organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Hy­dr­oxy-3,5-di­iodo­benzyl­­idene)-3-methyl­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@yahoo.cn

(Received 28 January 2012; accepted 29 January 2012; online 4 February 2012)

In the title compound, C15H12I2N2O2, the dihedral angle between the benzene rings is 26.5 (3)° and the mol­ecule has an E configuration about the C=N bond. An intra­molecular O—H⋯N hydrogen bond is observed in the mol­ecule. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along the c axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.], 2011[Tang, C.-B. (2011). Acta Cryst. E67, o271.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12I2N2O2

  • Mr = 506.07

  • Monoclinic, P 21 /c

  • a = 14.778 (3) Å

  • b = 11.764 (3) Å

  • c = 9.8480 (19) Å

  • β = 102.191 (2)°

  • V = 1673.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.567, Tmax = 0.602

  • 11923 measured reflections

  • 3430 independent reflections

  • 2072 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.175

  • S = 1.02

  • 3430 reflections

  • 196 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.01 e Å−3

  • Δρmin = −1.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.572 (8) 146
N2—H2⋯O2i 0.90 (1) 1.93 (2) 2.800 (9) 162 (6)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on the structural study on such compounds (Tang, 2010, 2011), the author reports herein the crystal structure of the new title hydrazone compound.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 26.5 (3)°. An intramolecular O1—H1···N1 hydrogen bond (Table 1) is observed in the molecule, which has an E configuration about the N1C7 bond. Bond lengths in the compound are normal (Allen et al., 1987) and comparable to those in the similar compounds mentioned above. In the crystal, molecules are linked through intermolecular N—H···O hydrogen bonds, forming chains along the c axis (Fig. 2 and Table 1).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For reference bond-length data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-3,5-diiodobenzaldehyde (0.1 mmol, 37.5 mg) and 3-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless needle-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

The amino H atom was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were included in calculated positions and refined as riding atoms: O—H = 0.82 Å, Csp2—H = 0.93 Å, and C(methyl)—H = 0.96 Å, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering and displacement ellipsoids drawn at the 30% probability level. The intramolecular O—H···N hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
(E)-N'-(2-Hydroxy-3,5-diiodobenzylidene)-3-methylbenzohydrazide top
Crystal data top
C15H12I2N2O2F(000) = 952
Mr = 506.07Dx = 2.009 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2661 reflections
a = 14.778 (3) Åθ = 2.2–24.4°
b = 11.764 (3) ŵ = 3.76 mm1
c = 9.8480 (19) ÅT = 298 K
β = 102.191 (2)°Cut from needle, colourless
V = 1673.4 (6) Å30.17 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3430 independent reflections
Radiation source: fine-focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1618
Tmin = 0.567, Tmax = 0.602k = 1414
11923 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2 + 13.9544P]
where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 2.01 e Å3
1 restraintΔρmin = 1.21 e Å3
Crystal data top
C15H12I2N2O2V = 1673.4 (6) Å3
Mr = 506.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.778 (3) ŵ = 3.76 mm1
b = 11.764 (3) ÅT = 298 K
c = 9.8480 (19) Å0.17 × 0.15 × 0.15 mm
β = 102.191 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3430 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2072 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.602Rint = 0.045
11923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2 + 13.9544P]
where P = (Fo2 + 2Fc2)/3
3430 reflectionsΔρmax = 2.01 e Å3
196 parametersΔρmin = 1.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.35741 (6)0.46000 (8)0.09441 (9)0.0923 (4)
I20.26264 (6)0.40585 (9)0.65569 (12)0.0979 (4)
N10.6613 (5)0.2920 (6)0.4785 (7)0.0399 (17)
N20.7486 (5)0.2539 (6)0.5352 (7)0.0410 (17)
O10.5439 (5)0.3715 (6)0.2693 (6)0.0589 (18)
H10.59300.34390.31060.088*
O20.7851 (4)0.2492 (7)0.3260 (6)0.0599 (19)
C10.5105 (6)0.3476 (7)0.4956 (10)0.044 (2)
C20.4846 (6)0.3768 (7)0.3551 (9)0.045 (2)
C30.3942 (7)0.4123 (9)0.3033 (11)0.059 (3)
C40.3331 (7)0.4219 (8)0.3891 (13)0.066 (3)
H40.27330.44780.35320.080*
C50.3581 (6)0.3939 (9)0.5277 (13)0.061 (3)
C60.4465 (6)0.3558 (8)0.5815 (11)0.055 (2)
H60.46360.33550.67470.066*
C70.6045 (6)0.3093 (7)0.5559 (9)0.043 (2)
H70.62250.29760.65120.052*
C80.8065 (6)0.2322 (7)0.4513 (8)0.039 (2)
C90.8987 (6)0.1848 (7)0.5190 (8)0.0377 (19)
C100.9737 (7)0.2119 (9)0.4621 (11)0.059 (3)
H100.96610.25990.38550.070*
C111.0589 (8)0.1685 (11)0.5179 (14)0.075 (3)
H111.10910.18630.47870.090*
C121.0708 (7)0.0988 (11)0.6311 (12)0.072 (3)
H121.12970.07110.66910.086*
C130.9977 (8)0.0684 (10)0.6908 (10)0.067 (3)
C140.9116 (7)0.1147 (8)0.6307 (9)0.049 (2)
H140.86100.09680.66890.059*
C151.0119 (11)0.0117 (13)0.8132 (13)0.108 (5)
H15A1.07180.00110.87140.162*
H15B1.00780.08880.78050.162*
H15C0.96500.00150.86560.162*
H20.767 (4)0.239 (6)0.626 (2)0.018 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0839 (6)0.0968 (7)0.0776 (6)0.0291 (5)0.0248 (4)0.0073 (5)
I20.0542 (5)0.1061 (8)0.1439 (9)0.0029 (5)0.0449 (5)0.0132 (6)
N10.037 (4)0.044 (4)0.036 (4)0.009 (3)0.001 (3)0.002 (3)
N20.041 (4)0.056 (5)0.024 (3)0.010 (3)0.002 (3)0.001 (3)
O10.054 (4)0.072 (5)0.044 (4)0.016 (4)0.005 (3)0.002 (3)
O20.058 (4)0.101 (5)0.023 (3)0.011 (4)0.014 (3)0.005 (3)
C10.039 (5)0.033 (4)0.058 (6)0.001 (4)0.003 (4)0.008 (4)
C20.044 (5)0.040 (5)0.046 (5)0.006 (4)0.002 (4)0.013 (4)
C30.061 (6)0.053 (6)0.056 (6)0.008 (5)0.007 (5)0.012 (5)
C40.043 (6)0.045 (6)0.101 (9)0.005 (5)0.008 (6)0.015 (6)
C50.035 (5)0.053 (6)0.093 (8)0.007 (5)0.008 (5)0.013 (6)
C60.044 (5)0.049 (6)0.071 (7)0.000 (5)0.012 (5)0.007 (5)
C70.044 (5)0.044 (5)0.041 (5)0.006 (4)0.007 (4)0.004 (4)
C80.045 (5)0.049 (5)0.020 (4)0.001 (4)0.006 (3)0.002 (3)
C90.040 (5)0.045 (5)0.027 (4)0.003 (4)0.006 (3)0.006 (4)
C100.052 (6)0.058 (6)0.064 (6)0.002 (5)0.007 (5)0.000 (5)
C110.049 (7)0.090 (9)0.091 (9)0.008 (6)0.028 (6)0.011 (7)
C120.039 (6)0.101 (9)0.070 (8)0.017 (6)0.000 (5)0.025 (7)
C130.074 (8)0.078 (8)0.042 (5)0.027 (6)0.008 (5)0.002 (5)
C140.051 (5)0.065 (6)0.032 (5)0.015 (5)0.009 (4)0.008 (4)
C150.114 (11)0.133 (13)0.069 (8)0.070 (10)0.001 (8)0.016 (8)
Geometric parameters (Å, º) top
I1—C32.090 (10)C6—H60.9300
I2—C52.085 (11)C7—H70.9300
N1—C71.264 (10)C8—C91.493 (11)
N1—N21.368 (9)C9—C141.356 (12)
N2—C81.334 (10)C9—C101.381 (13)
N2—H20.897 (10)C10—C111.362 (15)
O1—C21.341 (11)C10—H100.9300
O1—H10.8200C11—C121.365 (17)
O2—C81.224 (9)C11—H110.9300
C1—C21.399 (12)C12—C131.381 (16)
C1—C61.399 (13)C12—H120.9300
C1—C71.461 (12)C13—C141.395 (13)
C2—C31.390 (13)C13—C151.510 (16)
C3—C41.365 (15)C14—H140.9300
C4—C51.377 (16)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.377 (13)C15—H15C0.9600
C7—N1—N2119.7 (7)O2—C8—C9121.9 (8)
C8—N2—N1118.8 (6)N2—C8—C9116.1 (6)
C8—N2—H2119 (4)C14—C9—C10118.9 (8)
N1—N2—H2123 (4)C14—C9—C8123.2 (8)
C2—O1—H1109.5C10—C9—C8117.9 (8)
C2—C1—C6120.2 (8)C11—C10—C9120.1 (10)
C2—C1—C7121.0 (8)C11—C10—H10119.9
C6—C1—C7118.8 (8)C9—C10—H10119.9
O1—C2—C3119.2 (8)C10—C11—C12120.3 (11)
O1—C2—C1122.2 (8)C10—C11—H11119.9
C3—C2—C1118.5 (9)C12—C11—H11119.9
C4—C3—C2120.5 (10)C11—C12—C13121.7 (10)
C4—C3—I1121.2 (8)C11—C12—H12119.2
C2—C3—I1118.1 (8)C13—C12—H12119.2
C3—C4—C5121.3 (10)C12—C13—C14116.4 (10)
C3—C4—H4119.3C12—C13—C15120.8 (11)
C5—C4—H4119.3C14—C13—C15122.8 (11)
C6—C5—C4119.6 (10)C9—C14—C13122.7 (10)
C6—C5—I2119.8 (9)C9—C14—H14118.6
C4—C5—I2120.6 (8)C13—C14—H14118.6
C5—C6—C1119.8 (10)C13—C15—H15A109.5
C5—C6—H6120.1C13—C15—H15B109.5
C1—C6—H6120.1H15A—C15—H15B109.5
N1—C7—C1120.0 (8)C13—C15—H15C109.5
N1—C7—H7120.0H15A—C15—H15C109.5
C1—C7—H7120.0H15B—C15—H15C109.5
O2—C8—N2122.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (8)146
N2—H2···O2i0.90 (1)1.93 (2)2.800 (9)162 (6)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12I2N2O2
Mr506.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.778 (3), 11.764 (3), 9.8480 (19)
β (°) 102.191 (2)
V3)1673.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.76
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.567, 0.602
No. of measured, independent and
observed [I > 2σ(I)] reflections
11923, 3430, 2072
Rint0.045
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.175, 1.02
No. of reflections3430
No. of parameters196
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.058P)2 + 13.9544P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.01, 1.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (8)146
N2—H2···O2i0.897 (10)1.93 (2)2.800 (9)162 (6)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2011). Acta Cryst. E67, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds