = 293 K |
β = 80.11 (3)° | Block, colourless |
γ = 78.79 (3)° | 0.30 × 0.20 × 0.10 mm |
V = 681.0 (2) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1300 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 25.4°, θmin = 1.6° |
ω/2θ scans | h = −6→6 |
Absorption correction: ψ scan (North et al., 1968) | k = −11→12 |
Tmin = 0.974, Tmax = 0.991 | l = 0→16 |
2507 measured reflections | 3 standard reflections every 200 min |
2507 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.070P)2] where P = (Fo2 + 2Fc2)/3 |
2507 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.14 e Å−3 |
2 restraints | Δρmin = −0.14 e Å−3 |
C14H18O4 | γ = 78.79 (3)° |
Mr = 250.28 | V = 681.0 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.2790 (11) Å | Mo Kα radiation |
b = 10.244 (2) Å | µ = 0.09 mm−1 |
c = 13.834 (3) Å | T = 293 K |
α = 69.05 (3)° | 0.30 × 0.20 × 0.10 mm |
β = 80.11 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1300 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.974, Tmax = 0.991 | 3 standard reflections every 200 min |
2507 measured reflections | intensity decay: 1% |
2507 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | 2 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.14 e Å−3 |
2507 reflections | Δρmin = −0.14 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2966 (5) | 0.6252 (2) | 0.56768 (18) | 0.0557 (7) | |
H1A | 0.1700 | 0.6372 | 0.5248 | 0.067* | |
O1 | −0.0024 (4) | 0.16077 (18) | 0.62733 (15) | 0.0877 (7) | |
O2 | 0.1887 (4) | 0.01321 (17) | 0.76260 (13) | 0.0743 (6) | |
C2 | 0.4057 (5) | 0.7386 (2) | 0.55959 (18) | 0.0543 (7) | |
O3 | 0.3407 (3) | 0.87217 (15) | 0.49143 (12) | 0.0658 (6) | |
H3A | 0.2404 | 0.8698 | 0.4531 | 0.099* | |
C3 | 0.5921 (5) | 0.7242 (2) | 0.62374 (18) | 0.0561 (7) | |
O4 | 0.7014 (4) | 0.83462 (17) | 0.62142 (14) | 0.0793 (7) | |
H4A | 0.6432 | 0.9064 | 0.5765 | 0.119* | |
C4 | 0.6631 (5) | 0.5938 (2) | 0.6955 (2) | 0.0663 (8) | |
H4B | 0.7863 | 0.5837 | 0.7393 | 0.080* | |
C5 | 0.5533 (5) | 0.4770 (3) | 0.70355 (19) | 0.0666 (8) | |
H5A | 0.6029 | 0.3894 | 0.7523 | 0.080* | |
C6 | 0.3678 (5) | 0.4917 (2) | 0.63792 (17) | 0.0530 (7) | |
C7 | 0.2509 (5) | 0.3738 (2) | 0.63921 (18) | 0.0570 (7) | |
H7A | 0.1330 | 0.3959 | 0.5909 | 0.068* | |
C8 | 0.2875 (5) | 0.2395 (2) | 0.69908 (18) | 0.0610 (7) | |
H8A | 0.4077 | 0.2102 | 0.7472 | 0.073* | |
C9 | 0.1449 (5) | 0.1375 (2) | 0.69123 (18) | 0.0541 (7) | |
C10 | 0.0528 (7) | −0.0973 (3) | 0.7622 (2) | 0.0821 (10) | |
H10A | 0.1149 | −0.1228 | 0.7003 | 0.099* | |
H10B | −0.1322 | −0.0639 | 0.7620 | 0.099* | |
C11 | 0.1015 (8) | −0.2212 (3) | 0.8563 (2) | 0.1123 (13) | |
H11A | 0.0061 | −0.2928 | 0.8556 | 0.135* | |
H11B | 0.2847 | −0.2584 | 0.8493 | 0.135* | |
C12 | 0.0392 (9) | −0.2063 (4) | 0.9575 (2) | 0.1090 (13) | |
H12A | 0.1470 | −0.1399 | 0.9599 | 0.131* | |
C13 | 0.1016 (11) | −0.3421 (5) | 1.0451 (3) | 0.171 (2) | |
H13A | 0.2824 | −0.3785 | 1.0352 | 0.256* | |
H13B | −0.0021 | −0.4098 | 1.0459 | 0.256* | |
H13C | 0.0644 | −0.3247 | 1.1102 | 0.256* | |
C14 | −0.2487 (11) | −0.1421 (5) | 0.9771 (4) | 0.179 (2) | |
H14A | −0.2887 | −0.0562 | 0.9206 | 0.268* | |
H14B | −0.2751 | −0.1222 | 1.0411 | 0.268* | |
H14C | −0.3602 | −0.2082 | 0.9815 | 0.268* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0686 (18) | 0.0450 (14) | 0.0592 (15) | −0.0190 (13) | −0.0249 (13) | −0.0107 (12) |
O1 | 0.1255 (19) | 0.0556 (11) | 0.0918 (14) | −0.0350 (11) | −0.0638 (14) | −0.0015 (10) |
O2 | 0.1147 (17) | 0.0505 (11) | 0.0639 (11) | −0.0347 (10) | −0.0391 (11) | −0.0014 (9) |
C2 | 0.0689 (18) | 0.0438 (14) | 0.0547 (14) | −0.0209 (13) | −0.0223 (13) | −0.0083 (12) |
O3 | 0.0876 (14) | 0.0435 (10) | 0.0711 (11) | −0.0261 (9) | −0.0368 (10) | −0.0037 (8) |
C3 | 0.0700 (18) | 0.0471 (14) | 0.0576 (14) | −0.0250 (13) | −0.0186 (13) | −0.0116 (12) |
O4 | 0.1004 (16) | 0.0569 (11) | 0.0944 (14) | −0.0368 (11) | −0.0507 (11) | −0.0107 (10) |
C4 | 0.080 (2) | 0.0540 (16) | 0.0741 (17) | −0.0224 (14) | −0.0340 (15) | −0.0142 (14) |
C5 | 0.087 (2) | 0.0486 (15) | 0.0666 (16) | −0.0247 (14) | −0.0390 (15) | −0.0004 (12) |
C6 | 0.0623 (17) | 0.0493 (14) | 0.0529 (14) | −0.0235 (13) | −0.0112 (12) | −0.0135 (12) |
C7 | 0.0710 (19) | 0.0493 (15) | 0.0549 (14) | −0.0226 (13) | −0.0237 (13) | −0.0076 (12) |
C8 | 0.079 (2) | 0.0495 (15) | 0.0574 (15) | −0.0228 (14) | −0.0284 (14) | −0.0048 (12) |
C9 | 0.0681 (19) | 0.0418 (14) | 0.0534 (14) | −0.0161 (13) | −0.0183 (13) | −0.0078 (12) |
C10 | 0.143 (3) | 0.0514 (16) | 0.0632 (16) | −0.0484 (17) | −0.0326 (17) | −0.0050 (13) |
C11 | 0.183 (4) | 0.069 (2) | 0.092 (2) | −0.058 (2) | −0.050 (2) | 0.0008 (18) |
C12 | 0.120 (3) | 0.126 (3) | 0.073 (2) | −0.055 (3) | −0.016 (2) | −0.0006 (19) |
C13 | 0.223 (6) | 0.145 (4) | 0.123 (3) | −0.028 (4) | −0.040 (3) | −0.009 (3) |
C14 | 0.171 (6) | 0.200 (6) | 0.160 (5) | −0.019 (4) | −0.014 (4) | −0.060 (4) |
C1—C2 | 1.356 (3) | C7—H7A | 0.9300 |
C1—C6 | 1.390 (3) | C8—C9 | 1.444 (3) |
C1—H1A | 0.9300 | C8—H8A | 0.9300 |
O1—C9 | 1.207 (3) | C10—C11 | 1.476 (3) |
O2—C9 | 1.310 (3) | C10—H10A | 0.9700 |
O2—C10 | 1.455 (3) | C10—H10B | 0.9700 |
C2—O3 | 1.373 (3) | C11—C12 | 1.439 (5) |
C2—C3 | 1.388 (3) | C11—H11A | 0.9700 |
O3—H3A | 0.8200 | C11—H11B | 0.9700 |
C3—O4 | 1.355 (3) | C12—C13 | 1.505 (5) |
C3—C4 | 1.377 (3) | C12—C14 | 1.553 (6) |
O4—H4A | 0.8200 | C12—H12A | 0.9800 |
C4—C5 | 1.390 (3) | C13—H13A | 0.9600 |
C4—H4B | 0.9300 | C13—H13B | 0.9600 |
C5—C6 | 1.398 (3) | C13—H13C | 0.9600 |
C5—H5A | 0.9300 | C14—H14A | 0.9600 |
C6—C7 | 1.453 (3) | C14—H14B | 0.9600 |
C7—C8 | 1.324 (3) | C14—H14C | 0.9600 |
C2—C1—C6 | 122.1 (2) | O2—C10—C11 | 108.5 (2) |
C2—C1—H1A | 118.9 | O2—C10—H10A | 110.0 |
C6—C1—H1A | 118.9 | C11—C10—H10A | 110.0 |
C9—O2—C10 | 117.5 (2) | O2—C10—H10B | 110.0 |
C1—C2—O3 | 124.0 (2) | C11—C10—H10B | 110.0 |
C1—C2—C3 | 120.1 (2) | H10A—C10—H10B | 108.4 |
O3—C2—C3 | 115.9 (2) | C12—C11—C10 | 119.8 (3) |
C2—O3—H3A | 109.5 | C12—C11—H11A | 107.4 |
O4—C3—C4 | 118.2 (2) | C10—C11—H11A | 107.4 |
O4—C3—C2 | 122.6 (2) | C12—C11—H11B | 107.4 |
C4—C3—C2 | 119.1 (2) | C10—C11—H11B | 107.4 |
C3—O4—H4A | 109.5 | H11A—C11—H11B | 106.9 |
C3—C4—C5 | 121.0 (2) | C11—C12—C13 | 113.3 (4) |
C3—C4—H4B | 119.5 | C11—C12—C14 | 112.5 (4) |
C5—C4—H4B | 119.5 | C13—C12—C14 | 109.6 (3) |
C4—C5—C6 | 119.7 (2) | C11—C12—H12A | 107.0 |
C4—C5—H5A | 120.1 | C13—C12—H12A | 107.0 |
C6—C5—H5A | 120.1 | C14—C12—H12A | 107.0 |
C1—C6—C5 | 117.9 (2) | C12—C13—H13A | 109.5 |
C1—C6—C7 | 119.1 (2) | C12—C13—H13B | 109.5 |
C5—C6—C7 | 122.9 (2) | H13A—C13—H13B | 109.5 |
C8—C7—C6 | 129.5 (2) | C12—C13—H13C | 109.5 |
C8—C7—H7A | 115.3 | H13A—C13—H13C | 109.5 |
C6—C7—H7A | 115.3 | H13B—C13—H13C | 109.5 |
C7—C8—C9 | 121.4 (2) | C12—C14—H14A | 109.5 |
C7—C8—H8A | 119.3 | C12—C14—H14B | 109.5 |
C9—C8—H8A | 119.3 | H14A—C14—H14B | 109.5 |
O1—C9—O2 | 121.8 (2) | C12—C14—H14C | 109.5 |
O1—C9—C8 | 125.2 (2) | H14A—C14—H14C | 109.5 |
O2—C9—C8 | 113.0 (2) | H14B—C14—H14C | 109.5 |
C6—C1—C2—O3 | −179.9 (2) | C4—C5—C6—C7 | 177.9 (3) |
C6—C1—C2—C3 | −1.0 (4) | C1—C6—C7—C8 | −179.5 (3) |
C1—C2—C3—O4 | −177.8 (3) | C5—C6—C7—C8 | 1.5 (4) |
O3—C2—C3—O4 | 1.2 (4) | C6—C7—C8—C9 | 177.8 (3) |
C1—C2—C3—C4 | −0.3 (4) | C10—O2—C9—O1 | 0.1 (4) |
O3—C2—C3—C4 | 178.7 (2) | C10—O2—C9—C8 | 179.5 (2) |
O4—C3—C4—C5 | 178.4 (3) | C7—C8—C9—O1 | 5.2 (4) |
C2—C3—C4—C5 | 0.8 (4) | C7—C8—C9—O2 | −174.1 (2) |
C3—C4—C5—C6 | 0.0 (4) | C9—O2—C10—C11 | −172.5 (3) |
C2—C1—C6—C5 | 1.7 (4) | O2—C10—C11—C12 | 56.0 (4) |
C2—C1—C6—C7 | −177.4 (2) | C10—C11—C12—C13 | −179.7 (3) |
C4—C5—C6—C1 | −1.2 (4) | C10—C11—C12—C14 | 55.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3 | 0.82 | 2.28 | 2.721 (2) | 114 |
O3—H3A···O1i | 0.82 | 1.95 | 2.764 (2) | 173 |
O4—H4A···O3ii | 0.82 | 2.13 | 2.831 (2) | 143 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H18O4 |
Mr | 250.28 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.2790 (11), 10.244 (2), 13.834 (3) |
α, β, γ (°) | 69.05 (3), 80.11 (3), 78.79 (3) |
V (Å3) | 681.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.974, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2507, 2507, 1300 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.156, 1.00 |
No. of reflections | 2507 |
No. of parameters | 163 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.14 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3 | 0.82 | 2.28 | 2.721 (2) | 114 |
O3—H3A···O1i | 0.82 | 1.95 | 2.764 (2) | 173 |
O4—H4A···O3ii | 0.82 | 2.13 | 2.831 (2) | 143 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1. |
Acknowledgements
This work was sponsored by the earmarked fund for Natural Science Foundation of Jiangsu Province (grant No. BK2009213), Qing Lan Project of Jiangsu Province, Modern Agro-industry Technology Research System of China (grant No. CARS-22), Science and Technology Support Program of Jiangsu Province (grant No. BE2010419), Graduate Innovation Project of Jiangsu Province in 2011 (grant No. 284), and Start Research Project of Jiangsu University of Science and Technology (grant Nos. 35211002 and 33201002).
References
Buzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596–4602. PubMed CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Feng, Y., Zhang, A., Li, J. & He, B. (2011). Bioresour. Technol. 102, 3607–3609. Web of Science CrossRef CAS PubMed Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795–7803. Web of Science CrossRef PubMed CAS Google Scholar
Wang, J., Gu, S., Zhang, L., Wu, F. & Guo, X. (2011). Acta Cryst. E67, o2871. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xia, C.-N., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o913–o914. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Xia, C.-N., Hu, W.-X. & Zhou, W. (2006). Acta Cryst. E62, o3900–o3901. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Caffeic acid esters are a component of propolis (a vegetable resin) and are reported to have a broad spectrum of biological effects, such as, anti-tumour, antioxidant, and anti-inflammatory activities (Uwai et al., 2008; Buzzi et al., 2009). The resin itself has been used as a cation-exchange resin for heterogeneous catalyst (Feng et al., 2011). This prompted us to synthesize a series of caffeic acid esters to investigate their properties better (Wang et al., 2011). Herein, we report on the crystal structure of the title compound, the isopentyl derivative of caffeic acid.
The title molecule has an E configuration about the C7═C8 bond (Fig. 1). The benzene ring with the C7═C8—C9 linker is almost coplanar, with a root mean square deviation from the mean plane of 0.005 Å. All bond lengths and angles are in very close agreement with those found in similar caffeic acid structures (Xia et al., 2004, 2006), and in the pentyl derivative of caffeic acid (Wang et al., 2011).
In the crystal, the hydroxy groups contribute to intermolecular O—H···O interactions (Table 1), that link the molecules into ribbons extending in the [110] direction (Fig. 2). On the other hand, the intramolecular O—H···O H-bond also contributes to the stability of the molecular configuration (Fig. 1 and Table 1).