organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-((E)-{3-[(E)-2-Hy­dr­oxy-3,5-di­iodo­benzyl­­idene­amino]-2,2-di­methyl­prop­yl}imino­meth­yl)-4,6-di­iodo­phenol

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 6 January 2012; accepted 27 January 2012; online 4 February 2012)

The asymmetric unit of the title compound, C19H18I4N2O2, comprises a potentially tetra­dentate Schiff base ligand. The disordered H atoms on the N and O atoms were refined with site occupancies of 0.54 (8)/0.46 (8) and 0.59 (7)/0.41 (7), respectively. The dihedral angle between the benzene rings is 73.3 (3)°. Intra­molecular O—H⋯N and N—H⋯O hydrogen bonds make S(6) ring motifs. Short I⋯I [3.8919 (7) Å] and I⋯Cg [Cg is a ring centroid; 3.911 (2) Å] contacts are present in the crystal structure. The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid-to-centroid distance = 3.827 (3) Å].

Related literature

For related structures, see for example: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.], 2012[Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, o142.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]). For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18I4N2O2

  • Mr = 813.95

  • Orthorhombic, P b c a

  • a = 12.2057 (5) Å

  • b = 11.8169 (5) Å

  • c = 31.8157 (15) Å

  • V = 4588.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.45 mm−1

  • T = 291 K

  • 0.18 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.441, Tmax = 0.670

  • 39183 measured reflections

  • 5472 independent reflections

  • 2871 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.079

  • S = 1.00

  • 5471 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.72 1.90 2.526 (6) 145
O2—H2⋯N2 0.82 1.82 2.548 (6) 148

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure of Schiff base ligands (Kargar et al., 2011, 2012; Kia et al., 2010), we determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradentate Schiff base ligand. In the crystal structure the phenolic H atoms are disordered over a second position on the Schiff base N atoms. The bond lengths and angles are within the normal ranges (Allen et al., 1987) and are comparable to related structures (Kargar et al., 2011, 2012; Kia et al., 2010).

The intramolecular N—H···O and O—H···N hydrogen bonds (Table 1) make S(6) ring motifs (Bernstein et al., 1995). The dihedral angle between the benzene rings is 73.3 (3)°. Short I(1)···I(2)i [3.8919 (7) Å; (i) 1/2 + x, 1/2 - y, 1 - z ] and I4···Cg2ii [3.911 (2) Å; (ii) 3/2 - x, -1/2 + y, z; Cg2 is the centroid of the C14–C19 ring] contacts are present in the crystal structure (Fig. 2). The crystal structure is further stabilized by the intermolecular ππ interaction [Cg1···Cg2i = 3.827 (3)Å; (i) 2 - x, 1/2 + y, 1/2 - z; Cg1 and Cg2 are the centroids of the C1–C6 and C14–C19 benzene rings].

Related literature top

For related structures, see for example: Kargar et al. (2011, 2012); Kia et al. (2010). For standard values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964).

Experimental top

The title compound was synthesized by adding 3,5-diiodo-salicylaldehyde (2 mmol) to a solution of 2,2-dimethyl-1,3-propanediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The O- and N-bound H atoms were located in difference Fourier map and then constrained to refine to the parent atoms with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O), respectively. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and atomic numbering. The dashed lines show the intramolecular hydrogen bonds. The open bonds show the minor disordered components.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b-axis showing the short intermolecular I···I, I···Cg [C144–C19], and Cg [C1–C6]···Cg [C14–C19] contacts (dashed lines). All H atoms were omitted for clarity.
2-((E)-{3-[(E)-2-Hydroxy-3,5-diiodobenzylideneamino]- 2,2-dimethylpropyl}iminomethyl)-4,6-diiodophenol top
Crystal data top
C19H18I4N2O2F(000) = 2992
Mr = 813.95Dx = 2.356 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3211 reflections
a = 12.2057 (5) Åθ = 2.5–27.5°
b = 11.8169 (5) ŵ = 5.45 mm1
c = 31.8157 (15) ÅT = 291 K
V = 4588.9 (3) Å3Block, yellow
Z = 80.18 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5472 independent reflections
Radiation source: fine-focus sealed tube2871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 27.9°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1516
Tmin = 0.441, Tmax = 0.670k = 1514
39183 measured reflectionsl = 4139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0213P)2]
where P = (Fo2 + 2Fc2)/3
5471 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C19H18I4N2O2V = 4588.9 (3) Å3
Mr = 813.95Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.2057 (5) ŵ = 5.45 mm1
b = 11.8169 (5) ÅT = 291 K
c = 31.8157 (15) Å0.18 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2871 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.670Rint = 0.099
39183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.00Δρmax = 1.11 e Å3
5471 reflectionsΔρmin = 0.94 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.67018 (4)0.26848 (5)0.383838 (17)0.06718 (18)
I21.02767 (3)0.17675 (4)0.508635 (14)0.04527 (13)
I30.82622 (4)0.00536 (4)0.001078 (17)0.06243 (17)
I40.65930 (4)0.30987 (4)0.131933 (17)0.06028 (17)
O10.8328 (3)0.1220 (4)0.32918 (15)0.0501 (12)
H10.87840.09640.31280.075*0.46 (8)
O20.8775 (3)0.2231 (3)0.17564 (15)0.0475 (12)
H20.93710.20770.18600.071*0.59 (7)
N10.9942 (4)0.0017 (4)0.31029 (17)0.0421 (14)
H1A0.94240.02530.30630.051*0.54 (8)
N21.0582 (4)0.1182 (4)0.18514 (18)0.0421 (14)
H1B1.01040.15800.20070.051*0.41 (7)
C10.8751 (5)0.1317 (5)0.3665 (2)0.0337 (15)
C20.8201 (4)0.1925 (5)0.3985 (2)0.0379 (16)
C30.8633 (5)0.2052 (5)0.4382 (2)0.0365 (16)
H30.82590.24680.45840.044*
C40.9642 (5)0.1548 (5)0.44789 (19)0.0333 (15)
C51.0178 (5)0.0919 (5)0.41839 (19)0.0331 (15)
H51.08380.05740.42540.040*
C60.9755 (5)0.0782 (5)0.37794 (19)0.0313 (14)
C71.0307 (5)0.0096 (5)0.3477 (2)0.0370 (16)
H71.09470.02780.35540.044*
C81.0466 (5)0.0734 (5)0.2792 (2)0.0436 (17)
H8A0.99060.11390.26370.052*
H8B1.09160.12900.29350.052*
C91.1191 (5)0.0066 (5)0.2478 (2)0.0381 (16)
C101.2243 (5)0.0305 (6)0.2697 (2)0.067 (2)
H10A1.26930.07190.25030.100*
H10B1.26340.03500.27940.100*
H10C1.20650.07800.29320.100*
C111.0597 (5)0.0973 (5)0.2311 (2)0.054 (2)
H11A1.10270.13170.20930.081*
H11B1.04900.15050.25350.081*
H11C0.98980.07520.21980.081*
C121.1517 (4)0.0858 (5)0.2119 (2)0.0426 (17)
H12A1.20660.04880.19470.051*
H12B1.18440.15370.22360.051*
C131.0478 (5)0.0796 (5)0.1485 (2)0.0392 (17)
H131.10290.03360.13770.047*
C140.9534 (5)0.1038 (5)0.1222 (2)0.0340 (15)
C150.9413 (5)0.0561 (5)0.0826 (2)0.0359 (16)
H150.99620.00920.07230.043*
C160.8510 (5)0.0761 (5)0.0583 (2)0.0361 (16)
C170.7708 (5)0.1491 (5)0.0727 (2)0.0406 (17)
H170.71000.16460.05600.049*
C180.7804 (5)0.1982 (5)0.1111 (2)0.0352 (16)
C190.8699 (5)0.1780 (5)0.1381 (2)0.0329 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0476 (3)0.1081 (5)0.0458 (3)0.0294 (3)0.0003 (3)0.0007 (3)
I20.0508 (3)0.0558 (3)0.0292 (2)0.0012 (2)0.0041 (2)0.0020 (2)
I30.0643 (3)0.0714 (4)0.0516 (4)0.0043 (2)0.0106 (3)0.0231 (3)
I40.0551 (3)0.0626 (3)0.0631 (4)0.0240 (2)0.0120 (3)0.0108 (3)
O10.041 (3)0.078 (3)0.031 (3)0.007 (2)0.005 (2)0.010 (3)
O20.049 (3)0.056 (3)0.037 (3)0.012 (2)0.002 (2)0.005 (2)
N10.038 (3)0.053 (4)0.035 (4)0.002 (3)0.009 (3)0.007 (3)
N20.044 (3)0.055 (4)0.027 (4)0.000 (3)0.002 (3)0.008 (3)
C10.030 (4)0.043 (4)0.028 (4)0.009 (3)0.005 (3)0.003 (3)
C20.029 (4)0.052 (4)0.033 (4)0.001 (3)0.002 (3)0.002 (3)
C30.044 (4)0.034 (4)0.032 (4)0.004 (3)0.006 (3)0.004 (3)
C40.042 (4)0.037 (4)0.022 (4)0.006 (3)0.006 (3)0.005 (3)
C50.030 (3)0.043 (4)0.027 (4)0.002 (3)0.004 (3)0.007 (3)
C60.039 (4)0.032 (4)0.023 (4)0.001 (3)0.006 (3)0.000 (3)
C70.047 (4)0.034 (4)0.030 (4)0.002 (3)0.004 (3)0.005 (3)
C80.047 (4)0.053 (4)0.031 (4)0.001 (3)0.002 (3)0.009 (4)
C90.038 (4)0.050 (4)0.027 (4)0.002 (3)0.002 (3)0.009 (3)
C100.046 (5)0.103 (7)0.051 (6)0.016 (4)0.008 (4)0.033 (5)
C110.069 (5)0.054 (5)0.038 (5)0.002 (4)0.008 (4)0.001 (4)
C120.030 (4)0.066 (5)0.032 (4)0.003 (3)0.002 (3)0.011 (4)
C130.036 (4)0.043 (4)0.038 (5)0.003 (3)0.003 (3)0.016 (4)
C140.034 (4)0.038 (4)0.030 (4)0.002 (3)0.002 (3)0.003 (3)
C150.040 (4)0.032 (4)0.036 (4)0.001 (3)0.005 (3)0.001 (3)
C160.039 (4)0.034 (4)0.035 (4)0.010 (3)0.002 (3)0.000 (3)
C170.035 (4)0.044 (4)0.043 (5)0.000 (3)0.009 (3)0.002 (4)
C180.037 (4)0.031 (4)0.038 (4)0.007 (3)0.000 (3)0.005 (3)
C190.040 (4)0.024 (4)0.034 (4)0.002 (3)0.005 (3)0.004 (3)
Geometric parameters (Å, º) top
I1—C22.091 (6)C8—C91.550 (8)
I2—C42.098 (6)C8—H8A0.9700
I3—C162.081 (6)C8—H8B0.9700
I4—C182.090 (6)C9—C111.522 (8)
O1—C11.301 (7)C9—C101.526 (8)
O1—H10.8203C9—C121.530 (8)
O2—C191.312 (7)C10—H10A0.9600
O2—H20.8201C10—H10B0.9600
N1—C71.278 (8)C10—H10C0.9600
N1—C81.452 (7)C11—H11A0.9600
N1—H1A0.7184C11—H11B0.9600
N2—C131.259 (8)C11—H11C0.9600
N2—C121.474 (7)C12—H12A0.9700
N2—H1B0.8984C12—H12B0.9700
C1—C21.416 (8)C13—C141.452 (8)
C1—C61.426 (8)C13—H130.9300
C2—C31.376 (8)C14—C151.388 (8)
C3—C41.403 (8)C14—C191.436 (8)
C3—H30.9300C15—C161.367 (8)
C4—C51.364 (8)C15—H150.9300
C5—C61.396 (8)C16—C171.383 (8)
C5—H50.9300C17—C181.359 (8)
C6—C71.427 (8)C17—H170.9300
C7—H70.9300C18—C191.408 (8)
C1—O1—H1110.0C12—C9—C8108.6 (5)
C19—O2—H2109.8C9—C10—H10A109.5
C7—N1—C8122.8 (6)C9—C10—H10B109.5
C7—N1—H1A115.1H10A—C10—H10B109.5
C8—N1—H1A121.8C9—C10—H10C109.5
C13—N2—C12121.2 (6)H10A—C10—H10C109.5
C13—N2—H1B129.4H10B—C10—H10C109.5
C12—N2—H1B108.7C9—C11—H11A109.5
O1—C1—C2120.8 (6)C9—C11—H11B109.5
O1—C1—C6122.4 (6)H11A—C11—H11B109.5
C2—C1—C6116.7 (6)C9—C11—H11C109.5
C3—C2—C1122.2 (6)H11A—C11—H11C109.5
C3—C2—I1119.6 (5)H11B—C11—H11C109.5
C1—C2—I1118.2 (5)N2—C12—C9112.8 (5)
C2—C3—C4119.5 (6)N2—C12—H12A109.0
C2—C3—H3120.2C9—C12—H12A109.0
C4—C3—H3120.2N2—C12—H12B109.0
C5—C4—C3120.0 (6)C9—C12—H12B109.0
C5—C4—I2121.6 (5)H12A—C12—H12B107.8
C3—C4—I2118.4 (4)N2—C13—C14122.8 (6)
C4—C5—C6121.3 (6)N2—C13—H13118.6
C4—C5—H5119.3C14—C13—H13118.6
C6—C5—H5119.3C15—C14—C19119.4 (6)
C5—C6—C1120.1 (5)C15—C14—C13121.8 (6)
C5—C6—C7120.9 (6)C19—C14—C13118.8 (6)
C1—C6—C7119.0 (6)C16—C15—C14122.0 (6)
N1—C7—C6121.5 (6)C16—C15—H15119.0
N1—C7—H7119.2C14—C15—H15119.0
C6—C7—H7119.2C15—C16—C17119.4 (6)
N1—C8—C9113.2 (5)C15—C16—I3122.2 (5)
N1—C8—H8A108.9C17—C16—I3118.4 (5)
C9—C8—H8A108.9C18—C17—C16120.2 (6)
N1—C8—H8B108.9C18—C17—H17119.9
C9—C8—H8B108.9C16—C17—H17119.9
H8A—C8—H8B107.8C17—C18—C19122.9 (6)
C11—C9—C10109.2 (5)C17—C18—I4119.6 (5)
C11—C9—C12110.9 (5)C19—C18—I4117.6 (5)
C10—C9—C12107.3 (5)O2—C19—C18122.7 (6)
C11—C9—C8111.4 (5)O2—C19—C14121.2 (6)
C10—C9—C8109.4 (6)C18—C19—C14116.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.721.902.526 (6)145
O2—H2···N20.821.822.548 (6)148

Experimental details

Crystal data
Chemical formulaC19H18I4N2O2
Mr813.95
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)12.2057 (5), 11.8169 (5), 31.8157 (15)
V3)4588.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)5.45
Crystal size (mm)0.18 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.441, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
39183, 5472, 2871
Rint0.099
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.079, 1.00
No. of reflections5471
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.94

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.721.902.526 (6)145
O2—H2···N20.821.822.548 (6)148
 

Acknowledgements

HK and TS thank Payame Noor University for the financial support. MNT thanks the GC University of Sargodha, Pakistan, for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–452.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, o142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds