organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4,5,5-Tetra­methyl-2-[1,3,6,8-tetra­bromo-7-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)pyren-2-yl]-1,3,2-dioxaborolane

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: yupping@sdu.edu.cn

(Received 14 January 2012; accepted 11 February 2012; online 17 February 2012)

The complete mol­ecule of the title compound, C28H28B2Br4O4, is generated by the application of a centre of inversion. In the mol­ecule, the BO2 plane is perpendicular to that through the pyrene ring [dihedral angle = 86.27 (13)°]. In the crystal, mol­ecules stack into columns along the b axis, the closest contact between these being of the type C—Br⋯π.

Related literature

For background to the reactions of pyrene, see: Miura & Yamano (1995[Miura, T. & Yamano, E. (1995). J. Org. Chem. 60, 1070-1073.]). For the structure of the non-brominated derivative, see: Coventry et al. (2005[Coventry, D. N., Batsanov, A. S., Goeta, A. E. H., Judith, A. K., Marder, T. B. & Perutz, R. N. (2005). Chem. Commun. pp. 2172-2174.]).

[Scheme 1]

Experimental

Crystal data
  • C28H28B2Br4O4

  • Mr = 769.76

  • Monoclinic, P 21 /c

  • a = 15.5047 (10) Å

  • b = 7.5136 (5) Å

  • c = 13.9191 (9) Å

  • β = 113.961 (1)°

  • V = 1481.78 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 296 K

  • 0.34 × 0.24 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.258, Tmax = 0.475

  • 8745 measured reflections

  • 3344 independent reflections

  • 2488 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.109

  • S = 1.01

  • 3344 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C5/C8/C9/C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—Br2⋯Cg1i 1.90 (1) 3.48 (1) 4.921 (3) 130 (1)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX-2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The chemistry of pyrene is strongly position-dependent. For example, in the bromination reaction of 2,7-di-t-butylpyrene, the bromide atoms were connected at the 4,5,9,10-positions of pyrene (Miura & Yamano, 1995). However, to our surprise, when the t-butyl group is changed to pinacol boronate, the bromination reaction resulted in bromination at the 1,3,6,8-positions as confirmed by the crystal structure described herein.

The molecule, Fig. 1, is centrosymmetric. Before bromination, the two BO2 groups are nearly co-planar with the pyrene ring (Coventry et al., 2005). However, they become nearly perpendicular after bromination (dihedral angle 86.27 (13)°).

The molecules pack into columns along the b axis, Fig. 2. The most prominent contacts in the structure appear to be of the type C—Br···π, Table 1.

Related literature top

For background to the reactions of pyrene, see: Miura & Yamano (1995). For the structure of the non-brominated derivative, see: Coventry et al. (2005).

Experimental top

The title compound was synthesized via a one-step bromination reaction. The precursor compound, 2,7-di-Bpinpyrene (pin = O2C2Me4) was prepared using the method of Ir-catalyzed borylation (Coventry et al., 2005). To a stirred mixture of 1.36 g (3.0 mmol) of 2,7-di-Bpinpyrene and a small amount of Fe powder (ca 0.10 g) in 80 ml of CCl4 was added drop-wise a solution of 2.88 g (0.78 mL, 18 mmol) of bromine in 20 ml of CCl4 at room temperature. After stirring for 5 h, the mixture was slowly poured into ice water. Then the organic layer was collected and washed with aqueous Na2S2O3 and dried over MgSO4. After evaporation, the residue was crystallized from hexane, giving 1.80 g (78% yield) of gray powdered product. Crystals were grown by slow evaporation from its hexane/dichloromethane solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93–0.96 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX-2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The packing in the title molecules in crystal viewed approximately down the b axis. Intermolecular Br···C (3.414 (3) Å) contacts, being representative of the Br···π contacts are shown as dashed lines.
4,4,5,5-Tetramethyl-2-[1,3,6,8-tetrabromo-7-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)pyren-2-yl]-1,3,2-dioxaborolane top
Crystal data top
C28H28B2Br4O4F(000) = 756
Mr = 769.76Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3344 reflections
a = 15.5047 (10) Åθ = 2.9–27.4°
b = 7.5136 (5) ŵ = 5.46 mm1
c = 13.9191 (9) ÅT = 296 K
β = 113.961 (1)°Pod, colourless
V = 1481.78 (17) Å30.34 × 0.24 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3344 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with i > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2018
Tmin = 0.258, Tmax = 0.475k = 99
8745 measured reflectionsl = 918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.4343P]
where P = (Fo2 + 2Fc2)/3
3344 reflections(Δ/σ)max = 0.007
176 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C28H28B2Br4O4V = 1481.78 (17) Å3
Mr = 769.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.5047 (10) ŵ = 5.46 mm1
b = 7.5136 (5) ÅT = 296 K
c = 13.9191 (9) Å0.34 × 0.24 × 0.16 mm
β = 113.961 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2488 reflections with i > 2σ(I)
Tmin = 0.258, Tmax = 0.475Rint = 0.026
8745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.60 e Å3
3344 reflectionsΔρmin = 0.67 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.77662 (3)0.70726 (6)0.97202 (4)0.07199 (18)
Br20.58141 (3)0.07842 (5)0.79828 (3)0.06680 (17)
O10.73711 (17)0.4128 (3)0.75325 (18)0.0521 (6)
O20.81831 (17)0.2540 (4)0.89972 (18)0.0603 (7)
C10.8075 (4)0.3192 (8)0.6352 (3)0.0949 (17)
H1A0.76190.22480.61140.142*
H1B0.86520.28120.63160.142*
H1C0.78350.42180.59140.142*
C20.8258 (2)0.3653 (5)0.7461 (3)0.0537 (9)
C30.6666 (2)0.4017 (4)0.8923 (2)0.0380 (6)
C40.5917 (2)0.2876 (4)0.8788 (2)0.0395 (7)
C50.5247 (2)0.3199 (4)0.9201 (2)0.0377 (6)
C60.4480 (2)0.2033 (4)0.9060 (3)0.0503 (8)
H60.44170.09850.86810.060*
C70.3844 (2)0.2413 (5)0.9460 (3)0.0522 (9)
H70.33480.16280.93450.063*
C80.6087 (2)0.6003 (4)0.9941 (2)0.0404 (7)
C90.6728 (2)0.5543 (4)0.9499 (3)0.0424 (7)
C100.8662 (3)0.2212 (5)0.8302 (3)0.0588 (10)
C110.8343 (5)0.0358 (6)0.7828 (6)0.119 (2)
H11A0.84510.04860.83820.178*
H11B0.86970.00150.74290.178*
H11C0.76830.03870.73750.178*
C120.8844 (4)0.5382 (7)0.7748 (5)0.0971 (17)
H12A0.84600.63590.73640.146*
H12B0.93780.52610.75710.146*
H12C0.90590.56000.84890.146*
C130.9711 (3)0.2251 (10)0.8940 (4)0.113 (2)
H13A0.98820.33480.93250.169*
H13B1.00320.21600.84790.169*
H13C0.98890.12690.94230.169*
C140.53370 (18)0.4799 (4)0.9788 (2)0.0340 (6)
B10.7425 (2)0.3542 (5)0.8473 (3)0.0397 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0592 (3)0.0748 (3)0.1085 (4)0.02956 (19)0.0614 (3)0.0371 (2)
Br20.0623 (3)0.0677 (3)0.0883 (3)0.01639 (18)0.0490 (2)0.0388 (2)
O10.0482 (13)0.0696 (15)0.0472 (13)0.0173 (11)0.0281 (11)0.0108 (11)
O20.0525 (14)0.0954 (19)0.0458 (13)0.0283 (13)0.0331 (12)0.0213 (13)
C10.124 (4)0.122 (4)0.058 (3)0.044 (4)0.056 (3)0.016 (3)
C20.053 (2)0.070 (2)0.0533 (19)0.0117 (17)0.0365 (17)0.0064 (17)
C30.0304 (14)0.0502 (17)0.0361 (15)0.0019 (12)0.0164 (12)0.0025 (13)
C40.0353 (15)0.0459 (16)0.0396 (15)0.0015 (12)0.0175 (13)0.0087 (13)
C50.0303 (14)0.0468 (16)0.0389 (15)0.0028 (12)0.0171 (13)0.0058 (13)
C60.0470 (18)0.0480 (19)0.066 (2)0.0136 (14)0.0337 (17)0.0207 (16)
C70.0449 (18)0.0520 (19)0.072 (2)0.0169 (15)0.0358 (18)0.0202 (17)
C80.0342 (15)0.0481 (17)0.0442 (16)0.0061 (13)0.0213 (13)0.0086 (13)
C90.0312 (15)0.0519 (18)0.0493 (18)0.0071 (13)0.0218 (14)0.0045 (14)
C100.054 (2)0.073 (2)0.070 (2)0.0207 (18)0.0466 (19)0.0189 (19)
C110.192 (7)0.055 (3)0.183 (6)0.007 (3)0.153 (6)0.004 (3)
C120.103 (4)0.078 (3)0.144 (5)0.016 (3)0.086 (4)0.003 (3)
C130.057 (3)0.197 (7)0.090 (4)0.045 (4)0.035 (3)0.029 (4)
C140.0288 (13)0.0408 (15)0.0354 (15)0.0024 (11)0.0162 (12)0.0050 (12)
B10.0338 (17)0.0473 (19)0.0427 (19)0.0011 (14)0.0204 (15)0.0029 (15)
Geometric parameters (Å, º) top
Br1—C91.899 (3)C6—H60.9300
Br2—C41.899 (3)C7—C8i1.432 (4)
O1—B11.351 (4)C7—H70.9300
O1—C21.463 (4)C8—C91.408 (4)
O2—B11.336 (4)C8—C141.419 (4)
O2—C101.460 (4)C8—C7i1.432 (4)
C1—C21.492 (5)C10—C131.504 (6)
C1—H1A0.9600C10—C111.535 (7)
C1—H1B0.9600C11—H11A0.9600
C1—H1C0.9600C11—H11B0.9600
C2—C101.530 (5)C11—H11C0.9600
C2—C121.542 (6)C12—H12A0.9600
C3—C91.380 (4)C12—H12B0.9600
C3—C41.394 (4)C12—H12C0.9600
C3—B11.583 (4)C13—H13A0.9600
C4—C51.397 (4)C13—H13B0.9600
C5—C61.425 (4)C13—H13C0.9600
C5—C141.428 (4)C14—C14i1.426 (5)
C6—C71.345 (4)
B1—O1—C2107.2 (3)C3—C9—Br1116.9 (2)
B1—O2—C10107.7 (2)C8—C9—Br1118.9 (2)
C2—C1—H1A109.5O2—C10—C13109.0 (3)
C2—C1—H1B109.5O2—C10—C2103.1 (2)
H1A—C1—H1B109.5C13—C10—C2116.5 (4)
C2—C1—H1C109.5O2—C10—C11106.1 (3)
H1A—C1—H1C109.5C13—C10—C11110.7 (5)
H1B—C1—H1C109.5C2—C10—C11110.7 (4)
O1—C2—C1109.7 (3)C10—C11—H11A109.5
O1—C2—C10103.0 (2)C10—C11—H11B109.5
C1—C2—C10118.3 (4)H11A—C11—H11B109.5
O1—C2—C12104.4 (3)C10—C11—H11C109.5
C1—C2—C12108.0 (4)H11A—C11—H11C109.5
C10—C2—C12112.5 (4)H11B—C11—H11C109.5
C9—C3—C4116.6 (3)C2—C12—H12A109.5
C9—C3—B1122.0 (3)C2—C12—H12B109.5
C4—C3—B1121.4 (3)H12A—C12—H12B109.5
C3—C4—C5123.7 (3)C2—C12—H12C109.5
C3—C4—Br2117.0 (2)H12A—C12—H12C109.5
C5—C4—Br2119.2 (2)H12B—C12—H12C109.5
C4—C5—C6123.7 (3)C10—C13—H13A109.5
C4—C5—C14117.7 (2)C10—C13—H13B109.5
C6—C5—C14118.6 (2)H13A—C13—H13B109.5
C7—C6—C5121.6 (3)C10—C13—H13C109.5
C7—C6—H6119.2H13A—C13—H13C109.5
C5—C6—H6119.2H13B—C13—H13C109.5
C6—C7—C8i121.6 (3)C8—C14—C14i119.8 (3)
C6—C7—H7119.2C8—C14—C5120.4 (2)
C8i—C7—H7119.2C14i—C14—C5119.8 (3)
C9—C8—C14117.3 (3)O2—B1—O1114.1 (3)
C9—C8—C7i124.0 (3)O2—B1—C3122.8 (3)
C14—C8—C7i118.6 (3)O1—B1—C3123.1 (3)
C3—C9—C8124.2 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C5/C8/C9/C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—Br2···Cg1ii1.90 (1)3.48 (1)4.921 (3)130 (1)
Symmetry code: (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC28H28B2Br4O4
Mr769.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.5047 (10), 7.5136 (5), 13.9191 (9)
β (°) 113.961 (1)
V3)1481.78 (17)
Z2
Radiation typeMo Kα
µ (mm1)5.46
Crystal size (mm)0.34 × 0.24 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.258, 0.475
No. of measured, independent and
observed [i > 2σ(I)] reflections
8745, 3344, 2488
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.109, 1.01
No. of reflections3344
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.67

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX-2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C5/C8/C9/C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—Br2···Cg1i1.899 (3)3.4834 (13)4.921 (3)129.82 (9)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos 20802026 and 50803033).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoventry, D. N., Batsanov, A. S., Goeta, A. E. H., Judith, A. K., Marder, T. B. & Perutz, R. N. (2005). Chem. Commun. pp. 2172–2174.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiura, T. & Yamano, E. (1995). J. Org. Chem. 60, 1070–1073.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds