organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Chloro-N′-(4-hy­dr­oxy­benzyl­­idene)­benzohydrazide

aZibo Vocational Institute, Zibo 255314, People's Republic of China
*Correspondence e-mail: lixiaoyan_zb@126.com

(Received 6 February 2012; accepted 8 February 2012; online 17 February 2012)

The title hydrazone mol­ecule, C14H11ClN2O2, has a trans conformation with respect to the methyl­idene unit. The dihedral angle between the two benzene rings is 37.6 (3)°. In the crystal, the presence of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds leads to the formation of a three-dimensional network. The title compound crystallized in the chiral ortho­rhom­bic space group P212121 and was refined as an inversion twin [Flack parameter = −0.20 (18)].

Related literature

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Lei (2011[Lei, Y. (2011). Acta Cryst. E67, o162.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]). For the crystal structures of similar compounds, reported recently by the author, see: Li (2011a[Li, X.-Y. (2011a). Acta Cryst. E67, o1798.],b[Li, X.-Y. (2011b). Acta Cryst. E67, o2511.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Orthorhombic, P 21 21 21

  • a = 7.627 (3) Å

  • b = 11.859 (2) Å

  • c = 14.297 (2) Å

  • V = 1293.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.952

  • 6966 measured reflections

  • 2408 independent reflections

  • 1717 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.167

  • S = 1.07

  • 2408 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 999 Friedel pairs

  • Flack parameter: −0.20 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.99 2.751 (4) 155
O2—H2⋯N2i 0.82 2.48 3.012 (4) 124
N1—H1⋯O2ii 0.90 (1) 2.12 (2) 2.987 (4) 164 (5)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, hydrazone compounds have attracted much attention due to their syntheses and crystal structures (Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010). As a continuation of our work on such compounds (Li, 2011a,b), the author reports herein on the crystal structure of the new title hydrazone compound.

The molecule of the title compound (Fig. 1) exists in a trans conformation with respect to the methylidene unit. The dihedral angle between the (C1–C6) and (C9–C1) benzene rings is 37.6 (3)°.

In the crystal, O–H···O, O–H···N, and N–H···O hydrogen bonds leads to the formation of a three-dimensional network (Table 1, Fig. 2).

Related literature top

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011); Lei (2011); Shalash et al. (2010). For the crystal structures of similar compounds, reported recently by the author, see: Li (2011a,b).

Experimental top

A mixture of 4-hydroxybenzaldehyde (0.122 g, 1 mmol) and 2-chlorobenzohydrazide (0.171 g, 1 mmol) in 30 ml of methanol containing few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Colourless crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in methanol.

Refinement top

H atom H1 was located in a difference Fourier map and was freely refined. The remaining H-atoms were positioned geometrically and refined using a riding model: O–H = 0.82 Å, C–H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The various hydrogen bonds are indicated by dashed lines (see Table 1 for details; C-bound H-atoms have been omitted for clarity)..
(E)-2-Chloro-N'-(4-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H11ClN2O2F(000) = 568
Mr = 274.70Dx = 1.411 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1608 reflections
a = 7.627 (3) Åθ = 2.2–24.3°
b = 11.859 (2) ŵ = 0.29 mm1
c = 14.297 (2) ÅT = 298 K
V = 1293.2 (5) Å3Block, colourless
Z = 40.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.949, Tmax = 0.952k = 149
6966 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.1245P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2408 reflectionsΔρmax = 0.74 e Å3
176 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 999 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.20 (18)
Crystal data top
C14H11ClN2O2V = 1293.2 (5) Å3
Mr = 274.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.627 (3) ŵ = 0.29 mm1
b = 11.859 (2) ÅT = 298 K
c = 14.297 (2) Å0.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1717 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.952Rint = 0.045
6966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167Δρmax = 0.74 e Å3
S = 1.07Δρmin = 0.35 e Å3
2408 reflectionsAbsolute structure: Flack (1983), 999 Friedel pairs
176 parametersAbsolute structure parameter: 0.20 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.7790 (2)1.15240 (11)0.03121 (11)0.0961 (6)
N10.8701 (5)0.7962 (3)0.0532 (2)0.0446 (9)
N20.8920 (5)0.7314 (3)0.0268 (2)0.0442 (8)
O10.9755 (4)0.9473 (2)0.02416 (18)0.0479 (8)
O20.8755 (4)0.3362 (2)0.32680 (17)0.0439 (7)
H20.94660.35820.36570.066*
C10.8856 (5)0.9734 (3)0.1347 (3)0.0405 (10)
C20.8308 (6)1.0829 (4)0.1335 (3)0.0521 (12)
C30.8123 (6)1.1435 (5)0.2166 (4)0.0698 (15)
H30.77421.21800.21560.084*
C40.8506 (8)1.0924 (6)0.2987 (4)0.0780 (18)
H40.83951.13280.35410.094*
C50.9046 (7)0.9840 (6)0.3022 (3)0.0729 (16)
H50.92870.95100.35980.087*
C60.9240 (6)0.9228 (5)0.2230 (3)0.0551 (12)
H60.96210.84840.22600.066*
C70.9150 (5)0.9061 (3)0.0472 (3)0.0368 (9)
C80.8585 (5)0.6256 (3)0.0187 (3)0.0408 (9)
H80.82780.59660.03950.049*
C90.8678 (5)0.5508 (3)0.0988 (2)0.0375 (9)
C100.8151 (6)0.4403 (3)0.0916 (3)0.0430 (10)
H100.77730.41280.03410.052*
C110.8172 (6)0.3700 (3)0.1673 (3)0.0433 (10)
H110.78120.29550.16070.052*
C120.8724 (5)0.4086 (3)0.2536 (2)0.0335 (8)
C130.9259 (5)0.5197 (3)0.2627 (3)0.0387 (9)
H130.96370.54650.32040.046*
C140.9231 (5)0.5905 (3)0.1863 (3)0.0413 (10)
H140.95810.66520.19290.050*
H10.802 (6)0.767 (4)0.098 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1370 (15)0.0600 (8)0.0912 (11)0.0223 (9)0.0056 (10)0.0157 (8)
N10.062 (2)0.0378 (19)0.0339 (18)0.0073 (18)0.0079 (17)0.0053 (14)
N20.062 (2)0.0404 (19)0.0304 (17)0.0049 (17)0.0069 (18)0.0085 (15)
O10.069 (2)0.0401 (15)0.0349 (14)0.0095 (14)0.0108 (14)0.0016 (13)
O20.063 (2)0.0377 (15)0.0310 (14)0.0025 (15)0.0058 (13)0.0083 (12)
C10.040 (2)0.043 (2)0.038 (2)0.007 (2)0.0070 (18)0.0085 (18)
C20.054 (3)0.047 (3)0.055 (3)0.010 (2)0.011 (2)0.012 (2)
C30.061 (3)0.057 (3)0.091 (4)0.013 (3)0.025 (3)0.027 (3)
C40.074 (4)0.094 (5)0.066 (4)0.027 (4)0.015 (3)0.041 (3)
C50.078 (4)0.102 (5)0.039 (3)0.013 (4)0.003 (2)0.013 (3)
C60.057 (3)0.076 (3)0.032 (2)0.010 (2)0.0049 (19)0.014 (2)
C70.039 (2)0.038 (2)0.033 (2)0.0001 (18)0.0004 (17)0.0018 (17)
C80.048 (2)0.044 (2)0.0309 (19)0.002 (2)0.0013 (19)0.0076 (17)
C90.042 (2)0.037 (2)0.0332 (19)0.001 (2)0.0016 (17)0.0013 (17)
C100.061 (3)0.038 (2)0.0300 (19)0.002 (2)0.0041 (18)0.0006 (17)
C110.060 (3)0.030 (2)0.040 (2)0.0002 (19)0.006 (2)0.0002 (16)
C120.038 (2)0.0296 (19)0.0330 (19)0.0046 (17)0.0029 (16)0.0027 (15)
C130.044 (2)0.044 (2)0.0284 (19)0.0010 (18)0.0038 (16)0.0011 (17)
C140.054 (3)0.030 (2)0.040 (2)0.0063 (19)0.0028 (19)0.0012 (17)
Geometric parameters (Å, º) top
Cl1—C21.724 (5)C5—C61.353 (6)
N1—C71.350 (5)C5—H50.9300
N1—N21.388 (4)C6—H60.9300
N1—H10.896 (10)C8—C91.450 (5)
N2—C81.286 (5)C8—H80.9300
O1—C71.222 (5)C9—C101.375 (5)
O2—C121.354 (4)C9—C141.402 (5)
O2—H20.8200C10—C111.366 (5)
C1—C21.364 (6)C10—H100.9300
C1—C61.429 (6)C11—C121.382 (5)
C1—C71.500 (5)C11—H110.9300
C2—C31.396 (7)C12—C131.384 (5)
C3—C41.353 (8)C13—C141.377 (5)
C3—H30.9300C13—H130.9300
C4—C51.350 (9)C14—H140.9300
C4—H40.9300
C7—N1—N2116.9 (3)O1—C7—C1122.7 (3)
C7—N1—H1125 (3)N1—C7—C1115.1 (3)
N2—N1—H1116 (3)N2—C8—C9121.1 (4)
C8—N2—N1116.2 (3)N2—C8—H8119.5
C12—O2—H2109.5C9—C8—H8119.5
C2—C1—C6118.3 (4)C10—C9—C14118.3 (3)
C2—C1—C7122.8 (4)C10—C9—C8120.7 (3)
C6—C1—C7118.8 (4)C14—C9—C8120.9 (3)
C1—C2—C3120.7 (5)C11—C10—C9121.3 (4)
C1—C2—Cl1122.4 (3)C11—C10—H10119.3
C3—C2—Cl1116.9 (4)C9—C10—H10119.3
C4—C3—C2119.1 (5)C10—C11—C12120.5 (3)
C4—C3—H3120.5C10—C11—H11119.7
C2—C3—H3120.5C12—C11—H11119.7
C5—C4—C3121.6 (5)O2—C12—C11119.0 (3)
C5—C4—H4119.2O2—C12—C13121.8 (3)
C3—C4—H4119.2C11—C12—C13119.3 (3)
C4—C5—C6120.9 (5)C14—C13—C12120.1 (3)
C4—C5—H5119.6C14—C13—H13120.0
C6—C5—H5119.6C12—C13—H13120.0
C5—C6—C1119.5 (5)C13—C14—C9120.5 (4)
C5—C6—H6120.3C13—C14—H14119.7
C1—C6—H6120.3C9—C14—H14119.7
O1—C7—N1122.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.992.751 (4)155
O2—H2···N2i0.822.483.012 (4)124
N1—H1···O2ii0.90 (1)2.12 (2)2.987 (4)164 (5)
Symmetry codes: (i) x+2, y1/2, z1/2; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.627 (3), 11.859 (2), 14.297 (2)
V3)1293.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
6966, 2408, 1717
Rint0.045
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.167, 1.07
No. of reflections2408
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.35
Absolute structureFlack (1983), 999 Friedel pairs
Absolute structure parameter0.20 (18)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.992.751 (4)154.8
O2—H2···N2i0.822.483.012 (4)123.8
N1—H1···O2ii0.896 (10)2.117 (18)2.987 (4)164 (5)
Symmetry codes: (i) x+2, y1/2, z1/2; (ii) x+3/2, y+1, z+1/2.
 

Acknowledgements

The author is grateful to the Zibo Vocational Institute for supporting this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, Y. (2011). Acta Cryst. E67, o162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011a). Acta Cryst. E67, o1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011b). Acta Cryst. E67, o2511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds