metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-[4-(1,3-benzo­thia­zol-2-yl)phen­yl]methane­thiol­ato-κ4S,S′:S,S′}bis­­[tri­carbonyl­iron(I)](FeFe)

aSchool of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989 Weixing Road, Changchun 130022, People's Republic of China
*Correspondence e-mail: cust_gaoshang@yahoo.cn

(Received 16 February 2012; accepted 20 February 2012; online 24 February 2012)

The title compound, [Fe2(C14H10NS2)2(CO)6], was synthesized as a structural and biochemical model for the active site of [FeFe]-hydrogenase. The bond lengths (Fe—Fe, Fe—S and Fe—C) and angles (C—Fe—Fe and Fe—S—Fe) are within expected ranges. The S⋯S distance [2.9069 (12) Å] and the dihedral angle between two Fe—S—Fe planes [78.5 (3)°] of the butterfly-shaped Fe2S2 core are enlarged compared with related bridged dithiol­ate diiron analogues. The calculated 4-benzothia­zolebenzyl best planes are almost parallel [dihedral angle = 3.7 (7)°].

Related literature

For general background to [FeFe] hydrogenases, see: Cammack (1999[Cammack, R. (1999). Nature (London), 297, 214-215.]); Evans & Pickett (2003[Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.]); Peters et al. (1998[Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853-1858.]); Nicolet et al. (1999[Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13-23.]); Si et al. (2008[Si, Y. T., Hu, M. Q. & Chen, C. N. (2008). C. R. Chim. 11, 932-937.]). For related structures and comparative geometric data, see: Tard & Pickett (2009[Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245-2274.]). For the ligand synthesis, see: Palmer et al. (1971[Palmer, P. J., Hall, G., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 1223-1225.]); Yoshino et al. (1986[Yoshino, K., Kohno, T., Uno, T., Morita, T. & Tsukamoto, G. (1986). J. Med. Chem. 29, 820-825.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C14H10NS2)2(CO)6]

  • Mr = 792.46

  • Orthorhombic, P b c a

  • a = 12.8288 (14) Å

  • b = 16.8812 (17) Å

  • c = 31.089 (3) Å

  • V = 6732.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 273 K

  • 0.33 × 0.29 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.703, Tmax = 0.887

  • 36569 measured reflections

  • 6606 independent reflections

  • 4253 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 1.01

  • 6606 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe2—S2 2.2530 (9)
Fe2—S1 2.2704 (10)
Fe2—Fe1 2.5198 (7)
Fe1—S2 2.2529 (10)
Fe1—S1 2.2638 (10)
C6—Fe2—Fe1 150.35 (14)
C1—Fe1—Fe2 150.49 (11)
Fe1—S2—Fe2 68.00 (3)
Fe1—S1—Fe2 67.52 (3)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The [FeFe] hydrogenases ([FeFe]Hases) are enzymes which can catalyze the reversible interconversion of protons to molecular hydrogen in nature (Cammack, 1999; Evans & Pickett, 2003). X-ray crystallography elucidated the active site of [FeFe]Hases (so-called H-cluster) as a 2Fe2S butterfly moiety in which a three-atom linker (—CH2XCH2—, X = CH2, NH or NH2+) bridged between the two S atoms (Peters et al., 1998; Nicolet et al., 1999). However, current research suggests that diiron complexes with non-bridged thiolate can also act as model for the H-cluster of [FeFe]Hases (Si et al., 2008). We have synthesized the title compound as a structural model for the diiron subunit of the H-cluster. Herein we report its crystal structure. The title compound has a 2Fe2S core of butterfly conformation, and the Fe—Fe distance [2.5198 (7) Å] is within the expected range (Tard & Pickett, 2009). The two 4-benzothiazolebenzyl moieties reside in the conformation with the least steric hindrance in the molecule. As a result, the C1—Fe1—Fe2 [150.49 (11)°] angle and the C6—Fe2—Fe1 [150.35 (14)°] angle are almost equal. It is noteworthy that the length of S1···S2 [2.9069 (12) Å] and the dihedral angle between the planes defined by Fe1—S1—Fe2 and Fe1—S2—Fe2 [78.5 (3)°] are somewhat enlarged as compared with previously reported models with bridged dithiolate ligands (Tard & Pickett, 2009). The atoms of the 4-benzothiazolebenzyl moieties are almost coplanar with r.m.s. deviations of 0.0671 Å and 0.1115 Å respectively, and the dihedral angle between the two planes is 3.7 (7)°. Selected bond distances and angles are summarized in Table 1, and an ORTEP representation of the title compound is shown in Fig. 1.

Related literature top

For general background to [FeFe] hydrogenases, see: Cammack (1999); Evans & Pickett (2003); Peters et al. (1998); Nicolet et al. (1999); Si et al. (2008). For related structures and comparative geometric data, see: Tard & Pickett (2009). [Please check amended text] For the ligand synthesis, see: Palmer et al. (1971); Yoshino et al. (1986).

Experimental top

The starting material 2-(4-bromomethylphenyl)-benzothiazole was prepared in 43% yield from 4-methylbenzonic acid and 2-aminophenthiol according to the literature procedure (Palmer et al., 1971; Yoshino et al., 1986). Super hydride LiEt3BH (1 M solution in THF, 8 ml, 8 mmol) was dropped into a degassed solution of (µ-S2)Fe2(CO)6 (1.38 g, 4 mmol) in dry THF (30 ml) by syringe at 195 K over 30 min. The mixture changed to dark emerald green. 2-(4-bromomethylphenyl)-benzothiazole (2.42 g, 4 mmol) was added to above solution, causing an immediate change in color to red. The reaction mixture was stirred for 2 h at 195 K, and an additional 1 h at room temperature. The solvent was removed on a rotary evaporator. The crude product was purified by column chromatography with silica by using CH2Cl2/hexane (1:10) as the eluent to give the title compound as a red solid (2.62 g, 85%). A single crystal suitable for X-ray study was obtained by slow evaporation of CH2Cl2/hexane (5:1, v/v) solution at room temperature.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, riding with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene), with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
Bis{µ-[4-(1,3-benzothiazol-2-yl)phenyl]methanethiolato- κ4S,S':S,S'} bis[tricarbonyliron(I)](FeFe) top
Crystal data top
[Fe2(C14H10NS2)2(CO)6]F(000) = 3216
Mr = 792.46Dx = 1.564 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4686 reflections
a = 12.8288 (14) Åθ = 2.4–23.0°
b = 16.8812 (17) ŵ = 1.16 mm1
c = 31.089 (3) ÅT = 273 K
V = 6732.8 (12) Å3Block, red
Z = 80.33 × 0.29 × 0.11 mm
Data collection top
Bruker SMART CCD
diffractometer
6606 independent reflections
Radiation source: fine-focus sealed tube4253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1515
Tmin = 0.703, Tmax = 0.887k = 2020
36569 measured reflectionsl = 3838
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.36 e Å3
6606 reflectionsΔρmin = 0.30 e Å3
433 parameters
Crystal data top
[Fe2(C14H10NS2)2(CO)6]V = 6732.8 (12) Å3
Mr = 792.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.8288 (14) ŵ = 1.16 mm1
b = 16.8812 (17) ÅT = 273 K
c = 31.089 (3) Å0.33 × 0.29 × 0.11 mm
Data collection top
Bruker SMART CCD
diffractometer
6606 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4253 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.887Rint = 0.063
36569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
6606 reflectionsΔρmin = 0.30 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe20.41571 (4)0.11737 (3)0.195948 (15)0.04572 (15)
Fe10.45475 (4)0.25060 (3)0.163154 (14)0.04442 (14)
S20.29985 (6)0.18857 (5)0.15759 (3)0.0448 (2)
S40.24312 (6)0.36861 (5)0.08716 (3)0.0524 (2)
S10.50722 (7)0.13427 (5)0.13412 (3)0.0504 (2)
S30.31365 (8)0.35719 (6)0.07790 (3)0.0672 (3)
N20.08397 (19)0.44143 (15)0.05458 (9)0.0436 (6)
N10.5187 (2)0.35694 (16)0.07125 (9)0.0529 (7)
O10.4457 (2)0.36163 (16)0.09040 (8)0.0749 (8)
O50.3230 (2)0.16903 (17)0.27661 (8)0.0726 (8)
C340.1709 (2)0.46479 (18)0.03111 (10)0.0418 (7)
C260.0706 (3)0.3589 (2)0.10309 (12)0.0586 (10)
H26A0.09180.39010.08000.070*
C100.3359 (3)0.2510 (2)0.00364 (10)0.0511 (9)
H10A0.27270.27150.00580.061*
C110.4281 (3)0.2747 (2)0.01612 (10)0.0455 (8)
C70.4314 (3)0.1043 (2)0.08637 (10)0.0542 (9)
H7A0.46050.05560.07490.065*
H7B0.36020.09340.09500.065*
C250.0334 (2)0.35275 (18)0.11261 (10)0.0423 (8)
C220.1166 (2)0.27463 (19)0.16205 (10)0.0440 (8)
C180.5292 (6)0.4863 (3)0.16317 (16)0.1007 (18)
H18A0.57830.51180.18030.121*
C320.2597 (3)0.5322 (2)0.02509 (11)0.0530 (9)
H32A0.25930.56630.04860.064*
C300.3571 (3)0.4472 (2)0.02233 (12)0.0560 (9)
H30A0.41970.42440.03090.067*
C290.2650 (2)0.43106 (18)0.04393 (10)0.0437 (8)
O30.3866 (3)0.35598 (18)0.23209 (10)0.0979 (11)
C280.1102 (2)0.39109 (18)0.08425 (10)0.0422 (8)
C130.5225 (3)0.1903 (2)0.03241 (11)0.0551 (9)
H13A0.58570.17020.04220.066*
C240.0616 (3)0.3060 (2)0.14676 (12)0.0668 (11)
H24A0.13180.30010.15350.080*
C140.4290 (3)0.3283 (2)0.05351 (10)0.0495 (9)
C330.1685 (3)0.51657 (19)0.00389 (10)0.0481 (8)
H33A0.10630.53990.01260.058*
C20.5871 (3)0.2690 (2)0.17839 (13)0.0652 (11)
C40.5353 (3)0.0884 (2)0.22054 (12)0.0605 (10)
C210.1941 (3)0.2310 (2)0.18951 (11)0.0552 (9)
H21A0.15870.18890.20490.066*
H21B0.22310.26710.21060.066*
C30.4120 (3)0.3152 (2)0.20467 (13)0.0625 (10)
C10.4491 (3)0.3187 (2)0.11812 (12)0.0526 (9)
O40.6126 (2)0.06903 (19)0.23580 (10)0.0921 (10)
C310.3530 (3)0.4977 (2)0.01198 (12)0.0586 (10)
H31A0.41390.50930.02690.070*
C90.3376 (3)0.19729 (19)0.03703 (11)0.0513 (8)
H9A0.27540.18210.05000.062*
C80.4305 (3)0.16578 (18)0.05156 (10)0.0442 (8)
C150.3840 (4)0.4116 (2)0.11322 (11)0.0607 (10)
C120.5216 (3)0.2437 (2)0.00070 (11)0.0552 (9)
H12A0.58420.25950.01310.066*
C50.3592 (3)0.1476 (2)0.24554 (12)0.0521 (9)
C190.5647 (4)0.4416 (2)0.13029 (15)0.0860 (14)
H19A0.63570.43650.12480.103*
C200.4908 (4)0.4033 (2)0.10481 (13)0.0651 (11)
C170.4271 (6)0.4967 (3)0.17299 (14)0.0899 (16)
H17A0.40840.52840.19620.108*
C60.3551 (3)0.0222 (2)0.19312 (14)0.0721 (11)
C230.0119 (3)0.2678 (2)0.17106 (11)0.0653 (11)
H23A0.00930.23670.19410.078*
O20.6696 (2)0.2827 (2)0.18933 (12)0.1070 (12)
O60.3127 (3)0.0373 (2)0.19280 (14)0.1274 (14)
C270.1442 (3)0.3195 (2)0.12730 (12)0.0627 (10)
H27A0.21420.32360.11980.075*
C160.3491 (5)0.4594 (3)0.14816 (14)0.0909 (15)
H16A0.27870.46580.15430.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe20.0463 (3)0.0436 (3)0.0473 (3)0.0032 (2)0.0052 (2)0.0097 (2)
Fe10.0438 (3)0.0442 (3)0.0453 (3)0.0008 (2)0.0045 (2)0.0079 (2)
S20.0391 (4)0.0502 (5)0.0450 (5)0.0035 (4)0.0039 (4)0.0069 (4)
S40.0335 (5)0.0582 (5)0.0654 (6)0.0032 (4)0.0053 (4)0.0145 (4)
S10.0468 (5)0.0548 (5)0.0497 (5)0.0115 (4)0.0017 (4)0.0066 (4)
S30.0691 (7)0.0710 (6)0.0615 (6)0.0076 (6)0.0029 (5)0.0073 (5)
N20.0304 (14)0.0461 (15)0.0545 (17)0.0023 (12)0.0031 (13)0.0029 (14)
N10.062 (2)0.0453 (16)0.0514 (17)0.0024 (15)0.0078 (15)0.0050 (14)
O10.104 (2)0.0622 (17)0.0582 (16)0.0036 (15)0.0052 (16)0.0207 (14)
O50.0732 (19)0.090 (2)0.0545 (16)0.0136 (16)0.0002 (14)0.0010 (15)
C340.0357 (18)0.0420 (18)0.0478 (19)0.0040 (15)0.0022 (15)0.0049 (15)
C260.039 (2)0.072 (2)0.066 (2)0.0012 (18)0.0001 (18)0.029 (2)
C100.0430 (19)0.059 (2)0.051 (2)0.0071 (17)0.0040 (17)0.0003 (18)
C110.044 (2)0.0516 (19)0.0405 (18)0.0024 (16)0.0014 (16)0.0032 (16)
C70.062 (2)0.052 (2)0.049 (2)0.0084 (18)0.0028 (18)0.0063 (17)
C250.0339 (18)0.0472 (19)0.0458 (19)0.0031 (15)0.0021 (15)0.0017 (16)
C220.0383 (18)0.0501 (19)0.0434 (19)0.0043 (15)0.0026 (15)0.0030 (16)
C180.171 (6)0.057 (3)0.074 (3)0.003 (4)0.018 (4)0.003 (3)
C320.046 (2)0.058 (2)0.056 (2)0.0072 (18)0.0039 (18)0.0101 (17)
C300.0302 (18)0.060 (2)0.077 (3)0.0014 (17)0.0019 (18)0.006 (2)
C290.0338 (18)0.0416 (18)0.056 (2)0.0059 (15)0.0023 (16)0.0022 (15)
O30.146 (3)0.0724 (19)0.075 (2)0.000 (2)0.017 (2)0.0111 (17)
C280.0319 (17)0.0424 (18)0.052 (2)0.0024 (15)0.0015 (15)0.0002 (16)
C130.043 (2)0.067 (2)0.055 (2)0.0128 (18)0.0048 (17)0.0011 (19)
C240.0332 (19)0.098 (3)0.070 (3)0.010 (2)0.0112 (18)0.026 (2)
C140.053 (2)0.049 (2)0.047 (2)0.0033 (17)0.0008 (17)0.0102 (16)
C330.0404 (19)0.048 (2)0.056 (2)0.0008 (16)0.0039 (17)0.0056 (17)
C20.059 (3)0.065 (2)0.072 (3)0.004 (2)0.011 (2)0.021 (2)
C40.059 (3)0.065 (2)0.058 (2)0.005 (2)0.001 (2)0.0179 (19)
C210.048 (2)0.071 (2)0.047 (2)0.0098 (18)0.0031 (17)0.0138 (18)
C30.078 (3)0.052 (2)0.057 (2)0.005 (2)0.001 (2)0.009 (2)
C10.056 (2)0.050 (2)0.052 (2)0.0021 (18)0.0042 (18)0.0022 (18)
O40.066 (2)0.122 (3)0.089 (2)0.0244 (19)0.0154 (17)0.0322 (19)
C310.041 (2)0.061 (2)0.073 (3)0.0081 (18)0.0098 (19)0.008 (2)
C90.043 (2)0.059 (2)0.051 (2)0.0027 (17)0.0011 (17)0.0003 (18)
C80.048 (2)0.0437 (18)0.0409 (18)0.0069 (16)0.0026 (16)0.0073 (15)
C150.097 (3)0.045 (2)0.040 (2)0.009 (2)0.000 (2)0.0059 (17)
C120.047 (2)0.066 (2)0.053 (2)0.0006 (19)0.0058 (17)0.0018 (19)
C50.051 (2)0.051 (2)0.055 (2)0.0039 (18)0.0095 (19)0.0114 (18)
C190.108 (4)0.061 (3)0.089 (3)0.003 (3)0.026 (3)0.003 (3)
C200.082 (3)0.047 (2)0.066 (3)0.013 (2)0.028 (2)0.015 (2)
C170.169 (6)0.054 (3)0.047 (3)0.007 (3)0.004 (3)0.005 (2)
C60.076 (3)0.058 (3)0.082 (3)0.003 (2)0.004 (2)0.008 (2)
C230.046 (2)0.096 (3)0.054 (2)0.009 (2)0.0088 (18)0.030 (2)
O20.0578 (19)0.124 (3)0.139 (3)0.0199 (19)0.039 (2)0.031 (2)
O60.137 (3)0.066 (2)0.179 (4)0.032 (2)0.025 (3)0.014 (2)
C270.0312 (19)0.082 (3)0.075 (3)0.0012 (19)0.0035 (18)0.030 (2)
C160.143 (5)0.068 (3)0.062 (3)0.022 (3)0.011 (3)0.013 (2)
Geometric parameters (Å, º) top
Fe2—C51.779 (4)C22—C271.366 (4)
Fe2—C41.783 (4)C22—C231.376 (5)
Fe2—C61.786 (4)C22—C211.504 (4)
Fe2—S22.2530 (9)C18—C191.350 (6)
Fe2—S12.2704 (10)C18—C171.356 (7)
Fe2—Fe12.5198 (7)C18—H18A0.9300
Fe1—C31.776 (4)C32—C331.368 (4)
Fe1—C21.790 (4)C32—C311.392 (5)
Fe1—C11.812 (4)C32—H32A0.9300
Fe1—S22.2529 (10)C30—C311.367 (5)
Fe1—S12.2638 (10)C30—C291.386 (4)
S2—C211.826 (3)C30—H30A0.9300
S4—C291.731 (3)O3—C31.143 (4)
S4—C281.749 (3)C13—C121.368 (5)
S1—C71.845 (3)C13—C81.385 (4)
S3—C151.692 (4)C13—H13A0.9300
S3—C141.733 (4)C24—C231.369 (5)
N2—C281.299 (4)C24—H24A0.9300
N2—C341.390 (4)C33—H33A0.9300
N1—C201.353 (5)C2—O21.136 (4)
N1—C141.364 (4)C4—O41.146 (4)
O1—C11.127 (4)C21—H21A0.9700
O5—C51.131 (4)C21—H21B0.9700
C34—C291.393 (4)C31—H31A0.9300
C34—C331.396 (4)C9—C81.382 (4)
C26—C251.371 (4)C9—H9A0.9300
C26—C271.378 (4)C15—C201.403 (6)
C26—H26A0.9300C15—C161.425 (5)
C10—C91.378 (4)C12—H12A0.9300
C10—C111.391 (4)C19—C201.394 (5)
C10—H10A0.9300C19—H19A0.9300
C11—C121.394 (5)C17—C161.411 (7)
C11—C141.473 (5)C17—H17A0.9300
C7—C81.500 (4)C6—O61.143 (4)
C7—H7A0.9700C23—H23A0.9300
C7—H7B0.9700C27—H27A0.9300
C25—C241.372 (4)C16—H16A0.9300
C25—C281.472 (4)
C5—Fe2—C493.33 (16)C33—C32—H32A119.5
C5—Fe2—C697.07 (18)C31—C32—H32A119.5
C4—Fe2—C698.57 (18)C31—C30—C29117.9 (3)
C5—Fe2—S292.10 (11)C31—C30—H30A121.1
C4—Fe2—S2160.24 (12)C29—C30—H30A121.1
C6—Fe2—S299.59 (14)C30—C29—C34121.3 (3)
C5—Fe2—S1155.33 (11)C30—C29—S4129.4 (3)
C4—Fe2—S187.27 (12)C34—C29—S4109.3 (2)
C6—Fe2—S1107.23 (14)N2—C28—C25122.7 (3)
S2—Fe2—S179.98 (3)N2—C28—S4115.6 (2)
C5—Fe2—Fe1100.12 (11)C25—C28—S4121.7 (2)
C4—Fe2—Fe1104.31 (12)C12—C13—C8120.8 (3)
C6—Fe2—Fe1150.35 (14)C12—C13—H13A119.6
S2—Fe2—Fe156.00 (3)C8—C13—H13A119.6
S1—Fe2—Fe156.11 (3)C23—C24—C25121.1 (3)
C3—Fe1—C289.66 (19)C23—C24—H24A119.5
C3—Fe1—C199.19 (16)C25—C24—H24A119.5
C2—Fe1—C197.62 (16)N1—C14—C11123.0 (3)
C3—Fe1—S293.94 (13)N1—C14—S3116.3 (3)
C2—Fe1—S2159.67 (12)C11—C14—S3120.7 (3)
C1—Fe1—S2101.52 (11)C32—C33—C34118.5 (3)
C3—Fe1—S1156.07 (12)C32—C33—H33A120.7
C2—Fe1—S188.51 (14)C34—C33—H33A120.7
C1—Fe1—S1104.71 (11)O2—C2—Fe1177.2 (4)
S2—Fe1—S180.12 (3)O4—C4—Fe2178.9 (4)
C3—Fe1—Fe2101.10 (12)C22—C21—S2112.0 (2)
C2—Fe1—Fe2103.68 (12)C22—C21—H21A109.2
C1—Fe1—Fe2150.49 (11)S2—C21—H21A109.2
S2—Fe1—Fe256.00 (3)C22—C21—H21B109.2
S1—Fe1—Fe256.36 (3)S2—C21—H21B109.2
C21—S2—Fe1115.54 (13)H21A—C21—H21B107.9
C21—S2—Fe2114.28 (11)O3—C3—Fe1178.1 (4)
Fe1—S2—Fe268.00 (3)O1—C1—Fe1179.3 (3)
C29—S4—C2889.18 (15)C30—C31—C32121.5 (3)
C7—S1—Fe1113.71 (11)C30—C31—H31A119.2
C7—S1—Fe2111.97 (12)C32—C31—H31A119.2
Fe1—S1—Fe267.52 (3)C10—C9—C8120.9 (3)
C15—S3—C1488.95 (19)C10—C9—H9A119.6
C28—N2—C34110.5 (3)C8—C9—H9A119.6
C20—N1—C14107.1 (3)C9—C8—C13118.7 (3)
N2—C34—C29115.4 (3)C9—C8—C7120.6 (3)
N2—C34—C33124.7 (3)C13—C8—C7120.7 (3)
C29—C34—C33119.9 (3)C20—C15—C16120.3 (4)
C25—C26—C27120.8 (3)C20—C15—S3110.2 (3)
C25—C26—H26A119.6C16—C15—S3129.4 (4)
C27—C26—H26A119.6C13—C12—C11120.9 (3)
C9—C10—C11120.6 (3)C13—C12—H12A119.5
C9—C10—H10A119.7C11—C12—H12A119.5
C11—C10—H10A119.7O5—C5—Fe2178.0 (3)
C10—C11—C12118.1 (3)C18—C19—C20117.4 (5)
C10—C11—C14122.2 (3)C18—C19—H19A121.3
C12—C11—C14119.7 (3)C20—C19—H19A121.3
C8—C7—S1113.2 (2)N1—C20—C19121.8 (4)
C8—C7—H7A108.9N1—C20—C15117.4 (3)
S1—C7—H7A108.9C19—C20—C15120.9 (4)
C8—C7—H7B108.9C18—C17—C16120.3 (5)
S1—C7—H7B108.9C18—C17—H17A119.9
H7A—C7—H7B107.7C16—C17—H17A119.9
C26—C25—C24117.9 (3)O6—C6—Fe2176.5 (4)
C26—C25—C28119.3 (3)C24—C23—C22121.4 (3)
C24—C25—C28122.7 (3)C24—C23—H23A119.3
C27—C22—C23117.4 (3)C22—C23—H23A119.3
C27—C22—C21123.3 (3)C22—C27—C26121.5 (3)
C23—C22—C21119.3 (3)C22—C27—H27A119.2
C19—C18—C17124.6 (6)C26—C27—H27A119.2
C19—C18—H18A117.7C17—C16—C15116.6 (5)
C17—C18—H18A117.7C17—C16—H16A121.7
C33—C32—C31120.9 (3)C15—C16—H16A121.7
C5—Fe2—Fe1—C31.59 (18)C31—C30—C29—C340.3 (5)
C4—Fe2—Fe1—C394.52 (19)C31—C30—C29—S4178.2 (3)
C6—Fe2—Fe1—C3126.1 (3)N2—C34—C29—C30177.8 (3)
S2—Fe2—Fe1—C387.26 (14)C33—C34—C29—C300.7 (5)
S1—Fe2—Fe1—C3171.20 (14)N2—C34—C29—S40.5 (3)
C5—Fe2—Fe1—C293.97 (18)C33—C34—C29—S4178.9 (2)
C4—Fe2—Fe1—C22.14 (19)C28—S4—C29—C30177.2 (3)
C6—Fe2—Fe1—C2141.5 (3)C28—S4—C29—C340.9 (2)
S2—Fe2—Fe1—C2179.64 (15)C34—N2—C28—C25176.6 (3)
S1—Fe2—Fe1—C278.81 (15)C34—N2—C28—S41.1 (3)
C5—Fe2—Fe1—C1131.0 (3)C26—C25—C28—N211.7 (5)
C4—Fe2—Fe1—C1132.9 (3)C24—C25—C28—N2173.1 (3)
C6—Fe2—Fe1—C16.5 (4)C26—C25—C28—S4165.9 (3)
S2—Fe2—Fe1—C145.4 (2)C24—C25—C28—S49.3 (5)
S1—Fe2—Fe1—C156.2 (2)C29—S4—C28—N21.2 (3)
C5—Fe2—Fe1—S285.67 (12)C29—S4—C28—C25176.5 (3)
C4—Fe2—Fe1—S2178.22 (13)C26—C25—C24—C231.2 (6)
C6—Fe2—Fe1—S238.8 (3)C28—C25—C24—C23176.5 (4)
S1—Fe2—Fe1—S2101.55 (4)C20—N1—C14—C11179.6 (3)
C5—Fe2—Fe1—S1172.78 (12)C20—N1—C14—S30.5 (3)
C4—Fe2—Fe1—S176.68 (13)C10—C11—C14—N1174.9 (3)
C6—Fe2—Fe1—S162.7 (3)C12—C11—C14—N17.7 (5)
S2—Fe2—Fe1—S1101.55 (4)C10—C11—C14—S36.1 (5)
C3—Fe1—S2—C216.63 (16)C12—C11—C14—S3171.3 (3)
C2—Fe1—S2—C21106.4 (4)C15—S3—C14—N11.0 (3)
C1—Fe1—S2—C2193.59 (16)C15—S3—C14—C11179.9 (3)
S1—Fe1—S2—C21163.26 (12)C31—C32—C33—C340.4 (5)
Fe2—Fe1—S2—C21107.37 (12)N2—C34—C33—C32177.6 (3)
C3—Fe1—S2—Fe2100.74 (12)C29—C34—C33—C320.7 (5)
C2—Fe1—S2—Fe21.0 (4)C27—C22—C21—S238.0 (4)
C1—Fe1—S2—Fe2159.04 (12)C23—C22—C21—S2139.9 (3)
S1—Fe1—S2—Fe255.89 (3)Fe1—S2—C21—C22106.5 (2)
C5—Fe2—S2—C218.34 (18)Fe2—S2—C21—C22177.4 (2)
C4—Fe2—S2—C21114.2 (4)C29—C30—C31—C320.0 (5)
C6—Fe2—S2—C2189.20 (19)C33—C32—C31—C300.1 (6)
S1—Fe2—S2—C21164.82 (14)C11—C10—C9—C80.1 (5)
Fe1—Fe2—S2—C21109.14 (14)C10—C9—C8—C131.2 (5)
C5—Fe2—S2—Fe1100.80 (11)C10—C9—C8—C7176.8 (3)
C4—Fe2—S2—Fe15.1 (4)C12—C13—C8—C91.0 (5)
C6—Fe2—S2—Fe1161.66 (14)C12—C13—C8—C7177.0 (3)
S1—Fe2—S2—Fe155.69 (3)S1—C7—C8—C9121.3 (3)
C3—Fe1—S1—C7126.8 (4)S1—C7—C8—C1360.7 (4)
C2—Fe1—S1—C7147.36 (18)C14—S3—C15—C201.1 (3)
C1—Fe1—S1—C749.88 (18)C14—S3—C15—C16179.7 (4)
S2—Fe1—S1—C749.56 (13)C8—C13—C12—C110.2 (5)
Fe2—Fe1—S1—C7105.09 (13)C10—C11—C12—C131.2 (5)
C3—Fe1—S1—Fe221.7 (3)C14—C11—C12—C13176.3 (3)
C2—Fe1—S1—Fe2107.54 (12)C17—C18—C19—C200.2 (7)
C1—Fe1—S1—Fe2154.97 (12)C14—N1—C20—C19179.5 (3)
S2—Fe1—S1—Fe255.54 (3)C14—N1—C20—C150.4 (4)
C5—Fe2—S1—C7124.8 (3)C18—C19—C20—N1179.7 (4)
C4—Fe2—S1—C7143.13 (17)C18—C19—C20—C150.2 (6)
C6—Fe2—S1—C744.99 (19)C16—C15—C20—N1179.8 (3)
S2—Fe2—S1—C752.03 (12)S3—C15—C20—N11.1 (4)
Fe1—Fe2—S1—C7107.60 (12)C16—C15—C20—C190.1 (5)
C5—Fe2—S1—Fe117.2 (3)S3—C15—C20—C19178.8 (3)
C4—Fe2—S1—Fe1109.28 (13)C19—C18—C17—C160.1 (8)
C6—Fe2—S1—Fe1152.59 (15)C25—C24—C23—C220.3 (6)
S2—Fe2—S1—Fe155.57 (3)C27—C22—C23—C241.4 (6)
C28—N2—C34—C290.4 (4)C21—C22—C23—C24179.5 (4)
C28—N2—C34—C33177.9 (3)C23—C22—C27—C262.3 (6)
C9—C10—C11—C121.1 (5)C21—C22—C27—C26179.7 (3)
C9—C10—C11—C14176.4 (3)C25—C26—C27—C221.5 (6)
Fe1—S1—C7—C855.7 (3)C18—C17—C16—C150.1 (6)
Fe2—S1—C7—C8129.9 (2)C20—C15—C16—C170.1 (5)
C27—C26—C25—C240.3 (6)S3—C15—C16—C17178.4 (3)
C27—C26—C25—C28175.7 (3)

Experimental details

Crystal data
Chemical formula[Fe2(C14H10NS2)2(CO)6]
Mr792.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)12.8288 (14), 16.8812 (17), 31.089 (3)
V3)6732.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.33 × 0.29 × 0.11
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.703, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
36569, 6606, 4253
Rint0.063
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.01
No. of reflections6606
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: SMART (Bruker, 1997), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe2—S22.2530 (9)Fe1—S22.2529 (10)
Fe2—S12.2704 (10)Fe1—S12.2638 (10)
Fe2—Fe12.5198 (7)
C6—Fe2—Fe1150.35 (14)Fe1—S2—Fe268.00 (3)
C1—Fe1—Fe2150.49 (11)Fe1—S1—Fe267.52 (3)
 

Acknowledgements

The authors thank the Scientific and Technological Development Project of Jilin Province (grant No. 201101103) and the National Natural Science Foundation of China (grant No. 61106050) for financial support.

References

First citationBruker (1997). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCammack, R. (1999). Nature (London), 297, 214–215.  Web of Science CrossRef Google Scholar
First citationEvans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268–275.  Web of Science CrossRef PubMed Google Scholar
First citationNicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, P. J., Hall, G., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 1223–1225.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPeters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853–1858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSi, Y. T., Hu, M. Q. & Chen, C. N. (2008). C. R. Chim. 11, 932–937.  Web of Science CrossRef CAS Google Scholar
First citationTard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshino, K., Kohno, T., Uno, T., Morita, T. & Tsukamoto, G. (1986). J. Med. Chem. 29, 820–825.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds