metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Benzyl phenyl sulfoxide-κO)­chlorido­tri­phenyl­tin(IV)

aSchool of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, People's Republic of China, and bShandong Water Polytechnic, Rizhao 276826, People's Republic of China
*Correspondence e-mail: guoxiatan@163.com

(Received 10 January 2012; accepted 10 February 2012; online 17 February 2012)

The SnIV atom in the title compound, [Sn(C6H5)3Cl(C13H12OS)], is situated within a distorted C3ClO trigonal–bipyramidal coordination geometry with a mean Sn—C distance of 2.136 (6) Å and with an Sn—O distance of 2.393 (4) Å. The SnIV atom lies 0.171 (3) Å out of the equatorial C3 plane in the direction of the axially bound Cl atom.

Related literature

For background to the structures, biological activities and industrial applications of triorganotin(IV) complexes, see: Davies et al. (2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Tin Chemistry: Fundamentals, Frontiers, and Applications. Chichester: John Wiley & Sons.]); Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]). For related organotin sulfoxide structures, see: Fuller et al. (2009[Fuller, A. L., Aitken, R. A., Ryan, B. M., Slawin, A. M. Z. & Woollins, J. D. (2009). J. Chem. Crystallogr. 39, 407-415.]); Kumar et al. (2009[Kumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602-m1603.]); Filgueiras et al. (1982[Filgueiras, C. A. L., Holland, P. R., Johnson, B. F. G. & Raithby, P. R. (1982). Acta Cryst. B38, 2684-2686.]); Dokorou et al. (2011[Dokorou, V., Primikiri, A. & Kovala-Demertzi, D. (2011). J. Inorg. Biochem. 105, 195-199.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3Cl(C13H12OS)]

  • Mr = 601.73

  • Orthorhombic, P 21 21 21

  • a = 9.744 (5) Å

  • b = 10.016 (3) Å

  • c = 28.840 (5) Å

  • V = 2814.7 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 295 K

  • 0.32 × 0.28 × 0.21 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.720, Tmax = 0.802

  • 3690 measured reflections

  • 3463 independent reflections

  • 2794 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 97 reflections intensity decay: 2.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.067

  • S = 1.02

  • 3463 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 626 Friedel pairs

  • Flack parameter: 0.02 (3)

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Triorganotin compounds have received considerable attention due to their structural diversity and increasing numbers of industrial, agricultural and biological applications (Davies et al., 2008; Tian et al., 2005). Several structures of triorganotin sulfoxide complexes, such as chloro(dimethylsulfoxide)triphenyltin (Kumar et al., 2009), 1,2-bis(n-propylsulfinyl)ethylene)bis(chlorotriphenyltin) (Filgueiras et al., 1982), and (2-((2,3-dichlorophenyl)amino)benzoato)(dimethylsulfoxide)triphenyltin (Dokorou et al., 2011), have been reported. As a continuation of these studies, the structure of the title compound, (I), is described herein.

The coordination environment of the tinIV atom in (I) can be described as a distorted trigonal bipyramid with three phenyl groups occupying the equatorial positions whereas the axial positions are occupied by the Cl1 atom and the sulfoxide O1 atom (Fig. 1).The Sn atom is slightly displaced from the equatorial plane defined by the C3 set by 0.171 (3) Å in the direction of the Cl1 atom. The Sn—C and Sn—Cl bond lengths are similar to these found in chloro(dimethylsulfoxide-κO)triphenyltin (Kumar et al., 2009). However, the Sn—O length (2.393 (4) Å) is longer than that in the above mentioned structure (2.310 (2) Å). The SO bond length (1.524 (4) Å) is longer than that in the free ligand (1.500 (2) Å) (Fuller et al., 2009) due to the O1 atom coordination to Sn atom. The dihedral angle between two phenyl rings in the sulfoxide ligand is 54.56 (5)°.

Related literature top

For background to the structures, biological activities and industrial applications of triorganotin(IV) complexes, see: Davies et al. (2008); Tian et al. (2005). For related organotin sulfoxide structures, see: Fuller et al. (2009); Kumar et al. (2009); Filgueiras et al. (1982); Dokorou et al. (2011).

Experimental top

Benzylphenylsulfoxide (0.43 g, 2 mmol) and triphenyltin chloride (0.77 g, 2 mmol) in ethanol (40 ml) were refluxed for 1 h, and then the colourless solution was reduced to 15 ml under reduce pressure. The colourless crystals suitable for X-ray analysis were obtained by slow evaporation of the solution at room temperature (yield: 62%; M.pt.: 385–386 K).

Refinement top

H atoms were placed at calculated positions (C—H = 0.97 Å for methylene-H and C—H = 0.93 Å for aromatic-H atoms) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids are drawn at the 30% probability level.
(Benzyl phenyl sulfoxide-κO)chloridotriphenyltin(IV) top
Crystal data top
[Sn(C6H5)3Cl(C13H12OS)]F(000) = 1216
Mr = 601.73Dx = 1.420 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 35 reflections
a = 9.744 (5) Åθ = 5.1–12.5°
b = 10.016 (3) ŵ = 1.10 mm1
c = 28.840 (5) ÅT = 295 K
V = 2814.7 (17) Å3Block, colourless
Z = 40.32 × 0.28 × 0.21 mm
Data collection top
Bruker P4
diffractometer
2794 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 111
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
k = 111
Tmin = 0.720, Tmax = 0.802l = 134
3690 measured reflections3 standard reflections every 97 reflections
3463 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.024P)2 + 0.0502P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.37 e Å3
3463 reflectionsΔρmin = 0.40 e Å3
306 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00117 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 626 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (3)
Crystal data top
[Sn(C6H5)3Cl(C13H12OS)]V = 2814.7 (17) Å3
Mr = 601.73Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.744 (5) ŵ = 1.10 mm1
b = 10.016 (3) ÅT = 295 K
c = 28.840 (5) Å0.32 × 0.28 × 0.21 mm
Data collection top
Bruker P4
diffractometer
2794 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
Rint = 0.021
Tmin = 0.720, Tmax = 0.8023 standard reflections every 97 reflections
3690 measured reflections intensity decay: 2.3%
3463 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.37 e Å3
S = 1.02Δρmin = 0.40 e Å3
3463 reflectionsAbsolute structure: Flack (1983), 626 Friedel pairs
306 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.09780 (5)0.65032 (4)0.122403 (15)0.04029 (13)
O10.1431 (4)0.6938 (4)0.12855 (16)0.0497 (12)
Cl10.34939 (15)0.60290 (16)0.12177 (6)0.0534 (4)
S10.19603 (16)0.83689 (17)0.13031 (6)0.0502 (4)
C10.0329 (7)0.4480 (6)0.1119 (2)0.0423 (17)
C20.0971 (9)0.4170 (7)0.0986 (2)0.064 (2)
H20.16200.48460.09590.077*
C30.1346 (9)0.2866 (8)0.0890 (3)0.086 (3)
H30.22430.26800.08000.103*
C40.0424 (9)0.1856 (7)0.0925 (3)0.076 (3)
H40.06760.09850.08540.091*
C50.0869 (9)0.2137 (7)0.1067 (3)0.079 (3)
H50.15040.14520.11010.095*
C60.1254 (7)0.3454 (7)0.1162 (2)0.066 (2)
H60.21470.36360.12560.079*
C70.1114 (6)0.7524 (5)0.18703 (12)0.0494 (18)
C80.2066 (6)0.8553 (5)0.19079 (17)0.089 (3)
H80.25970.87920.16530.107*
C90.2224 (6)0.9224 (5)0.2326 (2)0.122 (4)
H90.28610.99120.23510.146*
C100.1431 (7)0.8867 (6)0.27072 (15)0.111 (4)
H100.15360.93160.29870.133*
C110.0479 (6)0.7838 (6)0.26696 (13)0.098 (4)
H110.00520.75990.29240.117*
C120.0321 (5)0.7167 (5)0.22511 (18)0.070 (2)
H120.03160.64790.22260.084*
C130.2771 (7)0.8539 (7)0.1851 (2)0.0495 (16)
C140.3607 (8)0.7581 (7)0.2023 (3)0.066 (2)
H140.37690.68070.18530.079*
C150.4224 (9)0.7757 (8)0.2452 (3)0.078 (2)
H150.48080.71060.25700.093*
C160.3965 (10)0.8893 (9)0.2701 (3)0.087 (3)
H160.43840.90190.29880.105*
C170.3094 (9)0.9846 (9)0.2530 (3)0.088 (3)
H170.29071.06080.27030.106*
C180.2498 (8)0.9676 (7)0.2103 (3)0.066 (2)
H180.19121.03250.19850.079*
C190.3445 (6)0.8314 (7)0.0924 (2)0.0564 (19)
H19A0.31790.79080.06320.068*
H19B0.41400.77500.10640.068*
C200.4055 (8)0.9656 (7)0.0828 (2)0.0556 (17)
C210.4840 (8)1.0320 (8)0.1156 (3)0.074 (2)
H21A0.49910.99290.14440.088*
C220.5403 (9)1.1564 (10)0.1058 (4)0.103 (3)
H22A0.58961.20190.12850.124*
C230.5235 (11)1.2117 (10)0.0632 (5)0.109 (4)
H23A0.56491.29320.05660.131*
C240.4459 (10)1.1491 (10)0.0294 (4)0.104 (4)
H24A0.43321.18800.00040.125*
C250.3872 (9)1.0254 (8)0.0401 (3)0.076 (2)
H25A0.33440.98210.01780.091*
C260.0997 (7)0.7770 (6)0.06277 (19)0.0376 (14)
C270.2015 (7)0.8674 (7)0.0545 (2)0.0555 (19)
H270.27500.87130.07500.067*
C280.2003 (9)0.9535 (7)0.0170 (3)0.067 (2)
H280.27101.01460.01270.080*
C290.0934 (11)0.9471 (7)0.0136 (2)0.069 (2)
H290.09131.00400.03910.082*
C300.0101 (8)0.8575 (9)0.0068 (2)0.068 (2)
H300.08210.85300.02790.082*
C310.0087 (7)0.7734 (7)0.0310 (2)0.0533 (19)
H310.08060.71370.03550.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0418 (2)0.0370 (2)0.0421 (2)0.0018 (3)0.0005 (3)0.0007 (2)
O10.038 (2)0.037 (2)0.074 (3)0.0086 (19)0.003 (2)0.006 (2)
Cl10.0402 (9)0.0677 (10)0.0523 (8)0.0007 (8)0.0055 (10)0.0088 (10)
S10.0432 (9)0.0374 (8)0.0701 (11)0.0007 (9)0.0056 (9)0.0031 (11)
C10.044 (4)0.034 (3)0.049 (4)0.002 (3)0.004 (3)0.004 (3)
C20.051 (5)0.046 (4)0.094 (5)0.007 (5)0.017 (5)0.009 (4)
C30.063 (6)0.069 (5)0.125 (7)0.018 (5)0.013 (5)0.014 (6)
C40.081 (6)0.040 (5)0.107 (6)0.012 (5)0.012 (5)0.007 (4)
C50.067 (5)0.044 (4)0.126 (8)0.008 (5)0.004 (6)0.012 (4)
C60.051 (4)0.046 (3)0.100 (5)0.009 (4)0.000 (5)0.011 (6)
C70.054 (5)0.047 (4)0.047 (4)0.011 (5)0.001 (4)0.004 (3)
C80.105 (7)0.083 (6)0.080 (5)0.021 (7)0.011 (5)0.042 (6)
C90.131 (9)0.124 (9)0.111 (8)0.033 (8)0.008 (8)0.075 (7)
C100.120 (10)0.144 (10)0.068 (6)0.055 (8)0.017 (6)0.043 (7)
C110.134 (10)0.112 (7)0.047 (5)0.058 (7)0.006 (5)0.005 (5)
C120.085 (6)0.077 (5)0.048 (4)0.013 (5)0.010 (4)0.009 (4)
C130.047 (4)0.041 (4)0.060 (4)0.006 (4)0.004 (4)0.009 (4)
C140.079 (6)0.046 (4)0.073 (5)0.002 (5)0.010 (5)0.009 (4)
C150.078 (7)0.090 (6)0.066 (5)0.011 (6)0.008 (5)0.008 (5)
C160.082 (6)0.115 (8)0.065 (5)0.022 (7)0.009 (6)0.029 (6)
C170.089 (8)0.077 (6)0.099 (7)0.006 (6)0.017 (6)0.044 (6)
C180.060 (6)0.061 (5)0.077 (5)0.004 (5)0.009 (5)0.024 (5)
C190.050 (4)0.054 (5)0.065 (4)0.003 (4)0.008 (4)0.009 (4)
C200.043 (4)0.053 (4)0.071 (4)0.003 (5)0.016 (5)0.001 (4)
C210.054 (5)0.071 (5)0.096 (6)0.010 (5)0.019 (5)0.007 (6)
C220.072 (6)0.075 (6)0.163 (10)0.024 (6)0.038 (7)0.020 (7)
C230.081 (8)0.061 (6)0.185 (13)0.000 (6)0.077 (9)0.020 (7)
C240.098 (9)0.090 (7)0.125 (8)0.016 (8)0.038 (7)0.047 (7)
C250.068 (6)0.080 (6)0.080 (5)0.012 (6)0.017 (5)0.011 (5)
C260.034 (3)0.037 (3)0.042 (3)0.001 (4)0.001 (4)0.001 (3)
C270.055 (5)0.056 (5)0.055 (4)0.008 (5)0.006 (4)0.001 (4)
C280.086 (6)0.044 (4)0.070 (5)0.004 (5)0.014 (5)0.011 (4)
C290.098 (6)0.056 (4)0.051 (4)0.004 (6)0.013 (6)0.011 (4)
C300.076 (5)0.087 (6)0.042 (4)0.026 (6)0.013 (4)0.002 (5)
C310.053 (4)0.061 (5)0.046 (4)0.008 (4)0.000 (4)0.003 (4)
Geometric parameters (Å, º) top
Sn1—C72.130 (3)C14—H140.9300
Sn1—C262.138 (5)C15—C161.369 (10)
Sn1—C12.145 (6)C15—H150.9300
Sn1—O12.394 (4)C16—C171.369 (11)
Sn1—Cl12.4972 (19)C16—H160.9300
O1—S11.524 (4)C17—C181.371 (10)
S1—C131.774 (6)C17—H170.9300
S1—C191.815 (6)C18—H180.9300
C1—C21.359 (9)C19—C201.496 (9)
C1—C61.373 (8)C19—H19A0.9700
C2—C31.384 (9)C19—H19B0.9700
C2—H20.9300C20—C251.380 (9)
C3—C41.357 (10)C20—C211.386 (9)
C3—H30.9300C21—C221.391 (10)
C4—C51.354 (10)C21—H21A0.9300
C4—H40.9300C22—C231.358 (12)
C5—C61.398 (9)C22—H22A0.9300
C5—H50.9300C23—C241.384 (13)
C6—H60.9300C23—H23A0.9300
C7—C81.3900C24—C251.399 (11)
C7—C121.3900C24—H24A0.9300
C8—C91.3900C25—H25A0.9300
C8—H80.9300C26—C271.364 (8)
C9—C101.3900C26—C311.398 (8)
C9—H90.9300C27—C281.382 (9)
C10—C111.3900C27—H270.9300
C10—H100.9300C28—C291.367 (11)
C11—C121.3900C28—H280.9300
C11—H110.9300C29—C301.364 (10)
C12—H120.9300C29—H290.9300
C13—C141.353 (9)C30—C311.379 (9)
C13—C181.378 (9)C30—H300.9300
C14—C151.388 (9)C31—H310.9300
C7—Sn1—C26114.73 (19)C15—C14—H14120.1
C7—Sn1—C1126.6 (2)C16—C15—C14119.6 (8)
C26—Sn1—C1116.7 (2)C16—C15—H15120.2
C7—Sn1—O184.78 (19)C14—C15—H15120.2
C26—Sn1—O187.7 (2)C17—C16—C15120.3 (9)
C1—Sn1—O183.87 (19)C17—C16—H16119.8
C7—Sn1—Cl192.09 (16)C15—C16—H16119.8
C26—Sn1—Cl195.67 (19)C16—C17—C18120.0 (8)
C1—Sn1—Cl196.24 (18)C16—C17—H17120.0
O1—Sn1—Cl1176.15 (12)C18—C17—H17120.0
S1—O1—Sn1120.4 (2)C17—C18—C13119.7 (8)
O1—S1—C13105.7 (3)C17—C18—H18120.2
O1—S1—C19102.8 (3)C13—C18—H18120.2
C13—S1—C19100.7 (3)C20—C19—S1113.6 (5)
C2—C1—C6117.8 (6)C20—C19—H19A108.8
C2—C1—Sn1122.0 (5)S1—C19—H19A108.8
C6—C1—Sn1120.1 (5)C20—C19—H19B108.8
C1—C2—C3121.2 (7)S1—C19—H19B108.8
C1—C2—H2119.4H19A—C19—H19B107.7
C3—C2—H2119.4C25—C20—C21118.2 (7)
C4—C3—C2120.9 (8)C25—C20—C19120.2 (8)
C4—C3—H3119.5C21—C20—C19121.6 (7)
C2—C3—H3119.5C20—C21—C22120.6 (9)
C5—C4—C3118.9 (7)C20—C21—H21A119.7
C5—C4—H4120.5C22—C21—H21A119.7
C3—C4—H4120.5C23—C22—C21120.1 (10)
C4—C5—C6120.3 (7)C23—C22—H22A120.0
C4—C5—H5119.8C21—C22—H22A120.0
C6—C5—H5119.8C22—C23—C24121.3 (10)
C1—C6—C5120.8 (7)C22—C23—H23A119.4
C1—C6—H6119.6C24—C23—H23A119.4
C5—C6—H6119.6C23—C24—C25117.9 (10)
C8—C7—C12120.0C23—C24—H24A121.0
C8—C7—Sn1117.8 (3)C25—C24—H24A121.0
C12—C7—Sn1122.2 (3)C20—C25—C24121.9 (9)
C7—C8—C9120.0C20—C25—H25A119.0
C7—C8—H8120.0C24—C25—H25A119.0
C9—C8—H8120.0C27—C26—C31116.9 (6)
C10—C9—C8120.0C27—C26—Sn1122.8 (5)
C10—C9—H9120.0C31—C26—Sn1120.3 (5)
C8—C9—H9120.0C26—C27—C28123.0 (7)
C9—C10—C11120.0C26—C27—H27118.5
C9—C10—H10120.0C28—C27—H27118.5
C11—C10—H10120.0C29—C28—C27118.8 (8)
C10—C11—C12120.0C29—C28—H28120.6
C10—C11—H11120.0C27—C28—H28120.6
C12—C11—H11120.0C30—C29—C28120.1 (7)
C11—C12—C7120.0C30—C29—H29119.9
C11—C12—H12120.0C28—C29—H29119.9
C7—C12—H12120.0C29—C30—C31120.5 (7)
C14—C13—C18120.6 (6)C29—C30—H30119.8
C14—C13—S1121.7 (5)C31—C30—H30119.8
C18—C13—S1117.7 (6)C30—C31—C26120.7 (7)
C13—C14—C15119.8 (7)C30—C31—H31119.7
C13—C14—H14120.1C26—C31—H31119.7

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3Cl(C13H12OS)]
Mr601.73
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.744 (5), 10.016 (3), 28.840 (5)
V3)2814.7 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.32 × 0.28 × 0.21
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Bruker, 1996)
Tmin, Tmax0.720, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
3690, 3463, 2794
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.067, 1.02
No. of reflections3463
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.40
Absolute structureFlack (1983), 626 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation, China (grant No. ZR2010BL012).

References

First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Tin Chemistry: Fundamentals, Frontiers, and Applications. Chichester: John Wiley & Sons.  Google Scholar
First citationDokorou, V., Primikiri, A. & Kovala-Demertzi, D. (2011). J. Inorg. Biochem. 105, 195–199.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFilgueiras, C. A. L., Holland, P. R., Johnson, B. F. G. & Raithby, P. R. (1982). Acta Cryst. B38, 2684–2686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuller, A. L., Aitken, R. A., Ryan, B. M., Slawin, A. M. Z. & Woollins, J. D. (2009). J. Chem. Crystallogr. 39, 407–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S., Shadab, S. M. & Idrees, M. (2009). Acta Cryst. E65, m1602–m1603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds