organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hy­dr­oxy-N′-(2-hy­dr­oxy-3,5-di­iodo­benzyl­­idene)-3-meth­­oxy­benzohydrazide methanol monosolvate

aZibo Vocational Institute, Zibo 255314, People's Republic of China
*Correspondence e-mail: lixiaoyan_zb@126.com

(Received 2 February 2012; accepted 2 February 2012; online 10 February 2012)

In the title compound, C15H12I2N2O4·CH3OH, the hydrazone mol­ecule exists in an E conformation with respect to the C=N bond. The dihedral angle between the rings is 11.9 (2)°. There is one intra­molecular O—H⋯N hydrogen bond in the hydrazone mol­ecule. In the crystal, the hydrazone and methanol mol­ecules are linked through O—H⋯O and N—H⋯O hydrogen bonds and C—H⋯O inter­actions to form two-dimensional networks lying parallel to (001).

Related literature

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Lei (2011[Lei, Y. (2011). Acta Cryst. E67, o162.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]). For the crystal structures of similar compounds, reported recently by the author, see: Li (2011a[Li, X.-Y. (2011a). Acta Cryst. E67, o1798.],b[Li, X.-Y. (2011b). Acta Cryst. E67, o2511.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12I2N2O4·CH4O

  • Mr = 570.11

  • Orthorhombic, P b c n

  • a = 19.467 (3) Å

  • b = 12.655 (2) Å

  • c = 16.138 (2) Å

  • V = 3975.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.527, Tmax = 0.568

  • 22354 measured reflections

  • 4315 independent reflections

  • 3198 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.091

  • S = 1.02

  • 4315 reflections

  • 239 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.614 (4) 147
O5—H5⋯O2 0.85 (3) 1.87 (2) 2.698 (4) 165 (5)
N2—H2⋯O3i 0.91 (4) 2.17 (5) 3.024 (4) 157 (3)
O3—H3⋯O5ii 0.85 (5) 1.80 (4) 2.643 (4) 170 (4)
C14—H14⋯O3i 0.93 2.55 3.442 (5) 162
C16—H16A⋯O1 0.96 2.51 3.267 (7) 135
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, hydrazone compounds have attracted much attention due to their syntheses and crystal structures (Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010). As a continuation of our work on such compounds (Li, 2011a,b), the author reports herein on the crystal structure of the new title hydrazone compound.

The title compound (Fig. 1), contains a N'-(2-hydroxy-3,5-diiodobenzylidene)-4-hydroxy-3-methoxybenzohydrazide molecule and a methanol solvent molecule. The hydrazone molecule exists in a trans or E conformation with respect to the C7N1 bond. The dihedral angle between the (C1–C6) and (C9–C14) benzene rings of the hydrazone molecule is 11.9 (2)°. There is one O–H···N intramolecular hydrogen bond in the hydrazone molecule (Table 1).

In the crystal, the hydrazone and methanol molecules are linked through O–H···O and N–H···O hydrogen bonds and C-H···O interactions (Table 1), to form a two-dimensional network lieing parallel to the ab plane (Fig. 2).

Related literature top

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011); Lei (2011); Shalash et al. (2010). For the crystal structures of similar compounds, reported on recently by the author, see: Li (2011a,b).

Experimental top

A mixture of 2-hydroxy-3,5-diiodobenzaldehyde (0.374 g, 1 mmol) and 4-hydroxy-3-methoxybenzohydrazide (0.182 g, 1 mmol) in 30 ml of ethanol containing few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Colourless crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in methanol.

Refinement top

Hydrogen atoms H2, H3, and H5 were located in a difference Fourier map and were freely refined. The remaining H-atoms were positioned geometrically and refined using a riding model: O–H = 0.82 Å, C–H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular O–H···N hydrogen bond, and the O-H···O hydrogen bond linking the hydrazone and methanol molecules are indicated by dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are indicated by dashed lines (see Table 1 for details). The C-bound H-atoms have been omitted for clarity.
(E)-4-Hydroxy-N'-(2-hydroxy-3,5-diiodobenzylidene)- 3-methoxybenzohydrazide methanol monosolvate top
Crystal data top
C15H12I2N2O4·CH4OF(000) = 2176
Mr = 570.11Dx = 1.905 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6406 reflections
a = 19.467 (3) Åθ = 2.3–26.0°
b = 12.655 (2) ŵ = 3.19 mm1
c = 16.138 (2) ÅT = 298 K
V = 3975.5 (11) Å3Block, colourless
Z = 80.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4315 independent reflections
Radiation source: fine-focus sealed tube3198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.527, Tmax = 0.568k = 1515
22354 measured reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.027P)2 + 9.4128P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4315 reflectionsΔρmax = 1.12 e Å3
239 parametersΔρmin = 1.35 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00222 (10)
Crystal data top
C15H12I2N2O4·CH4OV = 3975.5 (11) Å3
Mr = 570.11Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.467 (3) ŵ = 3.19 mm1
b = 12.655 (2) ÅT = 298 K
c = 16.138 (2) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3198 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.568Rint = 0.040
22354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.12 e Å3
4315 reflectionsΔρmin = 1.35 e Å3
239 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.30599 (2)0.65273 (4)0.22384 (2)0.0780 (2)
I20.44485 (3)1.03076 (3)0.37750 (3)0.0875 (2)
O10.42798 (16)0.5423 (2)0.3180 (2)0.0600 (11)
O20.53658 (14)0.3091 (2)0.40531 (19)0.0511 (10)
O30.81379 (14)0.1047 (2)0.53841 (19)0.0469 (10)
O40.72081 (16)0.0227 (2)0.4401 (2)0.0579 (11)
N10.53819 (16)0.5213 (3)0.4091 (2)0.0435 (11)
N20.59137 (17)0.4611 (3)0.4418 (2)0.0430 (11)
C10.48852 (19)0.6898 (3)0.3790 (2)0.0400 (12)
C20.4343 (2)0.6470 (3)0.3315 (3)0.0430 (12)
C30.3854 (2)0.7157 (4)0.2971 (3)0.0480 (14)
C40.3886 (2)0.8237 (4)0.3112 (3)0.0550 (16)
C50.4420 (2)0.8658 (3)0.3584 (3)0.0527 (16)
C60.4916 (2)0.8002 (3)0.3918 (3)0.0480 (12)
C70.5422 (2)0.6220 (3)0.4159 (3)0.0427 (12)
C80.58719 (19)0.3537 (3)0.4359 (2)0.0378 (11)
C90.64765 (18)0.2924 (3)0.4669 (2)0.0337 (11)
C100.65308 (19)0.1866 (3)0.4410 (2)0.0393 (12)
C110.70893 (19)0.1254 (3)0.4644 (2)0.0378 (11)
C120.76007 (18)0.1695 (3)0.5169 (2)0.0349 (11)
C130.75389 (19)0.2734 (3)0.5434 (2)0.0382 (11)
C140.69824 (19)0.3345 (3)0.5188 (2)0.0383 (11)
C150.6690 (3)0.0275 (4)0.3916 (4)0.074 (2)
O50.40228 (15)0.2948 (3)0.3656 (2)0.0545 (10)
C160.3918 (3)0.2952 (5)0.2788 (3)0.072 (2)
H10.459800.511000.340600.0900*
H20.6291 (17)0.493 (4)0.463 (3)0.0800*
H30.839 (2)0.136 (4)0.574 (3)0.0800*
H40.355100.868000.289200.0660*
H60.527300.828900.422900.0570*
H70.579000.652400.444000.0510*
H100.618900.157400.407900.0470*
H130.787200.302300.577900.0460*
H140.694600.404000.537000.0460*
H15A0.626600.028300.422000.1110*
H15B0.682700.098700.379500.1110*
H15C0.662800.010700.340800.1110*
H50.4435 (11)0.311 (4)0.376 (3)0.0800*
H16A0.393700.366600.258600.1080*
H16B0.347700.265400.266300.1080*
H16C0.427100.254100.252400.1080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0504 (2)0.1183 (4)0.0653 (2)0.0102 (2)0.0165 (2)0.0126 (2)
I20.1299 (4)0.0430 (2)0.0895 (3)0.0164 (2)0.0026 (3)0.0088 (2)
O10.0545 (19)0.0484 (18)0.077 (2)0.0036 (14)0.0186 (17)0.0037 (16)
O20.0344 (15)0.0555 (18)0.0634 (19)0.0008 (13)0.0115 (14)0.0053 (15)
O30.0377 (16)0.0410 (15)0.0620 (19)0.0103 (12)0.0107 (13)0.0080 (14)
O40.0627 (19)0.0359 (16)0.075 (2)0.0051 (14)0.0197 (17)0.0150 (15)
N10.0366 (17)0.046 (2)0.0480 (19)0.0088 (15)0.0006 (15)0.0069 (16)
N20.0347 (17)0.0403 (19)0.054 (2)0.0076 (14)0.0071 (16)0.0050 (16)
C10.036 (2)0.043 (2)0.041 (2)0.0050 (17)0.0046 (17)0.0060 (18)
C20.038 (2)0.048 (2)0.043 (2)0.0048 (18)0.0014 (17)0.0007 (18)
C30.037 (2)0.068 (3)0.039 (2)0.010 (2)0.0003 (17)0.005 (2)
C40.058 (3)0.059 (3)0.048 (2)0.023 (2)0.001 (2)0.014 (2)
C50.064 (3)0.040 (2)0.054 (3)0.012 (2)0.007 (2)0.011 (2)
C60.047 (2)0.047 (2)0.050 (2)0.0020 (19)0.002 (2)0.002 (2)
C70.034 (2)0.049 (2)0.045 (2)0.0057 (17)0.0022 (17)0.0046 (18)
C80.0325 (19)0.044 (2)0.037 (2)0.0020 (17)0.0008 (16)0.0025 (17)
C90.0271 (17)0.0349 (19)0.039 (2)0.0009 (15)0.0010 (15)0.0005 (16)
C100.037 (2)0.038 (2)0.043 (2)0.0053 (16)0.0061 (17)0.0009 (17)
C110.039 (2)0.0323 (19)0.042 (2)0.0013 (15)0.0000 (17)0.0040 (16)
C120.0302 (18)0.0335 (19)0.041 (2)0.0017 (15)0.0013 (15)0.0006 (16)
C130.0305 (18)0.038 (2)0.046 (2)0.0033 (16)0.0053 (17)0.0059 (17)
C140.0365 (19)0.0314 (19)0.047 (2)0.0013 (16)0.0014 (17)0.0025 (17)
C150.087 (4)0.045 (3)0.090 (4)0.004 (3)0.028 (3)0.026 (3)
O50.0357 (15)0.072 (2)0.0557 (19)0.0057 (15)0.0036 (14)0.0073 (16)
C160.082 (4)0.075 (4)0.060 (3)0.011 (3)0.007 (3)0.009 (3)
Geometric parameters (Å, º) top
I1—C32.103 (4)C5—C61.383 (6)
I2—C52.111 (4)C8—C91.496 (5)
O1—C21.348 (5)C9—C141.398 (5)
O2—C81.238 (5)C9—C101.407 (5)
O3—C121.374 (4)C10—C111.387 (5)
O4—C111.377 (5)C11—C121.421 (5)
O4—C151.426 (7)C12—C131.388 (5)
O1—H10.8200C13—C141.389 (5)
O3—H30.85 (5)C4—H40.9300
O5—C161.416 (6)C6—H60.9300
O5—H50.85 (3)C7—H70.9300
N1—C71.282 (5)C10—H100.9300
N1—N21.390 (5)C13—H130.9300
N2—C81.365 (5)C14—H140.9300
N2—H20.91 (4)C15—H15C0.9600
C1—C61.414 (5)C15—H15A0.9600
C1—C71.477 (5)C15—H15B0.9600
C1—C21.413 (6)C16—H16A0.9600
C2—C31.404 (6)C16—H16B0.9600
C3—C41.387 (7)C16—H16C0.9600
C4—C51.395 (6)
C11—O4—C15117.3 (3)C10—C11—C12119.5 (3)
C2—O1—H1109.00O4—C11—C10125.5 (3)
C12—O3—H3109 (3)O3—C12—C11116.7 (3)
C16—O5—H5109 (3)C11—C12—C13119.7 (3)
N2—N1—C7117.9 (3)O3—C12—C13123.6 (3)
N1—N2—C8118.4 (3)C12—C13—C14120.5 (3)
C8—N2—H2121 (3)C9—C14—C13120.6 (3)
N1—N2—H2120 (3)C5—C4—H4120.00
C2—C1—C7121.6 (3)C3—C4—H4120.00
C6—C1—C7119.0 (3)C1—C6—H6120.00
C2—C1—C6119.3 (3)C5—C6—H6120.00
O1—C2—C3118.9 (4)C1—C7—H7120.00
C1—C2—C3118.9 (4)N1—C7—H7120.00
O1—C2—C1122.2 (4)C9—C10—H10120.00
I1—C3—C4119.9 (3)C11—C10—H10120.00
C2—C3—C4121.0 (4)C14—C13—H13120.00
I1—C3—C2119.1 (3)C12—C13—H13120.00
C3—C4—C5120.0 (4)C9—C14—H14120.00
C4—C5—C6120.3 (4)C13—C14—H14120.00
I2—C5—C4118.5 (3)O4—C15—H15B109.00
I2—C5—C6121.2 (3)O4—C15—H15C109.00
C1—C6—C5120.5 (4)O4—C15—H15A109.00
N1—C7—C1120.0 (4)H15A—C15—H15C109.00
N2—C8—C9116.5 (3)H15B—C15—H15C110.00
O2—C8—N2122.0 (3)H15A—C15—H15B109.00
O2—C8—C9121.5 (3)O5—C16—H16A109.00
C8—C9—C14123.8 (3)O5—C16—H16B110.00
C10—C9—C14119.2 (3)O5—C16—H16C109.00
C8—C9—C10117.0 (3)H16A—C16—H16B109.00
C9—C10—C11120.6 (3)H16A—C16—H16C109.00
O4—C11—C12115.0 (3)H16B—C16—H16C110.00
C15—O4—C11—C104.7 (6)C3—C4—C5—C60.5 (7)
C15—O4—C11—C12176.2 (4)I2—C5—C6—C1179.4 (3)
C7—N1—N2—C8179.1 (4)C4—C5—C6—C10.4 (7)
N2—N1—C7—C1177.4 (3)O2—C8—C9—C1016.1 (5)
N1—N2—C8—O22.8 (5)O2—C8—C9—C14164.4 (3)
N1—N2—C8—C9176.1 (3)N2—C8—C9—C10162.8 (3)
C6—C1—C2—O1179.1 (4)N2—C8—C9—C1416.8 (5)
C6—C1—C2—C31.0 (6)C8—C9—C10—C11177.6 (3)
C7—C1—C2—O10.8 (6)C14—C9—C10—C112.0 (5)
C7—C1—C2—C3179.1 (4)C8—C9—C14—C13178.4 (3)
C2—C1—C6—C50.2 (6)C10—C9—C14—C131.2 (5)
C7—C1—C6—C5179.7 (4)C9—C10—C11—O4177.3 (3)
C2—C1—C7—N13.9 (6)C9—C10—C11—C121.7 (5)
C6—C1—C7—N1176.0 (4)O4—C11—C12—O31.4 (5)
O1—C2—C3—I11.5 (6)O4—C11—C12—C13178.5 (3)
O1—C2—C3—C4178.2 (4)C10—C11—C12—O3179.5 (3)
C1—C2—C3—I1178.5 (3)C10—C11—C12—C130.7 (5)
C1—C2—C3—C41.9 (7)O3—C12—C13—C14179.7 (3)
I1—C3—C4—C5178.7 (3)C11—C12—C13—C140.2 (5)
C2—C3—C4—C51.7 (7)C12—C13—C14—C90.1 (5)
C3—C4—C5—I2179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.614 (4)147
O5—H5···O20.85 (3)1.87 (2)2.698 (4)165 (5)
N2—H2···O3i0.91 (4)2.17 (5)3.024 (4)157 (3)
O3—H3···O5ii0.85 (5)1.80 (4)2.643 (4)170 (4)
C14—H14···O3i0.932.553.442 (5)162
C16—H16A···O10.962.513.267 (7)135
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H12I2N2O4·CH4O
Mr570.11
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)19.467 (3), 12.655 (2), 16.138 (2)
V3)3975.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.527, 0.568
No. of measured, independent and
observed [I > 2σ(I)] reflections
22354, 4315, 3198
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.091, 1.02
No. of reflections4315
No. of parameters239
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 1.35

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
C11—O4—C15117.3 (3)N1—C7—C1120.0 (4)
N2—N1—C7117.9 (3)N2—C8—C9116.5 (3)
N1—N2—C8118.4 (3)O2—C8—N2122.0 (3)
O1—C2—C3118.9 (4)O2—C8—C9121.5 (3)
O1—C2—C1122.2 (4)O4—C11—C12115.0 (3)
I1—C3—C4119.9 (3)O4—C11—C10125.5 (3)
I1—C3—C2119.1 (3)O3—C12—C11116.7 (3)
I2—C5—C4118.5 (3)O3—C12—C13123.6 (3)
I2—C5—C6121.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.614 (4)147
O5—H5···O20.85 (3)1.87 (2)2.698 (4)165 (5)
N2—H2···O3i0.91 (4)2.17 (5)3.024 (4)157 (3)
O3—H3···O5ii0.85 (5)1.80 (4)2.643 (4)170 (4)
C14—H14···O3i0.932.553.442 (5)162
C16—H16A···O10.962.513.267 (7)135
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The author is grateful to the Zibo Vocational Institute for supporting this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, Y. (2011). Acta Cryst. E67, o162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011a). Acta Cryst. E67, o1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011b). Acta Cryst. E67, o2511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds