metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m344-m345

Tri­chloridotris{N-[phen­yl(pyridin-2-yl)­methyl­­idene]hydroxyl­amine-κ2N,N′}samarium(III)

aQinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China, and bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
*Correspondence e-mail: liyahong@suda.edu.cn

(Received 20 February 2012; accepted 23 February 2012; online 29 February 2012)

The SmIII ion in the title compound, [SmCl3(C12H10N2O)3], shows a coordination number of nine with a slightly distorted tricapped trigonal prismatic geometry based on a Cl3N6 donor set. The mol­ecular structure is stabilized by three intra­molecular O—H⋯Cl hydrogen bonds.

Related literature

For related literature on the phenyl-2-pyridyl ketone oxime ligand chelating one metal centre, see: Yin & Liu (2009[Yin, J.-Z. & Liu, G.-X. (2009). Acta Cryst. E65, m155.]); Yan & Liu (2009[Yan, J. & Liu, G.-X. (2009). Acta Cryst. E65, m641.]); Xiang et al. (2006[Xiang, J., Li, Q. & Mei, P. (2006). Acta Cryst. E62, m2348-m2349.]); Milios et al. (2004[Milios, C. J., Stamatatos, T. C., Kyritsis, P., Terzis, A., Raptopoulou, C. P., Vicente, R., Escuer, A. & Perlepes, S. P. (2004). Eur. J. Inorg. Chem. pp. 2885-2901.]). For the phenyl-2-pyridyl ketone oxime ligand bridging two metals, see: Liu et al.. (2011[Liu, G.-X., Guo, W., Nishihara, S. & Ren, X.-M. (2011). Inorg. Chim. Acta, 368, 165-169.]); Holynska & Dehnen (2011[Holynska, M. & Dehnen, S. (2011). Inorg. Chem. Commun. 14, 1290-1292.]); Papatriantafyllopoulou et al. (2007[Papatriantafyllopoulou, C., Aromi, G., Tasiopoulos, A. J., Nastopoulos, V., Raptopoulou, C. P., Teat, S. J., Escuer, A. & Perlepes, S. P. (2007). Eur. J. Inorg. Chem. pp. 2761-2774.]). For the applications of phenyl-2-pyridyl ketone oxime complexes, see: Korpi et al. (2005[Korpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181-1184.]); Stamatatos et al. (2006[Stamatatos, T. C., Vlahopoulou, J. C., Sanakis, Y., Raptopoulou, C. P., Psycharis, V., Boudalis, A. K. & Perlepes, S. P. (2006). Inorg. Chem. Commun. 9, 814-818.]).

[Scheme 1]

Experimental

Crystal data
  • [SmCl3(C12H10N2O)3]

  • Mr = 851.37

  • Triclinic, [P \overline 1]

  • a = 8.6415 (17) Å

  • b = 10.422 (2) Å

  • c = 19.771 (4) Å

  • α = 92.18 (3)°

  • β = 94.47 (3)°

  • γ = 92.62 (3)°

  • V = 1771.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 293 K

  • 0.30 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.595, Tmax = 0.802

  • 32032 measured reflections

  • 8553 independent reflections

  • 7752 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.04

  • 8553 reflections

  • 445 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Sm1—N1 2.578 (2)
Sm1—N2 2.634 (2)
Sm1—N6 2.649 (2)
Sm1—N4 2.668 (2)
Sm1—N5 2.673 (2)
Sm1—N3 2.713 (2)
Sm1—Cl3 2.7501 (9)
Sm1—Cl4 2.7658 (9)
Sm1—Cl2 2.8114 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl3 0.82 2.22 2.960 (2) 150
O2—H2⋯Cl4 0.82 2.18 2.920 (2) 150
O3—H3⋯Cl2 0.82 2.18 2.920 (2) 149

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenyl-2-pyridyl ketone oxime is a ligand used in the synthesis of metal-organic complexes. It usually binds to metals in a bidentate fashion, either chelating one metal centre (Yin & Liu, 2009; Yan & Liu, 2009; Xiang et al., 2006; Milios et al., 2004) or bridging two metals (Liu et al., 2011; Holynska & Dehnen, 2011; Papatriantafyllopoulou et al., 2007). Its complexes find applications in diverse areas such as functional supramolecular design, magnetic materials and catalysis (Korpi et al., 2005; Stamatatos et al., 2006). However, these complexes are focused on transition metals. Here we report a new samarium complex, which is formed by the reaction of SmCl3.6H2O with phenyl-2-pyridyl ketone oxime. The compound consists of three N,N-chelating ligands and three chloride anions. The central SmIII ion adopts a distorted tricapped trigonal prism geometry (Fig. 1), which is ligated by six N atoms from three different phenyl-2-pyridyl ketone oxime ligands and three Cl anions. The Sm—N and Sm—Cl bond distances are in the expected ranges of 2.578 (2)–2.713 (2) Å and 2.7501 (9)–2.8114 (10) Å, respectively (Table 1), and the bond angles around the Sm atom are in the range of 59.12 (6)–146.13 (7)°. Three intramolecular O—H···Cl hydrogen bonds are noted (see Fig. 2 and Table 2).

Related literature top

For related literature on the phenyl-2-pyridyl ketone oxime ligand chelating one metal centre, see: Yin & Liu (2009); Yan & Liu (2009); Xiang et al. (2006); Milios et al. (2004). For the phenyl-2-pyridyl ketone oxime ligand bridging two metals, see: Liu et al.. (2011); Holynska & Dehnen (2011); Papatriantafyllopoulou et al. (2007). For the applications of phenyl-2-pyridyl ketone oxime complexes, see: Korpi et al. (2005); Stamatatos et al. (2006).

Experimental top

A mixture of phenyl-2-pyridyl ketone oxime (0.0200 g, 0.1 mmol), SmCl3.6H2O (0.0180 g, 0.05 mmol), and C2H5OH (2 ml) was sealed in a 6 ml Pyrex-tube. The tube was heated at 85 °C for 3 days under autogenous pressure. Cooling of the resultant solution to room temperature gave colourless crystals of the product. The crystals were collected by filtration, washed with C2H5OH (2 ml) and dried in air. Anal. Calcd for C36H30Cl3N6O3Sm: C, 50.79; H, 3.55; N, 9.87%. Found: C, 50.45; H, 3.25; N, 9.65%.

Refinement top

H atoms were placed in calculated positions and included in the refinement using a riding-model approximation, with C—H = 0.93 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Idealised view of the molecular structure showing intramolecular hydrogen bonds as dashed lines
Trichloridotris{N-[phenyl(pyridin-2-yl)methylidene]hydroxylamine- κ2N,N'}samarium(III) top
Crystal data top
[SmCl3(C12H10N2O)3]Z = 2
Mr = 851.37F(000) = 850
Triclinic, P1char
Hall symbol: -P 1Dx = 1.596 Mg m3
a = 8.6415 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.422 (2) ÅCell parameters from 8108 reflections
c = 19.771 (4) Åθ = 2.2–28.1°
α = 92.18 (3)°µ = 1.93 mm1
β = 94.47 (3)°T = 293 K
γ = 92.62 (3)°Block, colourless
V = 1771.8 (6) Å30.30 × 0.17 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8553 independent reflections
Radiation source: fine-focus sealed tube7752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 28.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.595, Tmax = 0.802k = 1313
32032 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0279P)2 + 0.2554P]
where P = (Fo2 + 2Fc2)/3
8553 reflections(Δ/σ)max = 0.002
445 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.62 e Å3
0 constraints
Crystal data top
[SmCl3(C12H10N2O)3]γ = 92.62 (3)°
Mr = 851.37V = 1771.8 (6) Å3
Triclinic, P1Z = 2
a = 8.6415 (17) ÅMo Kα radiation
b = 10.422 (2) ŵ = 1.93 mm1
c = 19.771 (4) ÅT = 293 K
α = 92.18 (3)°0.30 × 0.17 × 0.12 mm
β = 94.47 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8553 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
7752 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.802Rint = 0.073
32032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.04Δρmax = 0.97 e Å3
8553 reflectionsΔρmin = 0.62 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.834137 (13)0.905657 (10)0.251022 (6)0.03257 (5)
Cl20.72244 (8)0.79917 (6)0.36744 (4)0.04910 (16)
Cl30.51963 (7)0.92727 (7)0.22387 (4)0.05149 (16)
Cl40.89706 (9)1.14430 (6)0.20005 (4)0.05223 (16)
N31.0834 (2)0.84667 (18)0.18255 (11)0.0400 (5)
N10.7598 (2)1.08550 (19)0.33380 (11)0.0420 (5)
N41.0201 (2)0.72192 (18)0.29251 (11)0.0395 (5)
O10.6146 (2)1.1365 (2)0.32620 (12)0.0609 (6)
H10.56291.09880.29430.091*
N21.0487 (2)1.01068 (18)0.34079 (11)0.0380 (4)
N50.7661 (2)0.88995 (19)0.11666 (11)0.0436 (5)
N60.7487 (2)0.68142 (19)0.18849 (11)0.0424 (5)
C240.8012 (3)1.2479 (2)0.42591 (13)0.0413 (6)
C281.0078 (3)1.0932 (2)0.38971 (13)0.0387 (5)
C301.2153 (3)0.5636 (2)0.28091 (13)0.0387 (5)
C341.1492 (3)0.7327 (2)0.19293 (13)0.0377 (5)
C361.2342 (4)0.3413 (3)0.30392 (17)0.0619 (9)
H361.19010.25810.30220.074*
C391.1232 (3)0.6735 (2)0.25778 (13)0.0364 (5)
O20.7737 (3)0.99726 (17)0.07745 (10)0.0563 (5)
H20.80461.06030.10160.084*
C440.7355 (3)0.7852 (2)0.08127 (13)0.0421 (6)
C450.8487 (3)1.1408 (2)0.38184 (13)0.0388 (5)
C481.1171 (3)0.9060 (3)0.12670 (14)0.0492 (7)
H481.07810.98660.12000.059*
C490.7139 (3)0.7787 (3)0.00623 (14)0.0488 (6)
C501.1485 (3)0.4409 (2)0.27872 (15)0.0492 (6)
H501.04660.42490.26050.059*
C561.2057 (3)0.8558 (3)0.07822 (15)0.0551 (7)
H561.22370.90050.03960.066*
C571.1961 (3)0.9757 (2)0.34498 (14)0.0430 (6)
H571.22730.92140.31080.052*
C581.1091 (3)1.1342 (3)0.44452 (14)0.0512 (7)
H581.07611.18850.47840.061*
C600.7322 (3)0.5757 (2)0.22425 (16)0.0523 (7)
H600.74720.58420.27130.063*
C660.8616 (4)1.3709 (2)0.42052 (15)0.0540 (7)
H660.93501.38800.38970.065*
C670.7224 (3)0.6673 (2)0.12071 (14)0.0456 (6)
C681.3676 (3)0.5872 (3)0.30676 (15)0.0504 (7)
H681.41420.66940.30690.060*
C721.4497 (4)0.4863 (3)0.33252 (16)0.0613 (8)
H721.55160.50140.35090.074*
C740.5744 (4)0.8370 (3)0.09703 (18)0.0715 (9)
H740.49250.87730.11940.086*
C761.3829 (4)0.3653 (3)0.33123 (16)0.0647 (9)
H761.43900.29870.34910.078*
C771.3042 (3)1.0162 (3)0.39746 (15)0.0516 (7)
H771.40590.99060.39780.062*
C781.2397 (3)0.6766 (3)0.14662 (14)0.0498 (6)
H781.28200.59770.15490.060*
C810.6913 (4)1.2258 (3)0.47195 (15)0.0564 (7)
H810.64751.14330.47540.068*
C830.5899 (3)0.8375 (3)0.02754 (15)0.0542 (7)
H830.51720.87740.00270.065*
C870.8122 (4)1.4694 (3)0.46141 (17)0.0631 (8)
H870.85181.55280.45710.076*
C880.7077 (4)1.4467 (3)0.50742 (17)0.0643 (8)
H880.67781.51360.53530.077*
C890.6464 (4)1.3248 (4)0.51256 (18)0.0729 (10)
H890.57361.30870.54380.087*
C910.6808 (6)0.7763 (4)0.13346 (19)0.0888 (13)
H910.66970.77580.18060.107*
C921.2599 (3)1.0943 (3)0.44881 (16)0.0600 (8)
H921.32931.11990.48570.072*
C931.2669 (4)0.7385 (3)0.08813 (16)0.0584 (8)
H931.32580.70130.05590.070*
C960.8206 (4)0.7178 (3)0.03163 (17)0.0679 (9)
H960.90360.67800.00980.081*
C990.8025 (5)0.7168 (4)0.1020 (2)0.0835 (11)
H990.87290.67570.12760.100*
C1000.6944 (4)0.4556 (3)0.19527 (19)0.0700 (9)
H1000.68520.38480.22220.084*
C1020.6710 (5)0.4416 (3)0.1271 (2)0.0852 (12)
H1020.64700.36080.10630.102*
C1050.6830 (4)0.5498 (3)0.08822 (18)0.0718 (9)
H1050.66480.54280.04120.086*
O31.0089 (2)0.66543 (19)0.35400 (10)0.0568 (5)
H30.93630.69480.37290.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.03595 (7)0.02704 (7)0.03464 (8)0.00444 (4)0.00201 (5)0.00155 (5)
Cl20.0536 (4)0.0489 (3)0.0471 (4)0.0086 (3)0.0146 (3)0.0040 (3)
Cl30.0391 (3)0.0587 (4)0.0548 (4)0.0054 (3)0.0051 (3)0.0076 (3)
Cl40.0744 (5)0.0302 (3)0.0516 (4)0.0016 (3)0.0043 (3)0.0013 (3)
N30.0425 (11)0.0322 (10)0.0460 (13)0.0034 (8)0.0052 (9)0.0048 (9)
N10.0362 (10)0.0395 (11)0.0506 (13)0.0126 (9)0.0015 (9)0.0053 (10)
N40.0457 (11)0.0351 (10)0.0391 (12)0.0082 (9)0.0066 (9)0.0065 (9)
O10.0432 (11)0.0652 (13)0.0720 (15)0.0236 (9)0.0080 (9)0.0256 (11)
N20.0391 (11)0.0318 (10)0.0430 (12)0.0037 (8)0.0037 (9)0.0021 (9)
N50.0520 (12)0.0377 (11)0.0409 (12)0.0028 (9)0.0027 (10)0.0020 (9)
N60.0485 (12)0.0326 (10)0.0461 (13)0.0012 (9)0.0073 (10)0.0015 (9)
C240.0470 (14)0.0371 (12)0.0395 (14)0.0075 (10)0.0027 (11)0.0068 (11)
C280.0429 (13)0.0330 (12)0.0404 (14)0.0036 (10)0.0035 (11)0.0002 (10)
C300.0434 (13)0.0342 (12)0.0401 (14)0.0112 (10)0.0086 (11)0.0028 (10)
C340.0402 (12)0.0327 (11)0.0403 (14)0.0009 (9)0.0038 (10)0.0003 (10)
C360.089 (2)0.0353 (14)0.066 (2)0.0183 (14)0.0260 (18)0.0078 (14)
C390.0411 (12)0.0286 (11)0.0395 (13)0.0043 (9)0.0031 (10)0.0004 (10)
O20.0848 (14)0.0400 (10)0.0428 (11)0.0019 (10)0.0029 (10)0.0058 (8)
C440.0428 (13)0.0418 (13)0.0410 (14)0.0001 (10)0.0033 (11)0.0061 (11)
C450.0425 (13)0.0333 (12)0.0408 (14)0.0063 (10)0.0043 (11)0.0031 (10)
C480.0502 (15)0.0446 (14)0.0546 (17)0.0031 (11)0.0083 (13)0.0147 (13)
C490.0559 (16)0.0494 (15)0.0398 (15)0.0103 (12)0.0076 (12)0.0076 (12)
C500.0520 (15)0.0390 (13)0.0576 (18)0.0066 (11)0.0086 (13)0.0029 (12)
C560.0549 (16)0.0630 (18)0.0492 (17)0.0003 (14)0.0125 (14)0.0134 (14)
C570.0387 (13)0.0377 (12)0.0529 (16)0.0060 (10)0.0048 (11)0.0016 (11)
C580.0549 (16)0.0541 (16)0.0433 (16)0.0101 (13)0.0042 (13)0.0101 (13)
C600.0598 (17)0.0394 (14)0.0585 (18)0.0021 (12)0.0103 (14)0.0059 (13)
C660.0680 (18)0.0403 (14)0.0548 (18)0.0008 (13)0.0175 (14)0.0077 (13)
C670.0478 (14)0.0401 (13)0.0481 (16)0.0031 (11)0.0060 (12)0.0061 (12)
C680.0437 (14)0.0497 (15)0.0589 (18)0.0062 (11)0.0071 (13)0.0067 (13)
C720.0476 (16)0.082 (2)0.0579 (19)0.0258 (15)0.0084 (14)0.0096 (16)
C740.083 (2)0.074 (2)0.054 (2)0.0226 (18)0.0092 (18)0.0093 (17)
C760.079 (2)0.0628 (19)0.060 (2)0.0431 (17)0.0238 (17)0.0182 (16)
C770.0392 (14)0.0551 (16)0.0597 (19)0.0068 (12)0.0026 (13)0.0007 (14)
C780.0563 (16)0.0450 (14)0.0503 (16)0.0104 (12)0.0152 (13)0.0003 (12)
C810.0697 (19)0.0482 (15)0.0518 (18)0.0029 (14)0.0162 (15)0.0075 (13)
C830.0594 (17)0.0545 (16)0.0469 (17)0.0102 (13)0.0011 (14)0.0011 (13)
C870.088 (2)0.0374 (14)0.064 (2)0.0077 (15)0.0093 (17)0.0080 (14)
C880.081 (2)0.0558 (18)0.057 (2)0.0181 (16)0.0106 (17)0.0194 (15)
C890.081 (2)0.079 (2)0.061 (2)0.0025 (18)0.0315 (18)0.0168 (18)
C910.123 (4)0.098 (3)0.041 (2)0.040 (3)0.008 (2)0.004 (2)
C920.0546 (17)0.0670 (19)0.0555 (19)0.0048 (14)0.0121 (14)0.0055 (15)
C930.0653 (19)0.0602 (18)0.0526 (18)0.0054 (14)0.0235 (15)0.0003 (15)
C960.064 (2)0.080 (2)0.059 (2)0.0016 (17)0.0114 (16)0.0135 (17)
C990.096 (3)0.094 (3)0.061 (2)0.014 (2)0.032 (2)0.024 (2)
C1000.093 (2)0.0343 (14)0.082 (3)0.0109 (15)0.018 (2)0.0003 (16)
C1020.130 (3)0.0441 (18)0.080 (3)0.0266 (19)0.022 (2)0.0168 (18)
C1050.102 (3)0.0493 (17)0.061 (2)0.0202 (17)0.0121 (19)0.0149 (16)
O30.0663 (13)0.0632 (12)0.0468 (11)0.0267 (10)0.0195 (10)0.0191 (10)
Geometric parameters (Å, º) top
Sm1—N12.578 (2)C56—H560.9300
Sm1—N22.634 (2)C57—C771.381 (4)
Sm1—N62.649 (2)C57—H570.9300
Sm1—N42.668 (2)C58—C921.384 (4)
Sm1—N52.673 (2)C58—H580.9300
Sm1—N32.713 (2)C60—C1001.371 (4)
Sm1—Cl32.7501 (9)C60—H600.9300
Sm1—Cl42.7658 (9)C66—C871.386 (4)
Sm1—Cl22.8114 (10)C66—H660.9300
N3—C481.331 (3)C67—C1051.378 (4)
N3—C341.356 (3)C68—C721.386 (4)
N1—C451.276 (3)C68—H680.9300
N1—O11.385 (2)C72—C761.361 (5)
N4—C391.276 (3)C72—H720.9300
N4—O31.379 (3)C74—C911.373 (5)
O1—H10.8200C74—C831.370 (4)
N2—C571.338 (3)C74—H740.9300
N2—C281.348 (3)C76—H760.9300
N5—C441.280 (3)C77—C921.366 (4)
N5—O21.387 (3)C77—H770.9300
N6—C601.340 (3)C78—C931.376 (4)
N6—C671.343 (3)C78—H780.9300
C24—C661.373 (4)C81—C891.372 (4)
C24—C811.384 (4)C81—H810.9300
C24—C451.482 (3)C83—H830.9300
C28—C581.380 (4)C87—C881.350 (4)
C28—C451.482 (3)C87—H870.9300
C30—C501.377 (4)C88—C891.365 (5)
C30—C681.381 (4)C88—H880.9300
C30—C391.490 (3)C89—H890.9300
C34—C781.380 (3)C91—C991.366 (6)
C34—C391.472 (3)C91—H910.9300
C36—C761.363 (5)C92—H920.9300
C36—C501.388 (4)C93—H930.9300
C36—H360.9300C96—C991.388 (5)
O2—H20.8200C96—H960.9300
C44—C491.479 (4)C99—H990.9300
C44—C671.484 (4)C100—C1021.349 (5)
C48—C561.376 (4)C100—H1000.9300
C48—H480.9300C102—C1051.393 (5)
C49—C961.392 (4)C102—H1020.9300
C49—C831.397 (4)C105—H1050.9300
C50—H500.9300O3—H30.8200
C56—C931.369 (4)
N1—Sm1—N260.96 (6)C96—C49—C83119.2 (3)
N1—Sm1—N6146.13 (7)C96—C49—C44120.2 (3)
N2—Sm1—N6140.66 (6)C83—C49—C44120.5 (2)
N1—Sm1—N4121.34 (7)C30—C50—C36119.5 (3)
N2—Sm1—N471.97 (7)C30—C50—H50120.2
N6—Sm1—N468.71 (7)C36—C50—H50120.2
N1—Sm1—N5126.41 (7)C93—C56—C48118.5 (3)
N2—Sm1—N5139.50 (7)C93—C56—H56120.7
N6—Sm1—N559.63 (7)C48—C56—H56120.7
N4—Sm1—N5111.97 (7)N2—C57—C77123.4 (2)
N1—Sm1—N3137.56 (7)N2—C57—H57118.3
N2—Sm1—N383.11 (7)C77—C57—H57118.3
N6—Sm1—N376.24 (7)C28—C58—C92119.6 (3)
N4—Sm1—N359.12 (6)C28—C58—H58120.2
N5—Sm1—N367.77 (7)C92—C58—H58120.2
N1—Sm1—Cl374.68 (6)N6—C60—C100123.6 (3)
N2—Sm1—Cl3135.50 (5)N6—C60—H60118.2
N6—Sm1—Cl377.87 (5)C100—C60—H60118.2
N4—Sm1—Cl3136.25 (5)C24—C66—C87119.5 (3)
N5—Sm1—Cl370.91 (6)C24—C66—H66120.3
N3—Sm1—Cl3138.19 (5)C87—C66—H66120.3
N1—Sm1—Cl469.59 (5)N6—C67—C105122.4 (3)
N2—Sm1—Cl476.92 (5)N6—C67—C44117.1 (2)
N6—Sm1—Cl4130.98 (5)C105—C67—C44120.5 (3)
N4—Sm1—Cl4131.71 (5)C30—C68—C72118.9 (3)
N5—Sm1—Cl471.60 (5)C30—C68—H68120.5
N3—Sm1—Cl481.51 (5)C72—C68—H68120.5
Cl3—Sm1—Cl491.54 (4)C76—C72—C68120.7 (3)
N1—Sm1—Cl269.82 (5)C76—C72—H72119.6
N2—Sm1—Cl282.21 (5)C68—C72—H72119.6
N6—Sm1—Cl286.06 (5)C91—C74—C83119.4 (4)
N4—Sm1—Cl271.06 (5)C91—C74—H74120.3
N5—Sm1—Cl2138.12 (5)C83—C74—H74120.3
N3—Sm1—Cl2130.19 (5)C72—C76—C36120.4 (3)
Cl3—Sm1—Cl279.46 (3)C72—C76—H76119.8
Cl4—Sm1—Cl2139.37 (3)C36—C76—H76119.8
C48—N3—C34116.5 (2)C92—C77—C57119.2 (3)
C48—N3—Sm1121.95 (16)C92—C77—H77120.4
C34—N3—Sm1118.93 (16)C57—C77—H77120.4
C45—N1—O1113.35 (19)C93—C78—C34119.4 (2)
C45—N1—Sm1126.08 (15)C93—C78—H78120.3
O1—N1—Sm1120.47 (15)C34—C78—H78120.3
C39—N4—O3112.88 (18)C89—C81—C24120.4 (3)
C39—N4—Sm1124.81 (16)C89—C81—H81119.8
O3—N4—Sm1122.25 (13)C24—C81—H81119.8
N1—O1—H1109.5C74—C83—C49120.5 (3)
C57—N2—C28117.1 (2)C74—C83—H83119.8
C57—N2—Sm1122.81 (16)C49—C83—H83119.8
C28—N2—Sm1119.70 (15)C88—C87—C66121.4 (3)
C44—N5—O2113.0 (2)C88—C87—H87119.3
C44—N5—Sm1124.96 (17)C66—C87—H87119.3
O2—N5—Sm1121.83 (14)C87—C88—C89119.3 (3)
C60—N6—C67117.1 (2)C87—C88—H88120.3
C60—N6—Sm1120.33 (18)C89—C88—H88120.3
C67—N6—Sm1122.54 (16)C88—C89—C81120.5 (3)
C66—C24—C81118.8 (2)C88—C89—H89119.7
C66—C24—C45120.9 (2)C81—C89—H89119.7
C81—C24—C45120.2 (2)C99—C91—C74121.5 (3)
N2—C28—C58122.2 (2)C99—C91—H91119.2
N2—C28—C45117.1 (2)C74—C91—H91119.2
C58—C28—C45120.7 (2)C77—C92—C58118.3 (3)
C50—C30—C68120.3 (2)C77—C92—H92120.9
C50—C30—C39120.6 (2)C58—C92—H92120.9
C68—C30—C39119.1 (2)C56—C93—C78118.8 (3)
N3—C34—C78122.3 (2)C56—C93—H93120.6
N3—C34—C39116.2 (2)C78—C93—H93120.6
C78—C34—C39121.5 (2)C99—C96—C49119.7 (3)
C76—C36—C50120.1 (3)C99—C96—H96120.1
C76—C36—H36119.9C49—C96—H96120.1
C50—C36—H36119.9C91—C99—C96119.7 (4)
N4—C39—C34116.61 (19)C91—C99—H99120.2
N4—C39—C30122.7 (2)C96—C99—H99120.2
C34—C39—C30120.7 (2)C102—C100—C60119.0 (3)
N5—O2—H2109.5C102—C100—H100120.5
N5—C44—C49123.6 (2)C60—C100—H100120.5
N5—C44—C67115.4 (2)C100—C102—C105119.1 (3)
C49—C44—C67121.1 (2)C100—C102—H102120.4
N1—C45—C28115.1 (2)C105—C102—H102120.4
N1—C45—C24123.6 (2)C67—C105—C102118.8 (3)
C28—C45—C24121.3 (2)C67—C105—H105120.6
N3—C48—C56124.3 (2)C102—C105—H105120.6
N3—C48—H48117.9N4—O3—H3109.5
C56—C48—H48117.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl30.822.222.960 (2)150
O2—H2···Cl40.822.182.920 (2)150
O3—H3···Cl20.822.182.920 (2)149

Experimental details

Crystal data
Chemical formula[SmCl3(C12H10N2O)3]
Mr851.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6415 (17), 10.422 (2), 19.771 (4)
α, β, γ (°)92.18 (3), 94.47 (3), 92.62 (3)
V3)1771.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.30 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.595, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
32032, 8553, 7752
Rint0.073
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.04
No. of reflections8553
No. of parameters445
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.62

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sm1—N12.578 (2)Sm1—N32.713 (2)
Sm1—N22.634 (2)Sm1—Cl32.7501 (9)
Sm1—N62.649 (2)Sm1—Cl42.7658 (9)
Sm1—N42.668 (2)Sm1—Cl22.8114 (10)
Sm1—N52.673 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl30.822.222.960 (2)150
O2—H2···Cl40.822.182.920 (2)150
O3—H3···Cl20.822.182.920 (2)149
 

Acknowledgements

The authors appreciate the financial support of the Hundreds of Talents Program (grant No. 2005012) of CAS, the Natural Science Foundation of China (grant No. 20872105), `Qinglan Project' of Jiangsu Province (grant No. Bu109805) and the Open Project of the Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education of Lanzhou University (grant No. LZUMMM2010003).

References

First citationBruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHolynska, M. & Dehnen, S. (2011). Inorg. Chem. Commun. 14, 1290–1292.  CAS Google Scholar
First citationKorpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181–1184.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G.-X., Guo, W., Nishihara, S. & Ren, X.-M. (2011). Inorg. Chim. Acta, 368, 165–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationMilios, C. J., Stamatatos, T. C., Kyritsis, P., Terzis, A., Raptopoulou, C. P., Vicente, R., Escuer, A. & Perlepes, S. P. (2004). Eur. J. Inorg. Chem. pp. 2885–2901.  Web of Science CSD CrossRef Google Scholar
First citationPapatriantafyllopoulou, C., Aromi, G., Tasiopoulos, A. J., Nastopoulos, V., Raptopoulou, C. P., Teat, S. J., Escuer, A. & Perlepes, S. P. (2007). Eur. J. Inorg. Chem. pp. 2761–2774.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamatatos, T. C., Vlahopoulou, J. C., Sanakis, Y., Raptopoulou, C. P., Psycharis, V., Boudalis, A. K. & Perlepes, S. P. (2006). Inorg. Chem. Commun. 9, 814–818.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiang, J., Li, Q. & Mei, P. (2006). Acta Cryst. E62, m2348–m2349.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, J. & Liu, G.-X. (2009). Acta Cryst. E65, m641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, J.-Z. & Liu, G.-X. (2009). Acta Cryst. E65, m155.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m344-m345
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds