organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o616-o617

(2E)-1-(2,4-Di­chloro­phen­yl)-3-[3-(4-nitro­phen­yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one

aOrganic Electronics Division, Department of Chemistry, National Institute of Technology - Karnataka, Surathkal, Mangalore 575 025, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 18 January 2012; accepted 30 January 2012; online 4 February 2012)

In the title compound, C24H15Cl2N3O3, the C=C double bond is E configured. The 1-phenyl-1H-pyrazole moiety is roughly planar (r.m.s. deviation of all fitted non-H atoms = 0.0780 Å), but the mean planes of the two components are inclined at an angle of 9.95 (7)°. The mean plane defined by the non-H atoms of the 1H-pyrazole ring encloses angles of 9.95 (7), 24.54 (6) and 43.02 (6)° with the mean planes of the different benzene rings. In the crystal, C—H⋯O contacts are present and result in the formation of a double-layer two-dimensional network lying parallel to (110). The shortest inter­centroid distance between two aromatic systems is 3.5455 (7) Å and is apparent between two pyrazole systems. Further ππ inter­actions are manifest between a pair of 4-nitro­phenyl rings [centroid-to-centroid distance = 3.6443 (7) Å] and a pair of 2,4-dichloro­phenyl rings [centroid-to-centroid distance = 3.7797 (7) Å].

Related literature

For general background on the pharmaceutical and biological activity of pyrazole compounds, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Vijesh et al. (2010[Vijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460-5464.]); Sharma et al. (2010[Sharma, P. K., Kumar, S., Kumar, P., Kaushik, P., Kaushik, D., Dhingra, Y. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 2650-2655.]); Rostom et al. (2003[Rostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38, 959-974.]); Ghorab et al. (2010[Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171-178.]); Amnekar & Bhusari (2010[Amnekar, N. D. & Bhusari, K. P. (2010). Eur. J. Med. Chem. 45, 149-159.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15Cl2N3O3

  • Mr = 464.29

  • Triclinic, [P \overline 1]

  • a = 8.3343 (3) Å

  • b = 9.3115 (4) Å

  • c = 13.8699 (6) Å

  • α = 92.896 (2)°

  • β = 104.669 (2)°

  • γ = 96.060 (2)°

  • V = 1032.12 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 200 K

  • 0.53 × 0.30 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 1.000

  • 18344 measured reflections

  • 5116 independent reflections

  • 4588 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.086

  • S = 1.02

  • 5116 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.39 3.3421 (14) 176
C36—H36⋯O3ii 0.95 2.41 3.3139 (15) 160
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazole ring is an important structural motif found in several pharmaceutically active compounds. Because of its easy preparation and rich biological activity, the pyrazole skeleton plays an important role in biologically active compounds such as antibacterial (Isloor et al., 2009; Vijesh et al., 2010), anti-inflammatory (Sharma et al., 2010), analgesic (Rostom et al., 2003), anticancer, radioprotective (Ghorab et al., 2010) and anti-convulsant agents (Amnekar & Bhusari, 2010). Prompted by the diverse activities of pyrazole derivatives, we have synthesized the title compound to study its crystal structure.

In the title compound the CC double bond in the Michael system adopts (E)-configuration (Fig. 1). The 1-phenyl-1H-pyrazole moiety is essentially planar (r.m.s. deviation of all fitted non-hydrogen atoms = 0.0780 Å). However, the mean planes of the two components are inclined at an angle of 9.95 (7)°.

The N-bonded phenyl ring B (C21–C26), the 4-nitrophenyl ring C (C11–C16), and the 2,4-dichlorophenyl ring D (C31–C36) are inclined to the mean plane of the central heterocyclic five-membered ring A (N1,N2,C4–C6) by 9.95 (7), 24.54 (6) and 43.06 (6) °, respectively. The mean planes defined the phenyl rings (B, C and D) are inclined to one another by angles of B/C = 16.28 (6)°, C/D = 28.40 (6)° and B/D = 40.14 (6)°.

In the crystal, C—H···O contacts whose range falls by more than 0.3 Å below the sum of van der Waals radii of the corresponding atoms are present. They are supported by one of the H atoms of the pyrazole system on the one hand and one of the H atoms on the dichlorophenyl moiety on the other hand. While the former of these contacts applies exclusively to one of the O atoms (O1) on the nitro group as acceptor, the latter ones are apparent in conjunction with the O atom (O3) on the Michael system (Table 1 and Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C—H···O contacts is C11(11)R22(10) on the unitary level.

The shortest intercentroid distance between two aromatic systems is 3.5455 (7) Å involving inversion related pyrazole systems [CgA···CgAi]. Further ππ interactions are manifest between inversion related 4-nitrophenyl rings (CgC···CgCii = 3.6443 (7) Å) and inversion related 2,4-dichlorophenyl rings (CgD···CgDiii = 3.7797 (7) Å) [symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y + 2, -z + 1; (iii) -x + 1, -y, -z].

In total, the molecules are connected into a double layer two-dimensional network lying parallel to plane (110) [Fig. 3].

Related literature top

For general background on the pharmaceutical and biological activity of pyrazole compounds, see: Isloor et al. (2009); Vijesh et al. (2010); Sharma et al. (2010); Rostom et al. (2003); Ghorab et al. (2010); Amnekar & Bhusari (2010). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a cold, stirred mixture of methanol (20 ml) and sodium hydroxide (12.09 mmol) was added 2,4-dichloroacetophenone (4.03 mmol). The reaction mixture was stirred for 10 min. To this was added 3-(4-nitrophenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (4.03 mmol) followed by tetrahydrofuran (30 ml). The solution was further stirred at 0°C for 2 h and then at room temperature for 5 h. It was then poured into ice cold water. The resulting solution was neutralized with diluted hydrochloric acid. The solid that separated was filtered, washed with water, dried and crystallized from ethanol. Yield: 1.48 g, 79.39% (m.p. 478–480 K).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound, showing the C—H···O intermolecular contacts [Symmetry operators: (i) x - 1, y - 1, z; (ii) x + 1, y + 1, z; (iii) -x + 1, -y + 1, -z].
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound (displacement ellipsoids are drawn at 50% probability level).
(2E)-1-(2,4-Dichlorophenyl)-3-[3-(4-nitrophenyl)-1-phenyl- 1H-pyrazol-4-yl]prop-2-en-1-one top
Crystal data top
C24H15Cl2N3O3Z = 2
Mr = 464.29F(000) = 476
Triclinic, P1Dx = 1.494 Mg m3
Hall symbol: -P 1Melting point = 478–480 K
a = 8.3343 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3115 (4) ÅCell parameters from 9938 reflections
c = 13.8699 (6) Åθ = 2.6–28.3°
α = 92.896 (2)°µ = 0.35 mm1
β = 104.669 (2)°T = 200 K
γ = 96.060 (2)°Plate, yellow
V = 1032.12 (7) Å30.53 × 0.30 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
5116 independent reflections
Radiation source: fine-focus sealed tube4588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.931, Tmax = 1.000k = 1112
18344 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2 + 0.3579P]
where P = (Fo2 + 2Fc2)/3
5116 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H15Cl2N3O3γ = 96.060 (2)°
Mr = 464.29V = 1032.12 (7) Å3
Triclinic, P1Z = 2
a = 8.3343 (3) ÅMo Kα radiation
b = 9.3115 (4) ŵ = 0.35 mm1
c = 13.8699 (6) ÅT = 200 K
α = 92.896 (2)°0.53 × 0.30 × 0.13 mm
β = 104.669 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4588 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 1.000Rint = 0.013
18344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
5116 reflectionsΔρmin = 0.21 e Å3
304 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61554 (4)0.04973 (3)0.23425 (2)0.03315 (9)
Cl20.09111 (4)0.11303 (4)0.07809 (2)0.03888 (9)
O11.42080 (12)1.17926 (10)0.43746 (8)0.0407 (2)
O21.27245 (13)1.14934 (11)0.28397 (7)0.0398 (2)
O30.69233 (12)0.43425 (10)0.10434 (6)0.0350 (2)
N10.78730 (12)0.53362 (9)0.57632 (7)0.02186 (18)
N20.89358 (12)0.65279 (10)0.57207 (7)0.02233 (18)
N31.30319 (13)1.11802 (11)0.37064 (8)0.0286 (2)
C10.61545 (15)0.35986 (12)0.15177 (8)0.0248 (2)
C20.63269 (15)0.39188 (12)0.25920 (8)0.0256 (2)
H20.56170.33780.29170.029 (4)*
C30.74872 (14)0.49747 (12)0.31106 (8)0.0238 (2)
H30.81770.54830.27580.030 (4)*
C40.77783 (13)0.54064 (11)0.41643 (8)0.0219 (2)
C50.71502 (14)0.46538 (11)0.48506 (8)0.0233 (2)
H50.63550.38110.47060.034 (4)*
C60.88826 (13)0.65830 (11)0.47531 (8)0.0205 (2)
C110.99209 (13)0.77692 (11)0.44612 (8)0.0206 (2)
C120.95250 (15)0.82678 (12)0.35047 (8)0.0261 (2)
H120.85450.78370.30220.035 (4)*
C131.05435 (15)0.93829 (12)0.32506 (8)0.0271 (2)
H131.02830.97100.25970.039 (4)*
C141.19461 (13)1.00064 (11)0.39712 (8)0.0236 (2)
C151.23561 (14)0.95718 (12)0.49328 (8)0.0252 (2)
H151.33121.00370.54190.038 (4)*
C161.13429 (14)0.84452 (12)0.51712 (8)0.0239 (2)
H161.16160.81260.58260.030 (4)*
C210.77030 (14)0.49032 (12)0.67088 (8)0.0240 (2)
C220.87694 (18)0.55949 (14)0.75788 (9)0.0331 (3)
H220.96080.63520.75480.043 (4)*
C230.8601 (2)0.51708 (15)0.84967 (10)0.0414 (3)
H230.93300.56420.90960.054 (5)*
C240.7381 (2)0.40681 (15)0.85476 (10)0.0414 (3)
H240.72660.37840.91770.054 (5)*
C250.63317 (19)0.33854 (16)0.76723 (11)0.0403 (3)
H250.54930.26290.77050.056 (5)*
C260.64836 (16)0.37876 (14)0.67454 (9)0.0322 (3)
H260.57640.33070.61470.046 (5)*
C310.48885 (14)0.23647 (12)0.09753 (8)0.0237 (2)
C320.47465 (14)0.09718 (12)0.12861 (8)0.0240 (2)
C330.35401 (15)0.01128 (12)0.07491 (8)0.0271 (2)
H330.34720.10630.09680.040 (4)*
C340.24377 (15)0.02196 (13)0.01124 (8)0.0277 (2)
C350.25331 (16)0.15887 (14)0.04498 (9)0.0315 (3)
H350.17620.17990.10430.045 (4)*
C360.37677 (16)0.26473 (13)0.00889 (8)0.0292 (2)
H360.38570.35850.01470.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04021 (17)0.02982 (15)0.02282 (14)0.00229 (11)0.00347 (11)0.00416 (10)
Cl20.03790 (17)0.03595 (17)0.03315 (16)0.01017 (13)0.00076 (12)0.00578 (12)
O10.0281 (4)0.0329 (5)0.0548 (6)0.0099 (4)0.0046 (4)0.0044 (4)
O20.0452 (5)0.0380 (5)0.0402 (5)0.0023 (4)0.0201 (4)0.0115 (4)
O30.0458 (5)0.0326 (4)0.0242 (4)0.0089 (4)0.0100 (4)0.0028 (3)
N10.0256 (4)0.0183 (4)0.0212 (4)0.0012 (3)0.0069 (3)0.0010 (3)
N20.0257 (4)0.0182 (4)0.0214 (4)0.0023 (3)0.0052 (3)0.0006 (3)
N30.0259 (5)0.0227 (4)0.0393 (6)0.0001 (4)0.0131 (4)0.0039 (4)
C10.0310 (5)0.0209 (5)0.0199 (5)0.0009 (4)0.0040 (4)0.0003 (4)
C20.0306 (5)0.0241 (5)0.0205 (5)0.0032 (4)0.0067 (4)0.0015 (4)
C30.0284 (5)0.0207 (5)0.0211 (5)0.0016 (4)0.0064 (4)0.0006 (4)
C40.0232 (5)0.0192 (5)0.0215 (5)0.0013 (4)0.0045 (4)0.0009 (4)
C50.0254 (5)0.0195 (5)0.0232 (5)0.0020 (4)0.0055 (4)0.0010 (4)
C60.0219 (5)0.0183 (4)0.0198 (5)0.0003 (4)0.0040 (4)0.0000 (4)
C110.0225 (5)0.0175 (4)0.0205 (5)0.0005 (4)0.0044 (4)0.0003 (4)
C120.0281 (5)0.0246 (5)0.0204 (5)0.0048 (4)0.0006 (4)0.0010 (4)
C130.0322 (6)0.0259 (5)0.0207 (5)0.0029 (4)0.0046 (4)0.0039 (4)
C140.0232 (5)0.0191 (5)0.0288 (5)0.0010 (4)0.0091 (4)0.0016 (4)
C150.0231 (5)0.0222 (5)0.0263 (5)0.0016 (4)0.0010 (4)0.0004 (4)
C160.0260 (5)0.0223 (5)0.0201 (5)0.0004 (4)0.0012 (4)0.0008 (4)
C210.0295 (5)0.0216 (5)0.0222 (5)0.0038 (4)0.0087 (4)0.0041 (4)
C220.0443 (7)0.0281 (6)0.0249 (6)0.0043 (5)0.0092 (5)0.0008 (4)
C230.0618 (9)0.0359 (7)0.0228 (6)0.0046 (6)0.0087 (6)0.0018 (5)
C240.0604 (9)0.0387 (7)0.0279 (6)0.0023 (6)0.0167 (6)0.0108 (5)
C250.0454 (8)0.0393 (7)0.0369 (7)0.0044 (6)0.0135 (6)0.0149 (6)
C260.0349 (6)0.0311 (6)0.0283 (6)0.0030 (5)0.0062 (5)0.0073 (5)
C310.0304 (5)0.0217 (5)0.0169 (5)0.0009 (4)0.0048 (4)0.0010 (4)
C320.0290 (5)0.0245 (5)0.0165 (4)0.0015 (4)0.0030 (4)0.0011 (4)
C330.0332 (6)0.0223 (5)0.0233 (5)0.0012 (4)0.0050 (4)0.0012 (4)
C340.0291 (5)0.0274 (5)0.0225 (5)0.0026 (4)0.0032 (4)0.0042 (4)
C350.0361 (6)0.0319 (6)0.0205 (5)0.0018 (5)0.0023 (4)0.0009 (4)
C360.0398 (6)0.0233 (5)0.0209 (5)0.0013 (5)0.0022 (5)0.0030 (4)
Geometric parameters (Å, º) top
Cl1—C321.7391 (11)C13—H130.9500
Cl2—C341.7336 (11)C14—C151.3829 (16)
O1—N31.2302 (14)C15—C161.3829 (15)
O2—N31.2210 (14)C15—H150.9500
O3—C11.2203 (14)C16—H160.9500
N1—C51.3493 (14)C21—C221.3850 (16)
N1—N21.3582 (12)C21—C261.3868 (16)
N1—C211.4277 (13)C22—C231.3878 (17)
N2—C61.3354 (14)C22—H220.9500
N3—C141.4657 (14)C23—C241.384 (2)
C1—C21.4722 (15)C23—H230.9500
C1—C311.5014 (15)C24—C251.382 (2)
C2—C31.3397 (15)C24—H240.9500
C2—H20.9500C25—C261.3892 (17)
C3—C41.4481 (14)C25—H250.9500
C3—H30.9500C26—H260.9500
C4—C51.3832 (15)C31—C321.3899 (15)
C4—C61.4248 (14)C31—C361.3986 (16)
C5—H50.9500C32—C331.3842 (15)
C6—C111.4675 (14)C33—C341.3817 (16)
C11—C121.3990 (15)C33—H330.9500
C11—C161.3998 (14)C34—C351.3815 (17)
C12—C131.3875 (15)C35—C361.3823 (16)
C12—H120.9500C35—H350.9500
C13—C141.3815 (16)C36—H360.9500
C5—N1—N2112.12 (9)C15—C16—C11120.93 (10)
C5—N1—C21127.88 (9)C15—C16—H16119.5
N2—N1—C21119.91 (9)C11—C16—H16119.5
C6—N2—N1105.11 (8)C22—C21—C26120.80 (11)
O2—N3—O1123.73 (10)C22—C21—N1119.53 (10)
O2—N3—C14118.48 (10)C26—C21—N1119.66 (10)
O1—N3—C14117.79 (10)C21—C22—C23119.37 (12)
O3—C1—C2122.78 (10)C21—C22—H22120.3
O3—C1—C31118.98 (10)C23—C22—H22120.3
C2—C1—C31118.10 (10)C24—C23—C22120.62 (13)
C3—C2—C1119.88 (10)C24—C23—H23119.7
C3—C2—H2120.1C22—C23—H23119.7
C1—C2—H2120.1C25—C24—C23119.27 (12)
C2—C3—C4125.46 (10)C25—C24—H24120.4
C2—C3—H3117.3C23—C24—H24120.4
C4—C3—H3117.3C24—C25—C26121.08 (12)
C5—C4—C6104.13 (9)C24—C25—H25119.5
C5—C4—C3126.45 (10)C26—C25—H25119.5
C6—C4—C3129.11 (10)C21—C26—C25118.86 (12)
N1—C5—C4107.48 (9)C21—C26—H26120.6
N1—C5—H5126.3C25—C26—H26120.6
C4—C5—H5126.3C32—C31—C36117.80 (10)
N2—C6—C4111.14 (9)C32—C31—C1125.11 (10)
N2—C6—C11118.25 (9)C36—C31—C1117.09 (10)
C4—C6—C11130.60 (9)C33—C32—C31121.95 (10)
C12—C11—C16118.75 (10)C33—C32—Cl1117.05 (9)
C12—C11—C6122.43 (9)C31—C32—Cl1120.93 (8)
C16—C11—C6118.82 (9)C34—C33—C32118.38 (10)
C13—C12—C11120.93 (10)C34—C33—H33120.8
C13—C12—H12119.5C32—C33—H33120.8
C11—C12—H12119.5C35—C34—C33121.64 (11)
C14—C13—C12118.35 (10)C35—C34—Cl2119.80 (9)
C14—C13—H13120.8C33—C34—Cl2118.57 (9)
C12—C13—H13120.8C34—C35—C36118.94 (11)
C13—C14—C15122.50 (10)C34—C35—H35120.5
C13—C14—N3118.63 (10)C36—C35—H35120.5
C15—C14—N3118.87 (10)C35—C36—C31121.26 (11)
C14—C15—C16118.51 (10)C35—C36—H36119.4
C14—C15—H15120.7C31—C36—H36119.4
C16—C15—H15120.7
C5—N1—N2—C60.46 (12)C14—C15—C16—C110.82 (17)
C21—N1—N2—C6176.30 (9)C12—C11—C16—C150.90 (17)
O3—C1—C2—C36.97 (19)C6—C11—C16—C15179.72 (10)
C31—C1—C2—C3177.41 (11)C5—N1—C21—C22168.36 (12)
C1—C2—C3—C4179.47 (11)N2—N1—C21—C227.84 (16)
C2—C3—C4—C512.94 (19)C5—N1—C21—C2611.06 (17)
C2—C3—C4—C6174.38 (12)N2—N1—C21—C26172.74 (10)
N2—N1—C5—C41.10 (13)C26—C21—C22—C230.6 (2)
C21—N1—C5—C4175.35 (10)N1—C21—C22—C23179.98 (12)
C6—C4—C5—N11.21 (12)C21—C22—C23—C240.0 (2)
C3—C4—C5—N1172.94 (10)C22—C23—C24—C250.3 (2)
N1—N2—C6—C40.35 (12)C23—C24—C25—C260.0 (2)
N1—N2—C6—C11179.79 (9)C22—C21—C26—C250.87 (19)
C5—C4—C6—N20.98 (12)N1—C21—C26—C25179.71 (12)
C3—C4—C6—N2172.95 (11)C24—C25—C26—C210.6 (2)
C5—C4—C6—C11179.66 (11)O3—C1—C31—C32133.57 (13)
C3—C4—C6—C116.41 (19)C2—C1—C31—C3250.63 (16)
N2—C6—C11—C12154.77 (11)O3—C1—C31—C3646.48 (16)
C4—C6—C11—C1225.91 (18)C2—C1—C31—C36129.32 (12)
N2—C6—C11—C1624.00 (15)C36—C31—C32—C330.28 (17)
C4—C6—C11—C16155.32 (11)C1—C31—C32—C33179.67 (11)
C16—C11—C12—C131.85 (17)C36—C31—C32—Cl1176.56 (9)
C6—C11—C12—C13179.37 (11)C1—C31—C32—Cl13.49 (16)
C11—C12—C13—C141.05 (18)C31—C32—C33—C340.93 (18)
C12—C13—C14—C150.76 (18)Cl1—C32—C33—C34177.88 (9)
C12—C13—C14—N3179.71 (10)C32—C33—C34—C350.97 (18)
O2—N3—C14—C135.21 (16)C32—C33—C34—Cl2179.36 (9)
O1—N3—C14—C13174.93 (11)C33—C34—C35—C360.21 (19)
O2—N3—C14—C15175.23 (11)Cl2—C34—C35—C36179.46 (10)
O1—N3—C14—C154.62 (16)C34—C35—C36—C311.5 (2)
C13—C14—C15—C161.68 (17)C32—C31—C36—C351.50 (18)
N3—C14—C15—C16178.78 (10)C1—C31—C36—C35178.46 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.393.3421 (14)176
C36—H36···O3ii0.952.413.3139 (15)160
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H15Cl2N3O3
Mr464.29
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.3343 (3), 9.3115 (4), 13.8699 (6)
α, β, γ (°)92.896 (2), 104.669 (2), 96.060 (2)
V3)1032.12 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.53 × 0.30 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.931, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18344, 5116, 4588
Rint0.013
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.02
No. of reflections5116
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.393.3421 (14)175.8
C36—H36···O3ii0.952.413.3139 (15)159.8
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.
 

Acknowledgements

AMI is grateful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a Young Scientist award.

References

First citationAmnekar, N. D. & Bhusari, K. P. (2010). Eur. J. Med. Chem. 45, 149–159.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38, 959–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, P. K., Kumar, S., Kumar, P., Kaushik, P., Kaushik, D., Dhingra, Y. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 2650–2655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460–5464.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o616-o617
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds