organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Methyl-N′-(4-nitro­benzyl­­idene)benzohydrazide methanol monosolvate

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@yahoo.cn

(Received 28 January 2012; accepted 29 January 2012; online 4 February 2012)

The title hydrazone compound, C15H13N3O3·CH3OH, crystallized as a methanol solvate. The hydrazone mol­ecule has an E configuration about the C=N bond and is almost planar, with a dihedral angle between the benzene rings of 5.3 (3)°. In the crystal, the hydrazone mol­ecules are linked via the methanol solvent mol­ecule through N—H⋯O and O—H⋯O hydrogen bonds, so forming chains propagating along the a-axis direction.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.], 2011[Tang, C.-B. (2011). Acta Cryst. E67, o271.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3·CH4O

  • Mr = 315.33

  • Triclinic, [P \overline 1]

  • a = 6.581 (2) Å

  • b = 10.778 (3) Å

  • c = 11.778 (3) Å

  • α = 77.945 (2)°

  • β = 87.524 (2)°

  • γ = 76.146 (2)°

  • V = 793.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.990

  • 6084 measured reflections

  • 3197 independent reflections

  • 1656 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.142

  • S = 1.01

  • 3197 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.98 2.767 (3) 161
N3—H3⋯O4i 0.90 (1) 1.98 (2) 2.869 (3) 167 (3)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on the structural study of such compounds (Tang, 2010, 2011), the author reports herein the crystal structure of the new title hydrazone compound.

The title hydrazone molecule crystallized as a methanol solvate (Fig. 1). The methanol molecule is linked to the hydrazone molecule through an intermolecular O4—H4···O3 hydrogen bond (Fig. 1, Table 1). In the hydrazone molecule the dihedral angle between the two benzene rings is 5.3 (3)°. Bond lengths in the compound are normal (Allen et al., 1987) and comparable to those in the similar compounds referred to above.

In the crystal, the hydrazone and methanol molecules are linked via the methanol molecule, through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For reference bond-length data, see: Allen et al. (1987).

Experimental top

4-Nitrobenzaldehyde (0.1 mmol, 15.1 mg) and 3-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow needle-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

The amino H atom was located in a difference Fourier map and was refined with the N—H distance restrained to 0.90 (1) Å. Other H atoms were constrained to ideal geometries and refined as riding atoms: O—H = 0.82 Å, Csp2—H = 0.93 Å, and C(methyl)—H = 0.96 Å, with Uiso(H) = k × Ueq(parent C or O-atom), where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-3-Methyl-N'-(4-nitrobenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C15H13N3O3·CH4OZ = 2
Mr = 315.33F(000) = 332
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.581 (2) ÅCell parameters from 1091 reflections
b = 10.778 (3) Åθ = 2.4–24.4°
c = 11.778 (3) ŵ = 0.10 mm1
α = 77.945 (2)°T = 298 K
β = 87.524 (2)°Cut from needle, yellow
γ = 76.146 (2)°0.13 × 0.10 × 0.10 mm
V = 793.2 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3197 independent reflections
Radiation source: fine-focus sealed tube1656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.988, Tmax = 0.990k = 1313
6084 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.1129P]
where P = (Fo2 + 2Fc2)/3
3197 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C15H13N3O3·CH4Oγ = 76.146 (2)°
Mr = 315.33V = 793.2 (4) Å3
Triclinic, P1Z = 2
a = 6.581 (2) ÅMo Kα radiation
b = 10.778 (3) ŵ = 0.10 mm1
c = 11.778 (3) ÅT = 298 K
α = 77.945 (2)°0.13 × 0.10 × 0.10 mm
β = 87.524 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3197 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1656 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.990Rint = 0.032
6084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.16 e Å3
3197 reflectionsΔρmin = 0.16 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1889 (4)0.9671 (2)0.72645 (19)0.0595 (6)
N20.0635 (3)0.60858 (18)0.37519 (17)0.0428 (5)
N30.0125 (3)0.54614 (19)0.30155 (17)0.0429 (5)
O10.3766 (4)0.9541 (2)0.7382 (2)0.0971 (8)
O20.0567 (4)1.0440 (2)0.76810 (18)0.0821 (7)
O30.3165 (3)0.44974 (17)0.25767 (16)0.0646 (6)
O40.5393 (3)0.61678 (18)0.31310 (17)0.0612 (5)
H40.46070.56840.31200.092*
C10.1211 (4)0.8871 (2)0.65514 (19)0.0410 (6)
C20.0872 (4)0.9129 (2)0.6271 (2)0.0458 (6)
H20.18510.97610.65620.055*
C30.1478 (4)0.8423 (2)0.55447 (19)0.0431 (6)
H3A0.28840.85820.53470.052*
C40.0020 (4)0.7481 (2)0.51068 (19)0.0377 (6)
C50.2076 (4)0.7219 (2)0.5439 (2)0.0468 (6)
H50.30620.65740.51690.056*
C60.2688 (4)0.7912 (2)0.6166 (2)0.0472 (7)
H60.40810.77340.63940.057*
C70.0702 (4)0.6778 (2)0.4316 (2)0.0436 (6)
H70.21220.68390.42250.052*
C80.1274 (4)0.4670 (2)0.2444 (2)0.0417 (6)
C90.0399 (4)0.3987 (2)0.16696 (19)0.0377 (6)
C100.1775 (4)0.2953 (2)0.13095 (19)0.0445 (6)
H100.31690.27380.15440.053*
C110.1127 (4)0.2227 (2)0.0608 (2)0.0493 (7)
C120.0940 (5)0.2591 (3)0.0254 (2)0.0576 (8)
H120.14090.21300.02250.069*
C130.2320 (4)0.3619 (3)0.0593 (2)0.0595 (8)
H130.37060.38440.03430.071*
C140.1669 (4)0.4322 (2)0.1303 (2)0.0497 (7)
H140.26120.50150.15330.060*
C150.2620 (5)0.1074 (3)0.0270 (3)0.0771 (9)
H15A0.40320.11360.03620.116*
H15B0.23780.10650.05260.116*
H15C0.24040.02840.07570.116*
C160.4510 (5)0.7410 (3)0.2475 (3)0.0846 (10)
H16A0.31870.77600.28020.127*
H16B0.43030.73470.16890.127*
H16C0.54330.79760.24850.127*
H30.1529 (16)0.558 (3)0.299 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0752 (19)0.0521 (15)0.0576 (15)0.0199 (14)0.0133 (14)0.0169 (12)
N20.0393 (12)0.0414 (12)0.0558 (13)0.0153 (10)0.0026 (10)0.0204 (10)
N30.0328 (12)0.0458 (12)0.0584 (13)0.0132 (10)0.0007 (11)0.0247 (11)
O10.0775 (17)0.1043 (18)0.133 (2)0.0269 (14)0.0248 (15)0.0648 (15)
O20.0985 (17)0.0707 (14)0.0876 (15)0.0095 (13)0.0094 (13)0.0494 (12)
O30.0361 (11)0.0697 (13)0.1027 (15)0.0120 (9)0.0018 (10)0.0507 (11)
O40.0395 (11)0.0584 (12)0.0944 (14)0.0167 (9)0.0036 (10)0.0286 (11)
C10.0533 (17)0.0366 (14)0.0373 (13)0.0173 (13)0.0053 (12)0.0083 (11)
C20.0494 (17)0.0418 (15)0.0481 (15)0.0072 (13)0.0028 (12)0.0180 (12)
C30.0327 (14)0.0477 (15)0.0517 (15)0.0111 (12)0.0004 (12)0.0146 (13)
C40.0355 (15)0.0381 (13)0.0429 (14)0.0137 (11)0.0012 (11)0.0107 (11)
C50.0433 (16)0.0456 (15)0.0554 (16)0.0094 (12)0.0018 (13)0.0208 (13)
C60.0413 (16)0.0500 (16)0.0550 (16)0.0137 (13)0.0076 (12)0.0159 (13)
C70.0349 (15)0.0472 (15)0.0540 (16)0.0126 (12)0.0011 (12)0.0181 (13)
C80.0373 (16)0.0373 (14)0.0555 (15)0.0118 (12)0.0010 (12)0.0170 (12)
C90.0392 (14)0.0337 (13)0.0437 (14)0.0128 (11)0.0011 (11)0.0107 (11)
C100.0421 (16)0.0465 (15)0.0494 (15)0.0142 (13)0.0017 (12)0.0157 (13)
C110.0600 (19)0.0445 (15)0.0466 (15)0.0124 (14)0.0022 (13)0.0172 (12)
C120.070 (2)0.0539 (17)0.0579 (17)0.0192 (15)0.0130 (15)0.0235 (14)
C130.0524 (18)0.0615 (18)0.0689 (18)0.0106 (15)0.0204 (14)0.0220 (15)
C140.0467 (17)0.0447 (15)0.0605 (17)0.0062 (12)0.0069 (13)0.0209 (13)
C150.083 (2)0.072 (2)0.085 (2)0.0108 (18)0.0072 (18)0.0461 (18)
C160.073 (2)0.080 (2)0.101 (3)0.0284 (19)0.0114 (19)0.005 (2)
Geometric parameters (Å, º) top
N1—O21.214 (3)C6—H60.9300
N1—O11.220 (3)C7—H70.9300
N1—C11.471 (3)C8—C91.495 (3)
N2—C71.271 (3)C9—C141.385 (3)
N2—N31.378 (2)C9—C101.387 (3)
N3—C81.356 (3)C10—C111.391 (3)
N3—H30.902 (10)C10—H100.9300
O3—C81.225 (3)C11—C121.380 (3)
O4—C161.401 (3)C11—C151.502 (3)
O4—H40.8200C12—C131.372 (3)
C1—C21.373 (3)C12—H120.9300
C1—C61.377 (3)C13—C141.381 (3)
C2—C31.385 (3)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.388 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.396 (3)C15—H15C0.9600
C4—C71.462 (3)C16—H16A0.9600
C5—C61.376 (3)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
O2—N1—O1123.5 (2)N3—C8—C9116.8 (2)
O2—N1—C1118.8 (2)C14—C9—C10119.1 (2)
O1—N1—C1117.7 (2)C14—C9—C8124.2 (2)
C7—N2—N3117.05 (19)C10—C9—C8116.8 (2)
C8—N3—N2118.13 (19)C9—C10—C11121.8 (2)
C8—N3—H3125.7 (17)C9—C10—H10119.1
N2—N3—H3116.1 (17)C11—C10—H10119.1
C16—O4—H4109.5C12—C11—C10117.6 (2)
C2—C1—C6122.2 (2)C12—C11—C15121.4 (2)
C2—C1—N1118.7 (2)C10—C11—C15121.0 (2)
C6—C1—N1119.1 (2)C13—C12—C11121.4 (2)
C1—C2—C3118.3 (2)C13—C12—H12119.3
C1—C2—H2120.9C11—C12—H12119.3
C3—C2—H2120.9C12—C13—C14120.6 (2)
C2—C3—C4121.0 (2)C12—C13—H13119.7
C2—C3—H3A119.5C14—C13—H13119.7
C4—C3—H3A119.5C13—C14—C9119.5 (2)
C3—C4—C5119.0 (2)C13—C14—H14120.2
C3—C4—C7119.7 (2)C9—C14—H14120.2
C5—C4—C7121.3 (2)C11—C15—H15A109.5
C6—C5—C4120.3 (2)C11—C15—H15B109.5
C6—C5—H5119.9H15A—C15—H15B109.5
C4—C5—H5119.9C11—C15—H15C109.5
C5—C6—C1119.1 (2)H15A—C15—H15C109.5
C5—C6—H6120.4H15B—C15—H15C109.5
C1—C6—H6120.4O4—C16—H16A109.5
N2—C7—C4120.3 (2)O4—C16—H16B109.5
N2—C7—H7119.8H16A—C16—H16B109.5
C4—C7—H7119.8O4—C16—H16C109.5
O3—C8—N3121.6 (2)H16A—C16—H16C109.5
O3—C8—C9121.5 (2)H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.982.767 (3)161
N3—H3···O4i0.90 (1)1.98 (2)2.869 (3)167 (3)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O3·CH4O
Mr315.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.581 (2), 10.778 (3), 11.778 (3)
α, β, γ (°)77.945 (2), 87.524 (2), 76.146 (2)
V3)793.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.988, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6084, 3197, 1656
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.142, 1.01
No. of reflections3197
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.982.767 (3)161
N3—H3···O4i0.903 (14)1.983 (16)2.869 (3)167 (3)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2011). Acta Cryst. E67, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds