organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tramadolium picrate

aDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India, and bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 31 January 2012; accepted 31 January 2012; online 4 February 2012)

In the title salt {systematic name: [2-hy­droxy-3-(3-meth­oxy­phen­yl)cyclo­hexyl­meth­yl]dimethyl­aza­nium 2,4,6-trinitro­phenol­ate}, C16H26NO2+·C6H2N3O7, the cation is protonated at the N atom. The cyclo­hexane ring adopts a chair conformation with the hy­droxy substituent in an axial position. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the cations and anions into supra­molecular chains along [100].

Related literature

For general background to tramadol, see: Scott & Perry (2000[Scott, L. J. & Perry, C. M. (2000). Drugs, 60, 139-176.]). For related tramadolium crystal structures, see: Bica et al. (2010[Bica, K., Rijksen, C., Nieuwenhuyzen, M. & Rogers, R. D. (2010). Phys. Chem. Chem. Phys. 12, 2011-2017.]); Siddaraju et al. (2011[Siddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2351.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26NO2+·C6H2N3O7

  • Mr = 492.48

  • Triclinic, [P \overline 1]

  • a = 8.5674 (10) Å

  • b = 12.3664 (12) Å

  • c = 13.2276 (13) Å

  • α = 113.003 (9)°

  • β = 107.686 (10)°

  • γ = 95.541 (9)°

  • V = 1191.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.35 × 0.2 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.974, Tmax = 1.000

  • 8566 measured reflections

  • 4838 independent reflections

  • 3621 reflections with I > 2s(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 1.02

  • 4838 reflections

  • 417 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O22Ai 0.92 (4) 2.09 (4) 2.944 (2) 155 (3)
N22—H22⋯O1Aii 0.84 (2) 1.94 (2) 2.692 (2) 150 (2)
Symmetry codes: (i) x-1, y-1, z; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tramadol, systematic name, 2-((dimethylamino)methyl)-1-(3-methoxyphenyl) cyclohexanol, is classified as a central nervous system drug usually marketed as the hydrochloride salt. Tramadol hydrochloride is a centrally acting opioid analgesic, used in treating moderate to severe pain. The drug has a wide range of applications, including for the treatment for restless leg syndrome and fibromyalgia. Tramadol is a synthetic analog of the phenanthrene alkaloid codeine and as such, is an opioid. A review on the use of tramadol in perioperative pain is published (Scott & Perry, 2000). We have recently reported the crystal structure of tramadolium chloride - benzoic acid (1/1) (Siddaraju et al., 2011), also the structure of trimadolium salicylate is known (Bica et al., 2010). In view of the importance of tramadol, the paper reports the crystal structure of the tramadol picrate (1, Scheme 1), C16H26O2N+.C6H2N3O7-.

The protonation of tramadol molecule takes place at the sp3 nitrogen atom (the hydrogen atom was found in difference Fourier map and successfully refined), and results in the quaternary ammonium cation. The cyclohexane ring adopts the typical chair conformation (Fig. 1). The deviations from the ideal D3d symmetry are quite small, and the values of the asymmetry parameters (Duax & Norton, 1975) are smaller than 1.7°. The hydroxy substituent is in an axial position (the C5—C6—C1—O1 torsion angle is 65.3 (3)°), while the other two are in equatorial positions [C5—C6—C1—C11 is -177.6 (2)° and C4—C3—C2—C21 is -177.70 (19)°]. The six-membered ring of the picrate anion is planar (Fig. 1) within 0.019 (1) Å. The nitro group at the position four is almost co-planar with the ring plane [dihedral angle of 2.4 (3)°], while the other two groups, due to the steric hindrance, are twisted by 37.0 (2)° and 27.3 (2)°. The C—O(-) bond length is typical for the picrate anion as the mean value for 542 organic hits from the CSD (Allen 2002, Ver. 5.33 Nov 2011) is 1.249 (16) Å.

In the crystal structure the O—H···O and N—H···O hydrogen bonds link the cations and anions into supramolecular chains along [100] (Fig. 2 and Table 1).

Related literature top

For a general background to tramadol, see: Scott & Perry (2000). For related tramadolium crystal structures, see: Bica et al. (2010); Siddaraju et al. (2011). For asymmetry parameters, see: Duax & Norton (1975). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

Tramadol hydrochloride (2.84 g, 0.01 mol) was dissolved in 10 ml of methanol and picric acid (1.23 g, 0.01 mol) was dissolved in 10 ml of methanol. The solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. The product formed was recrystallized from dimethyl sulphoxide by slow evaporation (M.pt.: 491–493 K).

Refinement top

Hydrogen atoms from C131 methyl groups were put in calculated positions and refined as a riding model with Uiso = 1.5 times Ueq(C131). All other hydrogen atoms were located in difference Fourier maps and refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the ionic components of the salt 1, together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, and hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. The hydrogen-bonded chain of cations and anions as seen approximately along [001]. Hydrogen bonds are drawn as dashed lines.
[2-hydroxy-3-(3-methoxyphenyl)cyclohexylmethyl]dimethylazanium 2,4,6-trinitrophenolate top
Crystal data top
C16H26NO2+·C6H2N3O7Z = 2
Mr = 492.48F(000) = 520
Triclinic, P1Dx = 1.373 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 8.5674 (10) ÅCell parameters from 3082 reflections
b = 12.3664 (12) Åθ = 3.0–28.1°
c = 13.2276 (13) ŵ = 0.11 mm1
α = 113.003 (9)°T = 295 K
β = 107.686 (10)°Block, colourless
γ = 95.541 (9)°0.35 × 0.2 × 0.15 mm
V = 1191.4 (2) Å3
Data collection top
Agilent Xcalibur Eos
diffractometer
4838 independent reflections
Radiation source: Enhance (Mo) X-ray Source3621 reflections with I > 2s(I)
Graphite monochromatorRint = 0.011
Detector resolution: 16.1544 pixels mm-1θmax = 28.2°, θmin = 3.0°
ω–scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1511
Tmin = 0.974, Tmax = 1.000l = 1617
8566 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.4321P]
where P = (Fo2 + 2Fc2)/3
4838 reflections(Δ/σ)max = 0.005
417 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H26NO2+·C6H2N3O7γ = 95.541 (9)°
Mr = 492.48V = 1191.4 (2) Å3
Triclinic, P1Z = 2
a = 8.5674 (10) ÅMo Kα radiation
b = 12.3664 (12) ŵ = 0.11 mm1
c = 13.2276 (13) ÅT = 295 K
α = 113.003 (9)°0.35 × 0.2 × 0.15 mm
β = 107.686 (10)°
Data collection top
Agilent Xcalibur Eos
diffractometer
4838 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3621 reflections with I > 2s(I)
Tmin = 0.974, Tmax = 1.000Rint = 0.011
8566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.37 e Å3
4838 reflectionsΔρmin = 0.27 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.9734 (3)0.89229 (17)0.68387 (17)0.0403 (4)
O1A0.9951 (2)1.00270 (12)0.71283 (15)0.0588 (4)
C2A1.1124 (3)0.83738 (17)0.71022 (17)0.0403 (4)
N2A1.2837 (2)0.91273 (16)0.76034 (16)0.0498 (4)
O21A1.3924 (2)0.8969 (2)0.8330 (2)0.0913 (7)
O22A1.3123 (2)0.98591 (15)0.72350 (16)0.0697 (5)
C3A1.0940 (3)0.71953 (19)0.6920 (2)0.0479 (5)
H3A11.190 (3)0.691 (2)0.713 (2)0.068 (7)*
C4A0.9333 (3)0.64419 (18)0.6403 (2)0.0486 (5)
N4A0.9126 (3)0.51879 (18)0.6183 (2)0.0681 (6)
O41A1.0393 (3)0.48393 (19)0.6489 (3)0.1242 (11)
O42A0.7713 (3)0.45180 (16)0.5689 (2)0.0864 (6)
C5A0.7912 (3)0.68683 (19)0.60864 (19)0.0454 (5)
H5A10.685 (3)0.638 (2)0.5742 (19)0.048 (6)*
C6A0.8118 (3)0.80560 (17)0.62821 (17)0.0414 (4)
N6A0.6574 (3)0.84536 (17)0.59322 (17)0.0565 (5)
O61A0.6625 (2)0.92878 (17)0.56641 (18)0.0814 (6)
O62A0.5283 (3)0.7920 (2)0.5906 (2)0.0943 (7)
C10.5866 (2)0.31738 (17)0.83219 (18)0.0398 (4)
O10.43718 (17)0.22657 (14)0.74367 (15)0.0520 (4)
H10.431 (4)0.158 (3)0.755 (3)0.101 (11)*
C110.5844 (2)0.42921 (17)0.80911 (17)0.0387 (4)
C120.7099 (3)0.53512 (19)0.8845 (2)0.0461 (5)
H120.793 (3)0.539 (2)0.947 (2)0.057 (7)*
C130.7053 (3)0.64088 (18)0.86989 (19)0.0460 (5)
O130.8299 (2)0.74161 (15)0.95557 (17)0.0739 (5)
C1310.8202 (4)0.8534 (2)0.9519 (3)0.0740 (8)
H13A0.83440.85070.88180.089*
H13B0.90770.91731.02050.089*
H13C0.71190.86810.95100.089*
C140.5779 (3)0.6393 (2)0.77609 (19)0.0469 (5)
H140.576 (3)0.709 (2)0.764 (2)0.053 (6)*
C150.4555 (3)0.5330 (2)0.7000 (2)0.0553 (6)
H150.363 (3)0.528 (2)0.632 (2)0.065 (7)*
C160.4568 (3)0.4293 (2)0.7159 (2)0.0507 (5)
H160.370 (3)0.353 (2)0.661 (2)0.061 (7)*
C20.7448 (2)0.26816 (17)0.82194 (16)0.0339 (4)
H20.838 (3)0.3376 (19)0.8804 (18)0.041 (5)*
C210.7437 (2)0.23599 (18)0.69854 (17)0.0390 (4)
H21A0.746 (2)0.3074 (19)0.6776 (17)0.042 (5)*
H21B0.637 (3)0.169 (2)0.6343 (19)0.047 (6)*
N220.8910 (2)0.18804 (15)0.67745 (15)0.0403 (4)
H220.886 (3)0.124 (2)0.6850 (19)0.050 (6)*
C231.0577 (3)0.2729 (3)0.7626 (3)0.0607 (6)
H23A1.056 (3)0.349 (3)0.759 (2)0.080 (8)*
H23B1.146 (4)0.233 (3)0.731 (3)0.092 (9)*
H23C1.071 (3)0.284 (2)0.846 (3)0.073 (8)*
C240.8724 (5)0.1546 (3)0.5527 (3)0.0727 (9)
H24A0.876 (3)0.227 (3)0.536 (2)0.079 (8)*
H24B0.964 (4)0.114 (3)0.537 (3)0.092 (9)*
H24C0.755 (5)0.097 (4)0.500 (3)0.129 (15)*
C30.7531 (3)0.16293 (19)0.8552 (2)0.0431 (5)
H3A0.663 (3)0.095 (2)0.796 (2)0.052 (6)*
H3B0.856 (3)0.1377 (18)0.8509 (17)0.041 (5)*
C40.7468 (4)0.1960 (3)0.9774 (2)0.0612 (7)
H4A0.743 (3)0.129 (2)0.992 (2)0.066 (7)*
H4B0.852 (4)0.265 (3)1.044 (3)0.081 (9)*
C50.5934 (4)0.2432 (2)0.9878 (3)0.0597 (6)
H5A0.599 (3)0.270 (2)1.071 (2)0.066 (7)*
H5B0.493 (4)0.174 (3)0.940 (2)0.073 (8)*
C60.5841 (3)0.3481 (2)0.9559 (2)0.0517 (5)
H6A0.678 (3)0.417 (2)1.014 (2)0.050 (6)*
H6B0.481 (3)0.378 (2)0.961 (2)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0555 (12)0.0352 (10)0.0390 (10)0.0203 (9)0.0207 (9)0.0206 (8)
O1A0.0644 (10)0.0318 (7)0.0767 (11)0.0196 (7)0.0179 (8)0.0252 (7)
C2A0.0506 (11)0.0348 (10)0.0425 (10)0.0151 (8)0.0187 (9)0.0218 (8)
N2A0.0537 (11)0.0411 (9)0.0550 (10)0.0141 (8)0.0171 (9)0.0236 (8)
O21A0.0596 (11)0.1014 (16)0.1193 (17)0.0151 (10)0.0047 (11)0.0776 (14)
O22A0.0708 (11)0.0561 (10)0.0815 (12)0.0009 (8)0.0201 (9)0.0393 (9)
C3A0.0574 (13)0.0408 (11)0.0575 (13)0.0232 (10)0.0229 (11)0.0299 (10)
C4A0.0641 (13)0.0336 (10)0.0583 (13)0.0171 (10)0.0252 (11)0.0273 (9)
N4A0.0760 (15)0.0414 (11)0.0956 (16)0.0172 (11)0.0282 (13)0.0409 (11)
O41A0.0873 (15)0.0650 (13)0.233 (3)0.0327 (12)0.0346 (17)0.0937 (17)
O42A0.0896 (14)0.0465 (10)0.1185 (17)0.0069 (10)0.0238 (13)0.0457 (11)
C5A0.0544 (13)0.0384 (11)0.0448 (11)0.0110 (10)0.0186 (10)0.0197 (9)
C6A0.0509 (11)0.0377 (10)0.0404 (10)0.0198 (9)0.0180 (9)0.0192 (8)
N6A0.0557 (12)0.0469 (10)0.0601 (12)0.0193 (9)0.0122 (9)0.0226 (9)
O61A0.0756 (12)0.0635 (11)0.1009 (15)0.0264 (10)0.0071 (11)0.0496 (11)
O62A0.0577 (11)0.1019 (16)0.144 (2)0.0319 (11)0.0339 (12)0.0747 (15)
C10.0372 (10)0.0368 (10)0.0487 (11)0.0127 (8)0.0204 (9)0.0179 (9)
O10.0380 (7)0.0442 (8)0.0727 (10)0.0099 (6)0.0196 (7)0.0256 (8)
C110.0431 (10)0.0360 (9)0.0471 (11)0.0189 (8)0.0276 (9)0.0182 (8)
C120.0443 (11)0.0494 (12)0.0495 (12)0.0198 (10)0.0158 (10)0.0261 (10)
C130.0446 (11)0.0407 (11)0.0565 (12)0.0148 (9)0.0210 (10)0.0226 (10)
O130.0629 (10)0.0461 (9)0.0921 (13)0.0018 (8)0.0017 (10)0.0336 (9)
C1310.0787 (18)0.0458 (13)0.0875 (19)0.0036 (12)0.0190 (15)0.0316 (13)
C140.0574 (13)0.0442 (11)0.0535 (12)0.0249 (10)0.0270 (11)0.0281 (10)
C150.0611 (14)0.0552 (13)0.0488 (12)0.0265 (11)0.0150 (11)0.0236 (11)
C160.0511 (12)0.0459 (12)0.0516 (12)0.0181 (10)0.0176 (10)0.0178 (10)
C20.0339 (9)0.0338 (9)0.0391 (10)0.0126 (8)0.0170 (8)0.0175 (8)
C210.0421 (10)0.0413 (10)0.0445 (11)0.0213 (9)0.0208 (9)0.0237 (9)
N220.0523 (10)0.0386 (9)0.0508 (10)0.0260 (8)0.0314 (8)0.0277 (8)
C230.0472 (13)0.0650 (16)0.090 (2)0.0226 (12)0.0360 (13)0.0444 (15)
C240.122 (3)0.0782 (19)0.0646 (16)0.062 (2)0.0652 (19)0.0459 (16)
C30.0503 (12)0.0438 (11)0.0523 (12)0.0235 (10)0.0287 (11)0.0280 (10)
C40.0846 (18)0.0710 (16)0.0669 (16)0.0406 (15)0.0463 (15)0.0500 (15)
C50.0804 (17)0.0624 (15)0.0678 (16)0.0305 (14)0.0517 (15)0.0385 (13)
C60.0665 (15)0.0490 (12)0.0621 (14)0.0274 (12)0.0439 (13)0.0284 (11)
Geometric parameters (Å, º) top
C1A—O1A1.243 (2)C131—H13C0.9600
C1A—C6A1.444 (3)C14—C151.378 (3)
C1A—C2A1.446 (3)C14—H140.94 (2)
C2A—C3A1.365 (3)C15—C161.379 (3)
C2A—N2A1.457 (3)C15—H150.98 (3)
N2A—O21A1.211 (2)C16—H160.99 (2)
N2A—O22A1.221 (2)C2—C211.518 (3)
C3A—C4A1.383 (3)C2—C31.529 (3)
C3A—H3A10.93 (3)C2—H20.97 (2)
C4A—C5A1.386 (3)C21—N221.500 (2)
C4A—N4A1.443 (3)C21—H21A1.02 (2)
N4A—O42A1.216 (3)C21—H21B1.04 (2)
N4A—O41A1.220 (3)N22—C241.488 (3)
C5A—C6A1.371 (3)N22—C231.490 (3)
C5A—H5A10.91 (2)N22—H220.84 (2)
C6A—N6A1.462 (3)C23—H23A0.97 (3)
N6A—O61A1.216 (3)C23—H23B1.04 (3)
N6A—O62A1.216 (3)C23—H23C1.03 (3)
C1—O11.434 (2)C24—H24A1.01 (3)
C1—C111.529 (3)C24—H24B1.01 (3)
C1—C61.536 (3)C24—H24C1.02 (4)
C1—C21.559 (2)C3—C41.524 (3)
O1—H10.92 (4)C3—H3A0.96 (2)
C11—C161.378 (3)C3—H3B0.97 (2)
C11—C121.386 (3)C4—C51.510 (3)
C12—C131.397 (3)C4—H4A0.92 (3)
C12—H120.89 (2)C4—H4B1.05 (3)
C13—O131.371 (3)C5—C61.515 (3)
C13—C141.373 (3)C5—H5A1.01 (3)
O13—C1311.411 (3)C5—H5B0.99 (3)
C131—H13A0.9600C6—H6A0.97 (2)
C131—H13B0.9600C6—H6B1.00 (3)
O1A—C1A—C6A125.64 (18)C11—C16—H16117.3 (14)
O1A—C1A—C2A122.28 (19)C15—C16—H16122.6 (14)
C6A—C1A—C2A111.98 (16)C21—C2—C3113.46 (15)
C3A—C2A—C1A124.3 (2)C21—C2—C1108.86 (15)
C3A—C2A—N2A117.66 (18)C3—C2—C1111.17 (15)
C1A—C2A—N2A118.00 (16)C21—C2—H2110.4 (12)
O21A—N2A—O22A122.9 (2)C3—C2—H2109.8 (12)
O21A—N2A—C2A118.80 (18)C1—C2—H2102.6 (12)
O22A—N2A—C2A118.19 (17)N22—C21—C2114.14 (15)
C2A—C3A—C4A119.19 (19)N22—C21—H21A104.9 (11)
C2A—C3A—H3A1119.3 (16)C2—C21—H21A113.9 (11)
C4A—C3A—H3A1121.5 (16)N22—C21—H21B105.2 (12)
C3A—C4A—C5A121.13 (19)C2—C21—H21B111.3 (12)
C3A—C4A—N4A119.63 (19)H21A—C21—H21B106.7 (16)
C5A—C4A—N4A119.2 (2)C24—N22—C23111.6 (2)
O42A—N4A—O41A122.6 (2)C24—N22—C21109.29 (18)
O42A—N4A—C4A119.4 (2)C23—N22—C21113.29 (17)
O41A—N4A—C4A118.0 (2)C24—N22—H22106.7 (16)
C6A—C5A—C4A119.0 (2)C23—N22—H22108.3 (16)
C6A—C5A—H5A1119.3 (14)C21—N22—H22107.3 (16)
C4A—C5A—H5A1121.8 (14)N22—C23—H23A106.9 (17)
C5A—C6A—C1A124.27 (18)N22—C23—H23B104.6 (17)
C5A—C6A—N6A116.47 (19)H23A—C23—H23B112 (2)
C1A—C6A—N6A119.22 (17)N22—C23—H23C108.7 (15)
O61A—N6A—O62A122.7 (2)H23A—C23—H23C110 (2)
O61A—N6A—C6A119.0 (2)H23B—C23—H23C114 (2)
O62A—N6A—C6A118.2 (2)N22—C24—H24A111.9 (16)
O1—C1—C11106.66 (16)N22—C24—H24B108.4 (18)
O1—C1—C6109.89 (17)H24A—C24—H24B111 (2)
C11—C1—C6109.94 (16)N22—C24—H24C107 (2)
O1—C1—C2109.06 (15)H24A—C24—H24C107 (3)
C11—C1—C2111.76 (15)H24B—C24—H24C111 (3)
C6—C1—C2109.49 (16)C4—C3—C2112.42 (18)
C1—O1—H1110 (2)C4—C3—H3A111.1 (14)
C16—C11—C12118.14 (19)C2—C3—H3A108.7 (14)
C16—C11—C1121.59 (18)C4—C3—H3B111.0 (12)
C12—C11—C1120.25 (18)C2—C3—H3B108.2 (12)
C11—C12—C13121.5 (2)H3A—C3—H3B105.2 (18)
C11—C12—H12121.1 (16)C5—C4—C3111.5 (2)
C13—C12—H12117.4 (16)C5—C4—H4A108.5 (16)
O13—C13—C14124.68 (19)C3—C4—H4A110.2 (16)
O13—C13—C12115.64 (19)C5—C4—H4B106.0 (16)
C14—C13—C12119.6 (2)C3—C4—H4B111.9 (16)
C13—O13—C131117.77 (19)H4A—C4—H4B109 (2)
O13—C131—H13A109.5C4—C5—C6111.4 (2)
O13—C131—H13B109.5C4—C5—H5A108.8 (14)
H13A—C131—H13B109.5C6—C5—H5A110.1 (15)
O13—C131—H13C109.5C4—C5—H5B107.8 (16)
H13A—C131—H13C109.5C6—C5—H5B114.4 (16)
H13B—C131—H13C109.5H5A—C5—H5B104 (2)
C13—C14—C15118.5 (2)C5—C6—C1113.27 (18)
C13—C14—H14120.5 (14)C5—C6—H6A109.7 (14)
C15—C14—H14121.0 (14)C1—C6—H6A108.8 (13)
C14—C15—C16122.0 (2)C5—C6—H6B111.5 (14)
C14—C15—H15121.1 (15)C1—C6—H6B108.6 (13)
C16—C15—H15116.8 (15)H6A—C6—H6B104.6 (19)
C11—C16—C15120.1 (2)
O1A—C1A—C2A—C3A172.5 (2)C6—C1—C11—C1257.8 (2)
C6A—C1A—C2A—C3A4.0 (3)C2—C1—C11—C1264.0 (2)
O1A—C1A—C2A—N2A7.1 (3)C16—C11—C12—C132.3 (3)
C6A—C1A—C2A—N2A176.48 (16)C1—C11—C12—C13175.95 (17)
C3A—C2A—N2A—O21A35.3 (3)C11—C12—C13—O13175.22 (19)
C1A—C2A—N2A—O21A144.2 (2)C11—C12—C13—C142.8 (3)
C3A—C2A—N2A—O22A141.8 (2)C14—C13—O13—C1314.6 (3)
C1A—C2A—N2A—O22A38.6 (3)C12—C13—O13—C131173.3 (2)
C1A—C2A—C3A—C4A2.9 (3)O13—C13—C14—C15176.5 (2)
N2A—C2A—C3A—C4A177.54 (18)C12—C13—C14—C151.3 (3)
C2A—C3A—C4A—C5A1.0 (3)C13—C14—C15—C160.5 (3)
C2A—C3A—C4A—N4A178.7 (2)C12—C11—C16—C150.5 (3)
C3A—C4A—N4A—O42A177.3 (2)C1—C11—C16—C15177.77 (19)
C5A—C4A—N4A—O42A2.3 (4)C14—C15—C16—C110.9 (3)
C3A—C4A—N4A—O41A1.6 (4)O1—C1—C2—C2158.7 (2)
C5A—C4A—N4A—O41A178.7 (3)C11—C1—C2—C2159.0 (2)
C3A—C4A—C5A—C6A0.6 (3)C6—C1—C2—C21178.94 (17)
N4A—C4A—C5A—C6A179.1 (2)O1—C1—C2—C367.0 (2)
C4A—C5A—C6A—C1A2.1 (3)C11—C1—C2—C3175.30 (16)
C4A—C5A—C6A—N6A179.87 (18)C6—C1—C2—C353.2 (2)
O1A—C1A—C6A—C5A172.8 (2)C3—C2—C21—N2256.1 (2)
C2A—C1A—C6A—C5A3.5 (3)C1—C2—C21—N22179.59 (16)
O1A—C1A—C6A—N6A5.0 (3)C2—C21—N22—C24177.5 (2)
C2A—C1A—C6A—N6A178.72 (17)C2—C21—N22—C2357.4 (2)
C5A—C6A—N6A—O61A152.9 (2)C21—C2—C3—C4177.70 (19)
C1A—C6A—N6A—O61A29.2 (3)C1—C2—C3—C454.6 (2)
C5A—C6A—N6A—O62A26.1 (3)C2—C3—C4—C554.9 (3)
C1A—C6A—N6A—O62A151.8 (2)C3—C4—C5—C654.4 (3)
O1—C1—C11—C161.3 (2)C4—C5—C6—C155.6 (3)
C6—C1—C11—C16120.4 (2)O1—C1—C6—C565.3 (2)
C2—C1—C11—C16117.8 (2)C11—C1—C6—C5177.6 (2)
O1—C1—C11—C12176.91 (16)C2—C1—C6—C554.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O22Ai0.92 (4)2.09 (4)2.944 (2)155 (3)
N22—H22···O1Aii0.84 (2)1.94 (2)2.692 (2)150 (2)
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H26NO2+·C6H2N3O7
Mr492.48
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.5674 (10), 12.3664 (12), 13.2276 (13)
α, β, γ (°)113.003 (9), 107.686 (10), 95.541 (9)
V3)1191.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.2 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.974, 1.000
No. of measured, independent and
observed [I > 2s(I)] reflections
8566, 4838, 3621
Rint0.011
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.02
No. of reflections4838
No. of parameters417
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O22Ai0.92 (4)2.09 (4)2.944 (2)155 (3)
N22—H22···O1Aii0.84 (2)1.94 (2)2.692 (2)150 (2)
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z.
 

Acknowledgements

BPS thanks the University of Mysore for research facilities and HSY thanks R. L. Fine Chem, Bengaluru, India, for a gift sample of tramadol hydro­chloride.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBica, K., Rijksen, C., Nieuwenhuyzen, M. & Rogers, R. D. (2010). Phys. Chem. Chem. Phys. 12, 2011–2017.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.  Google Scholar
First citationScott, L. J. & Perry, C. M. (2000). Drugs, 60, 139–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2351.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds